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Purpose: To assess the value of novel deep learning (DL) scores combined with

complementary lung imaging reporting and data system 1.1 (cLung-RADS 1.1) in

managing the risk stratification of ground-glass nodules (GGNs) and therefore improving

the efficiency of lung cancer (LC) screening in China.

Materials and Methods: Overall, 506 patients with 561 GGNs on routine computed

tomography images, obtained between January 2017 and March 2021, were enrolled

in this single-center, retrospective Chinese study. Moreover, the cLung-RADS 1.1

was previously validated, and the DL algorithms were based on a multi-stage,

three-dimensional DL-based convolutional neural network. Therefore, the DL-based

cLung-RADS 1.1 model was created using a combination of the risk scores of DL

and category of cLung-RADS 1.1. The recall rate, precision, accuracy, per-class F1

score, weighted average F1 score (F1weighted), Matthews correlation coefficient (MCC),

and area under the curve (AUC) were used to evaluate the performance of DL-based

cLung-RADS 1.1.

Results: The percentage of neoplastic lesions appeared as GGNs in our study was

95.72% (537/561) after long-period follow-up.Compared to cLung-RADS 1.1 model or

DL model, The DL-based cLung-RADS 1.1 model achieved the excellent performance

with F1 scores of 95.96% and 95.58%, F1weighted values of 97.49 and 96.62%,

accuracies of 92.38 and 91.77%, and MCCs of 32.43 and 37.15% in the training and

validation tests, respectively. The combined model achieved the best AUCs of 0.753

(0.526–0.980) and 0.734 (0.585–0.884) for the training and validation tests, respectively.

Conclusion: The DL-based cLung-RADS 1.1 model shows the best performance in

risk stratification management of GGNs, which demonstrates substantial promise for

developing a more effective personalized lung neoplasm management paradigm for LC

screening in China.

Keywords: lung neoplasms, risk stratification, convolutional neural network, lung imaging reporting and data

system, X-ray computed tomography
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INTRODUCTION

The detection rate of pulmonary ground-glass nodules (GGNs)
has been increasing dramatically owing to the widespread use of
multi-slice spiral computer tomography (CT) and CT screening
programs for lung cancer (LC) detection (1). Furthermore, GGNs
may be observed in benign conditions, such as focal interstitial
fibrosis, inflammation, hemorrhage, and neoplasms (including
atypical adenomatous hyperplasia and adenocarcinoma in situ,
and malignancies) (2). Early diagnosis and treatment of LC
through incidental detection or screening is a promising strategy
for improving the detection rate of early LC and for reducing
the associated mortality (3). Lung imaging reporting and data
system (Lung-RADS) screening interpretation, proposed by the
American College of Radiology and revised in 2019 for low-
dose CT risk stratification, has been successfully used to reduce
the rate of false-positives with only a small corresponding
decrease in sensitivity (4). However, incidental or screening-
detected LC appearing as GGNs would have either been missed
or underdiagnosed by Lung-RADS 1.1, because the size of
GGNs was <30mm (14,137.2 mm3) (5). Moreover, the long
follow-up period recommended by Lung-RADS version 1.1
increases costs, additional radiation exposure and patient anxiety
owing to additional scans (6). Furthermore, the observation of
pulmonary nodules by radiologists is both labor-intensive and
time-consuming and the results can often be different because
of personal differences. Jiang H, et al. (7) adopted the semi-
automatic four-channel convolution neural networks model for
detecting different types of nodules and achieved a sensitivity
of 80.06% with 4.7 false positives per scan and a sensitivity of
94% with 15.1 false positives per scan, but the results of several
review studies (8, 9) show that the computer-aided detection
system improve the existing systems and propose new solutions
because of its false positives rate and its ability to detect nodules.
The Watershed and histogram of oriented gradients (HOG)
techniques for distinguishing nodules and a rule-based classifier
and support vector machine (SVM) for eliminating false positives
were used by Firmino et al. (10) and yielded the ROC curves
with areas of 0.72 for nodules with indeterminate malignancy,
and amulti-view knowledge-based collaborative (MV-KBC) deep
model was used to separate malignant from benign nodules
in the study by Xie et al. (11) and achieved the accuracy of
91.60% for lung nodule classification with an AUC of 95.70%
for different types of nodules. However, these algorithms need to
be promoted further in clinical practice, and more sophisticated
risk stratification and prediction models will be beneficial for
appropriate management of indeterminate GGNs. Therefore, we
proposed a DL-based version of complementary Lung-RADS 1.1
(cLung-RADS 1.1) to predict pulmonary neoplasms manifesting
as GGNs on CT images, and therefore validated this model in
actual clinical scenarios.

