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Pancreatic cancer is one of the most challenging cancer types in clinical treatment

worldwide. This study aimed to understand the tumorigenesis mechanism and explore

potential therapeutic targets for patients with pancreatic cancer. Single-cell data and

expression profiles of pancreatic cancer samples and normal tissues from multiple

databases were included. Comprehensive bioinformatics analyses were applied to

clarify tumor microenvironment and identify key genes involved in cancer development.

Immense difference of cell types was shown between tumor and normal samples.

Four cell types (B cell_1, B cell_2, cancer cell_3, and CD1C+_B dendritic cell_3) were

screened to be significantly associated with prognosis. Three ligand–receptor pairs,

including CD74-MIF, CD74-COPA, and CD74-APP, greatly contributed to tumorigenesis.

High expression of BUB1 (BUB1 Mitotic Checkpoint Serine/Threonine Kinase) was

closely correlated with worse prognosis. CD1C+_B dendritic cell_3 played a key role

in tumorigenesis and cancer progression possibly through CD74-MIF. BUB1 can serve

as a prognostic biomarker and a therapeutic target for patients with pancreatic cancer.

The study provided a novel insight into studying the molecular mechanism of pancreatic

cancer development and proposed a potential strategy for exploiting new drugs.

Keywords: pancreatic cancer, single-cell data, dendritic cells, ligand–receptor interactions, CD74, Bub1,

therapeutic targets, bioinformatics analysis

INTRODUCTION

In 2020, 495,773 new cases of pancreatic cancer were diagnosed all over the world, showing an
increase of more than 1/3 cases compared with the data in 2015 (1, 2). High-income countries,
especially Europe and Northern America, have a high incidence of pancreatic cancer, which was
partially attributed to the improved diagnosis and an aging population (1). Smoking is the most
studied risk factor and has been demonstrated to be highly associated with pancreatic cancer (3).
Evidence showed that smokers have two- to three-fold risk much higher than non-smokers, and an
obvious dosage–risk relationship is observed (3). Other risk factors, such as dietary factors (4), low
physical activity (5), and obesity (6), are also associated with pancreatic cancer.
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FIGURE 1 | Work flowchart and clustering and dimensionality reduction of one normal sample and two tumor samples by UMAP. (A) Work flowchart. (B) The

distribution of three samples labeled by three colors after dimensionality reduction. (C) The distribution of one normal sample and tumor samples. (D) 20 subgroups

from C0 to C19 of three samples. (E) The proportion of different subgroups in each sample. IPMN, PASC, and the normal sample located from inside to outside,

respectively. IPMN, intraductal papillary mucinous neoplasm; PASC, pancreatic adenosquamous carcinoma.

Pancreatic cancer is one of the most lethal cancers
with high mortality, ranking the seventh in cancer-related
mortality. Patients with pancreatic cancer were already in an
advanced stage when diagnosed, which increases difficulty in
treatment. In addition, pancreatic cancer is not sensitive to
conventional therapies such as chemotherapy, radiotherapy, or
molecular-targeted therapy. Surgery is still the main strategy
for non-metastatic or local advanced patients. The 5-year
survival rate is about 15–25% of patients accepting surgery
compared with <7% of an averaged 5-year survival in all
individuals (7). However, not more than 20% of patients with
pancreatic cancer could be treated by surgery, whereas over
60% of surgery-managed patients will undergo relapse in the
first year (8). Therefore, effective biomarkers for early screening
pancreatic cancer or molecular targets for personalized therapy
are urgently needed.

CA19-9 is a well-known biomarker of pancreatic cancer with
a sensitivity of about 80% for diagnosis. It can also serve as a
monitor to evaluate the response systematic treatment in the
neoadjuvant or surgery (9). However, CA19-9 level may be
affected by other diseases such as biliary obstruction (10). Other
biomarkers related to transforming growth factor-beta (TGF-β),

angiogenesis, inflammation, and immune response have been
explored (11). For example, a meta-analysis demonstrated that
loss of SMAD4 (SMAD Family Member 4) expression was
associated with worse prognosis of patients with pancreatic
cancer (12). Although a number of biomarkers for predicting
prognosis have been developed, the mechanisms and treatments
of pancreatic cancer should be improved. Molecular-targeted
therapy is promising strategy for managing pancreatic cancer.

The BUB1 gene is located on human chromosome 2q14.
Its encoded protein is a platform protein for spindle physical
examination. It is the basis for other cell components
to be accurately located in the spindle. BUB1 gene plays
an indispensable role in maintaining correct chromosome
separation and reducing aneuploid formation during mitosis.
Increasing studies have shown that BUB1 plays an important
role in the occurrence and development of tumors. Qi et al.
(13) identified the expression of BUB1 in liver hepatocellular
carcinoma (LIHC) tissue by immunohistochemistry. BUB1
expression is accompanied by immune cell infiltration into
LIHC tissue. Yun et al. (14) found that BUB1 is a key gene in
colorectal cancer. Gao et al. (15) observed that BUB1 can be
used as a prognostic marker of gastric cancer. Alam et al. (16)
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found that BUB1 may be used as a biomarker in breast cancer.
Jiang et al. (17) reported that BUB1 mediates STAT3 signaling
pathway to drive the occurrence and development of bladder
cancer. These studies have shown that BUB1 is an important
gene in cell cycle control and DNA damage repair, but it is
rarely reported in pancreatic cancer. The development of single-
cell sequencing technology allows an in-depth understanding
of the occurrence and development mechanism of pancreatic
cancer, the heterogeneity of tumor microenvironment, and
the formation mechanism of drug resistance, so as to find
new therapeutic targets. Earlier, Zhao et al. (18) identified the
metabolic reprogramming of human colon immune cells in
different locations and disease states by using single-cell RNA
sequencing (scRNA-seq). Lai et al. (19) constructed a prognostic
model for predicting the survival rate of human glioblastoma
by comprehensive analysis of scRNA-seq dataset and RNA-
seq dataset. Wang et al. (20) identified the heterogeneity of
CD8+ T cells and novel biomarker genes in hepatocellular
carcinoma by single-cell sequencing. These studies have shown
that it is effective to use single-cell technology to find tumor
heterogeneity and key biomarkers. In the recent years, single-cell
technology has been greatly improved and applied in studying
mechanisms from different aspects in pancreatic cancer (21–23).
Single-cell data provide an expanded space for exploring tumor
microenvironment, heterogeneity, and other aspects in cancer.
Therefore, in this study, we applied the scRNA-seq data of
pancreatic cancer to distinguish differential cell types between
normal and tumor samples. Workflow is as shown in Figure 1A.
Together with other independent data, we discovered hub
genes highly associated with prognosis. The study provides a
new insight into understanding the mechanisms of pancreatic
cancer development.