MATERIALS AND METHODS

Data Source
This single-center study protocol was approved by the Affiliated
Tumor Hospital of the Zhengzhou University Medical Ethics

Committee (Ethics Approval Number: 2021-KY-0022). The
requirement of obtaining informed consent from participating
patients was waived because of the retrospective nature of this
study. Database were retrospectively collected from 736 patients,
with one or more GGNs detected on a thoracic CT from January
2017 to March 2021.

The inclusion criteria were (1) patient reported as having
one or more GGNs detected on a thoracic CT, (2) GGNs were
stable or increased in size after follow-up at two or more
years, (3) defined ground truth owing to accompaniment of
clinical symptoms or severe patient anxiety, and (4) patient had
no history of or currently known extra-thoracic malignancies.
The exclusion criteria were (1) patients without pathological
diagnoses or patients with no follow-up, (2) rejection of chest
CT by DL owing to incompatible image parameters (i.e., CT
slice thickness >5mm or poor image quality), and 3) patients
with lung or other site infections. The process of selecting the
study population is illustrated in Figure 1. The enrolled patients
were randomly divided into a training set (205 patients, 223
observations) and validation set (301 patients, 328 observations).
The CT images from all cases were anonymized, and the clinical
data or pathological diagnosis findings were collected.

Image Acquisition and Quality Control
The CT examinations of all patients were performed using a
multi-slice CT scanner (iCT-256, Siemens or LightSpeed-16,
GE) with a tube voltage of 120 kVp and tube current of 100–
300mA. The pixel spacing of the CT images ranged from 0.625 to
0.867mm, depending on the patient size, and the reconstruction
slice thickness was 1mm. Each CT image was reconstructed in an
imagematrix of 512× 512 pixels. Unenhanced spiral acquisitions
were obtained with a breath-hold from the thoracic inlet to the
lung bases with images. These images were reconstructed using
a standard algorithm. A non-ionic contrast agent was used for
the multi-phase enhanced scanning process in 76 patients, and
a high-pressure bolus was injected through the elbow vein at
a rate of 1.8–2.5 mL/s. The dosage of the contrast agent was
1.5–2.0 mL/kg, and the flow was 2–3 mL/s. Each GGN on the
CT, along with its multiplanar reconstruction, was independently
interpreted by three thoracic radiologists with 7, 10, and 15 years
of experience, respectively, they were not privy of the pathological
results. Considering cases of disagreement on the cLung-RADS
1.1 categories among the three radiologists, the images were re-
reviewed together, and a consensus categorization was achieved.

Description of the DL Neural Network
Process: Lung Nodule Detection and
Classification
The framework of commercial DL was based on multi-stage
three-dimensional deep convolutional neural network (3D-
DCNN) algorithms (12). The DL algorithm of the lung nodule
diagnosis model comprises two stages (Figure 2): a nodule
detection stage and nodule classification stages. The first stage
extracts high-quality nodule proposals based on the 3D ResNet
model and faster convolutional neural network detector, whereas
the second stage employs a false positive reduction network

Frontiers in Public Health | www.frontiersin.org 2 May 2022 | Volume 10 | Article 891306

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Meng et al. Stratification Model of Pulmonary Ground-Glass Nodules

FIGURE 1 | Flowchart depicting the selection of patients for this study.

(referred to as FPRNet-101) for precise lung nodule classification.
Combining both stages, the lung nodule diagnosis model
achieved state-of-the-art performance and was endowed with
human domain knowledge, resulting in more precise, powerful,
and understandable diagnoses. The malignancy scores of GGNs
using the commercial DL approach were classified as low
(<50%), medium (50–70%), and high (70–100%). Moreover,
nodules with medium or high malignant risk scores were defined
as positive nodules.

Risk Stratification Management Model of
Incidental Pulmonary GGNs: Progress
Description of DL-Based CLung-RADS 1.1
The cLung-RADS 1.1 was redesigned according to the GGN-
vessel relationships (GVR) which were categorized into four
different types according to imaging features. We identified the
type I of GVR and size <30mm as Lung-RADS 2, type I of GVR
and size≥30mm or type II of GVR as Lung-RADS 2, and any
sizes with GGN of type III as Lung-RADS 4a and with type IV as
Lung-RADS 4b, Category 3 or 4 nodules with additional features

or imaging findings that increased the suspicion of malignancy
were defined as Lung-RADS 4x, detailed in Table 2 and the

reference (13), and therefore a novel DL-based cLung-RADS 1.1
model was developed to incorporate the additional information

provided by the DL risk scores. A management strategy was
developed to leverage the increased diagnostic accuracy achieved
by the artificial intelligence (AI) algorithm. Pulmonary GGNs
that were initially classified as category 3, 4A, or 4B of cLung-
RADS, however, they were considered as sufficiently middle- or
high-risk by the DL algorithm (i.e., with a DL risk score above
the operating point defined to match the average sensitivity of
the three radiologists applying cLung-RADS 1.1), were upgraded
separately to categories 4A, 4B, and 4X, respectively. This was
done to either reduce the follow-up period of low-dose CT
(LDCT) scanning or to indicate the optimal operating time. Lung
GGNs initially classified as category 3, 4A, or 4 B and deemed to
be low -risk by the DL algorithm (that is, with a DL risk score
below the chosen operating point) were maintained as category
3, 4A, or 4B, respectively. Pulmonary GGNs for which the cLung-
RADS 1.1 classifications were considered concordant (category
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FIGURE 2 | Frame structure of AI based on multi-stage 3D-DCNN algorithms.

2 or 4X with any DL risk score) were managed based on the
initial cLung-RADS 1.1 classification. There was no change in
management based on the DL-informed management strategy,
shown in Table 3. A risk stratification of more than or equal to
category 4A based on the DL-based cLung-RADS 1.1 for GGNs
was defined as the neoplasm point in clinical scenarios.

Statistical Analysis
Statistical analyses were performed using the SPSS software
(version 24; IBM Corporation). Data were reported as mean
± standard deviation (SD). An independent t-test was used to
compare the quantitative data. Counting data were described in
terms of frequency and percentage, and comparisons between
groups were conducted using the chi-square test. When
the expected value was <1 or the pre-test probability was
approximately the same as the test level, Fisher’s exact test was
used instead. The validity and predictive values of cLung-RADS
1.1, DL, and DL-based cLung-RADS 1.1 were calculated for the
recall rate, precision, accuracy (ACC = TP+TN

TP+FP+TN+FN ), per-class

F1 score (F1 = 2×Precision×Recall
Precision+Recall

), weighted average F1 score

(F1weighted = (1+β2)×Precision×Recall
(β2×Precision) +Recall

), and Matthews correlation

coefficient (MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

),

respectively. Here, TP denotes true positive, FP denotes false
positive, TN denotes true negative, FN denotes false negative,
precision denotes the precision value (Precision = TP

TP+FP ),

and recall denotes the recall value (Recall = TP
TP+FN ). To

attenuate the influence of false negatives, we set β =0.5 to
calculate F1weighted. The overall performance was evaluated
using the area under the receiver operating characteristic
curve (AUC) analysis. The statistical significance was set
to p < 0.05.

RESULTS

Dataset Characteristics
In this study, a dataset of 506 patients with 551 observations
was established. Table 1 outlines the baseline patient data. There
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TABLE 1 | Clinical characteristics of patients between training set and validation

set [means ± standard deviations; n (%)].

Characteristics Training set Validation set P

Gender

Male 75 104 0.668

Female 130 197

Age (years) 56.5 ± 9.5 56.3 ± 9.5 0.844

Family history of carcinoma

Yes 7 17 0.246

No 198 284

Clinical symptoms

Yes 27 39 0.772

No 178 262

Chronic obstructive pulmonary disease

Yes 10 20 0.293

No 195 281

Period of follow-up (month) 43.6 ± 11.3 43.5 ± 12.1 0.990

Compliance with medical orders

Yes 101 128 0.143

No 122 200

Distribution of nodules in patients

One 188 279 0.317

Two 16 17

Three 1 5

G-V-R type

I 15 32 0.316

II 22 36

III 23 41

IV 163 218

Size of pGGNs (mm) 13.96 ± 6.58 13.27 ± 5.82 0.195

Lung adenocarcinoma spectrum

Non-neoplastic lesions 7 17 0.249

Neoplastic lesions 216 311

G-V-R, GGN-vessel relationship; pGGNs, pure ground-glass nodules; CT,

computed tomography.

were six subjects with three nodules, 33 subjects with two
nodules, and 467 subjects with only one nodule. Only 66 patients
were presented with clinical symptoms. There were 24 (4.4%)
non-neoplastic and 527 (95.6%) neoplastic (including atypical
adenomatous hyperplasia, adenocarcinoma in situ, minimally
invasive adenocarcinoma, and invasive adenocarcinoma) lesions.
Twenty-four participants had a family history of carcinoma, and
30 participants had chronic obstructive pulmonary disease. There
were 47 observations with G-V-R type I, 58 lesions with G-V-
R type II, 64 with G-V-R type III, and 381 with G-V-R type IV.
The CT images are shown in Figure 3. The age distribution of the
patients was 56.5 ± 9.5 (mean ± SD) years and 56.3 ± 9.5 years
for the training and validation set, respectively. A total of 327
(64.62%) women were included. The follow-up period between
the training and validation sets was 43.6± 11.3 (mean± SD) and
43.5 ± 12.1 months, respectively, and 229 patients maintained
good compliance with medical advice.

TABLE 2 | Summary of Lung-RADS version 1.1 of pGGN and its complementary

Lung-RADS categories.

Category Lung-RADS 1.1 Complementary Lung-RADS 1.1

Stable or increased in size after two or more

years follow-up

2 Size < 30mm Type I of GVR and size < 30 mm

3 Size ≥ 30mm Type I of GVR and size ≥ 30mm; type II of GVR

4a Any size with type III of GVR

4b Any size with type IV of GVR

4x Category 3 or 4 nodules with additional

features or imaging findings that increases the

suspicion of malignancy

GVR, GGN-vessel relationship; Lung-RADS, lung imaging reporting and data system.

TABLE 3 | Summary of DL-based-cLung-RADS Version 1.1 used for the risk

stratification management of pure ground-glass nodules.

cLung-RADS Risk scores DL-based-cLung-RADS

1.1 category of DL 1.1 category

2 Low, middle, or high 2

3 Low 3

Middle or high 4A

4A Low 4A

Middle or high 4B

4B Low 4B

Middle or high 4X

4X Low, middle, or high 4X

DL, deep learning; cLung-RADS, complementary lung imaging reporting and data system.

Performance of the CLung-RADS 1.1 and
DL Models
Considering the training set, the DL model yielded a higher
accuracy (91.03 vs. 84.30%), recall (99 vs. 97.9%), and F1weighted
(96.64 vs. 95.45%); nevertheless, it had a lower F1 score (89.40
vs. 91.31%) and MCC value (15.64 vs. 20.06%), compared to
the cLung-RADS 1.1. The validation set was used to evaluate
the performance of both cLung-RADS 1.1 and DL. The 90.55%
validation accuracy value and 99% validation recall rate of the
DL exceeded those of the cLung-RADS 1.1 (80.49%). Moreover,
the DL model achieved a 94.99% F1 score, 95.27% F1weighted,
and 95.45% precision rate, whereas cLung-RADS 1.1 achieved
an 88.85% F1 score, a 93.54% F1weighted, and a 96.96% precision
rate. However, the validationMCC value of cLung-RADS 1.1 was
higher than that of the DL (19.43 vs. 2.73%). The AUC value of
cLung-RADS 1.1 was higher than that of theDL in the training set
(0.712 vs. 0.606, respectively) and validation set (0.676 vs. 0.561,
respectively) set, as shown in Table 4.

DL-Based CLung-RADS 1.1 Model for Risk
Stratification Management of Pulmonary
GGNs
Considering the complementary performance in the risk
management of GGNs, a novel DL-based cLung-RADS 1.1
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FIGURE 3 | Types of relationships between GGNs and its vessels: Type I (pass-by, 1 – 2 ), vessels passing by pGGNs without any detectable supply branches to the

lesions; Type II (pass-through, 3 – 4 ), vessels passing through the lesions without apparent morphological changes in traveling path or size; Type III (distorted/dilated,

5 – 6 ), vessels within lesions that appear tortuous or rigid without an increase in amount; Type IV (complicated, 7 – 8 ), more complicated vasculature than others

described in the aforementioned types within pGGNs (e.g., coexistence of irregular vascular dilation and vascular convergence from multiple supplying vessels).

TABLE 4 | Comparison of diagnostic value for neoplastic lesions of lung nodule with cLung-RADS1.1, AI, and AI-based-cLung-RADS1.1.

Training set Validation set

cLung-RADS1.1 DL DL-based-cLung-RADS1.1 cLung-RADS1.1 DL DL-based-cLung-RADS1.1

TP 184 201 202 255 294 292

FP 3 5 3 8 14 8

FN 32 15 14 56 17 19

TN 4 2 4 9 3 9

Recall, % 97.9 99.0 98.1 96.6 99 97

Precision, % 98.4 97.57 98.54 96.96 95.45 97.33

MCC, % 20.06 15.64 32.43 19.43 2.73 37.15

F1 score (%) 91.31 89.40 95.96 88.85 94.99 95.58

F1weighted (%) 95.45 96.64 97.49 93.54 95.27 96.62

Accuracy, % 84.30 91.03 92.38 80.49 90.55 91.77

AUC, (95% CI) 0.712 (0.489–0.934) 0.606 (0.366–0.845) 0.753 (0.526–0.980) 0.675 (0.529–0.820) 0.561 (0.409–0.712) 0.734 (0.585–0.884)

FN, false negative; FP, false positive; TN, true negative; TP, true positive; MCC, Matthews correlation coefficient; DL, deep learning; cLung-RADS, complementary lung imaging reporting

and data system; AUC, area under the curve; 95% CI, 95% confidence intervals.

model was developed to incorporate the additional information
provided by the DL risk scores (Table 2). Regarding the training
set, compared with both cLung-RADS 1.1 and DL, the DL-
based cLung-RADS 1.1 model achieved the highest accuracy
value (92.38%), F1 score (95.96%), F1weighted (97.49%), andMCC
value (32.43%). Considering the validation set, the DL-based
cLung-RADS 1.1 model achieved excellent performance with a
97.33% precision, 91.77% accuracy value, 95.58% F1 score, and
37.15% MCC, although it had a lower recall rate than that of
DL (93.89 vs. 94.53%). The DL-based cLung-RADS 1.1 model
yielded the highest AUC value of 0.753 (0.526–0.980) and 0.734
(0.585–0.884) in the training and validation sets, respectively
(Table 4).

DISCUSSION

In this study, we have developed a novel DL-based cLung-RADS
1.1 model to predict neoplastic lesions manifesting as GGNs on

CT images. Our model was trained on and validated using data
from patients with lung GGNs, and it demonstrated excellent

performance in identifying both non-neoplastic and neoplastic
GGNs, with a high degree of accuracy in both the training
and validation sets. Our results indicate the potential value of
using 3D-DCNNs for LC risk prediction and decision support
for incidentally detected lung nodules. By ruling out CT scans
with very high training and validation F1weighted scores (99 and
96.62%, respectively), unnecessary workups, including imaging
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and invasive procedures, could be avoided in a significant
number of patients.

Previous AI studies have focused on detecting andmaximizing
the proportion of correctly characterized cancers (i.e., high
positive-predictive value or accuracy), and have shown promising
results (14–18); however, the specificity of these tools is moderate.
Wang et al. (18) used DL-based convolutional architecture for
fast feature-embedding and ResNet-50 to detect GGNs, and
reported an accuracy of 88% with an F-score of 0.891. In
contrast, the framework of commercial DL in the present study
was based on multi-stage 3D-DCNN algorithms, and FPRNet-
101 was used for precise lung nodule classification, which
achieved an excellent recall rate and F1 score, demonstrating
superior performance over the algorithms used in Wang et al.
’s study. Although the AUC value of DL in our study was lower
than that of the previous AI scheme study (15) based on a
DCNN (which used a residual learning architecture and batch-
normalization technique). Our DL model exhibits consistently
superior performance on a large-scale validation set with 328
GGNs in a clinical scenario.

Successful recognition of malignant GGNs can result
in avoiding additional costs of multiple scans and can
decrease patient anxiety. To improve the performance of
DL in risk stratification of GGNs, the cLung-RADS 1.1
model, when used to manage national LC screening test
data of China, yielded excellent performance in our previous
study, achieving super sensitivity in predicting malignant
nodules (13). Subsequently, the model has been used to
complement the efficiency of DL in clinical scenarios.
Therefore, a novel risk management model of GGNs using
DL combined with cLung-RADS 1.1 was designed.This
model achieved a superior precision rate, MCC, F1 score,
and AUC value than those of the DL or cLung-RADS 1.1
models in our study, demonstrating the complementarity
between DL and cLung-RADS 1.1. Furthermore, the
persistently superior performance of the DL-based cLung-
RADS 1.1 model was shown using a large sample size in our
validation set.

Our study has several limitations. First, this was a single-
center, retrospective study, and the percentage of neoplastic
lesions was high (95.72%), which may have resulted in design
and selection biases. Second, LDCT screening with the DL-based
cLung-RADS 1.1 model does not avoid the risk of overdiagnosis
or overtreatment because these pGGNs may be indolent and
clinically insignificant. This can cause the rest of the patient’s
life to be subclinical. However, Henschke et al. (19) found
that approximately 90% of diagnosed and untreated stage IA
non-small cell LC (as small as 10mm in diameter) had a
malignant natural course and were fatal if not treated. A study
by Caverly et al. (20) supports the importance of personalizing
the harm/benefit assessment of LDCT LC screening for
informing screening decisions, rather than providing uniform
recommendations or withholding a recommendation for eligible
patients. Therefore, further evaluation of the effectiveness of the

DL-based cLung-RADS 1.1 model, with focus on pGGN cases,
is recommended.

CONCLUSION

Our results suggest that the proposed DL-based cLung-RADS 1.1
model is not only a better risk model for GGNs in identifying
high-risk GGNs that require prompt intervention than cLung-
RADS 1.1 or DL, respectively. It is also effective for the
detection and diagnosis for LC screening in the some countries
with large population sizes, which will reduce the frequency
of CT scans to utilize the medical resources rationally or the
patient’s anxiety owing to long period follow-up. Therefore, it
is beneficial to the public health services in China. However,
the effectiveness of the model should be further verified in a
multi-center study.
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