MATERIALS AND METHODS

Data Source
The scRNA-seq data (GSE165399) (24) of an intraductal
papillary mucinous neoplasm (IPMN) sample, a pancreatic
adenosquamous carcinoma (PASC) sample, and a normal
sample were downloaded from Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The
Cancer Genome Atlas (TCGA) dataset, including 177 tumor
samples, was downloaded from TCGA database (https://portal.
gdc.cancer.gov/). Other normal samples of pancreatic tissue were
downloaded from UCSC Xena database (http://xena.ucsc.edu/).
Other pancreatic adenocarcinoma (PAAD) samples, including
GSE21501 (25), GSE28735 (26), GSE57495 (27), GSE62452 (28),
and GSE85916, were downloaded from GEO database. The
clinical characteristics of each dataset are shown in Table 1.

Data Preprocessing
For scRNA-seq data, quality control was performed, where each
gene expressed at least three cells and each cell expressed at least
250 genes. “PercentageFeatureSet” in SEURAT R package (29)
was conducted to calculate the proportion of mitochondria and
rRNA. Mitochondria fraction <30% and each cell expressing at
least 500 genes were set to screen data. Samples from TCGA

TABLE 1 | Clinical characteristics of each dataset.

TCGA GSE21501 GSE28735 GSE57495 GSE62452 GSE85916

Event

Alive 85 36 13 21 16 23

Dead 100 66 29 42 50 57

T.Stage

T1 7 2 NA NA NA NA

T2 24 16 NA NA NA NA

T3 148 79 NA NA NA NA

T4 4 1 NA NA NA NA

Unknown 2 0 42 63 66 80

N.Stage

N0 50 NA NA NA NA NA

N1 130 NA NA NA NA NA

Unknown 5 102 42 63 66 80

M.Stage

M0 85 NA NA NA NA NA

M1 5 NA NA NA NA NA

Unknown 95 102 42 63 66 80

Stage

I 21 73 NA 13 4 NA

II 152 0 NA 50 45 NA

III 4 0 NA 0 13 NA

IV 5 0 NA 0 6 NA

Gender

Female 83 NA NA NA NA NA

Male 102 NA NA NA NA NA

Age

>65 89 NA NA NA NA NA

<=65 96 NA NA NA NA NA

Grade

G1 NA NA NA NA 2 NA

G2 NA NA NA NA 35 NA

G3 NA NA NA NA 30 NA

G4 NA NA NA NA 1 NA

and UCSC Xena were combined and grouped by normal and
tumor samples. “NormalizeBetweenArrays” in limma R package
(30) was performed to normalize the data. Finally, 177 tumor
samples and 167 normal samples remained with a total of
24,210 genes, and they were defined as TCGA-PAAD dataset.
For GSE21501, GSE28735, GSE57495, GSE62452, and GSE85916
datasets, samples without clinical information were excluded,
and only tumor samples remained. Probes were converted to
gene symbol. “RemoveBatchEffect” function was conducted to
remove batch effects and “NormalizeBetweenArrays” function
was used to normalize the data.

Dimensionality Reduction by UMAP
Three single-cell samples were merged and normalized by log-
normalization. “FindVariableFeatures” function was conducted
to identify highly variable genes. “ScaleData” function was used to
scale data and principal component analysis (PCA) was applied
to reduce dimensionality. “FindNeighbors” and “FindClusters”
functions were performed to cluster cells under the conditions
of dim = 40 and resolution = 0.5. The top 40 components were
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FIGURE 2 | The top 5 markers of 20 subgroups. Yellow represents relatively high expression and plum represents relatively low expression.

selected, and uniform manifold approximation and projection
(UMAP) was used to further reduce dimensionality. UMAP is
a nonlinear dimensionality-reduction technique for visualizing
single-cell data and process high-dimensional data (31).

Definition of Cell Types
Specific marker genes of different tissues were obtained from
CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/).
Markers of pancreas, pancreatic acinar tissue, fetal pancreas,
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TABLE 2 | The information of 20 cell types.

Seraut cluster Cell types New cell types

0 CD1C-CD141- dendritic cell CD1C-CD141- dendritic cell_1

1 CD1C-CD141- dendritic cell CD1C-CD141- dendritic cell_2

2 Fibroblast Fibroblast_1

3 Plasmacytoid dendritic cell Plasmacytoid dendritic cell

4 B cell B cell_1

5 Natural killer cell Natural killer cell_1

6 CD1C+_B dendritic cell CD1C+_B dendritic cell_1

7 CD1C+_B dendritic cell CD1C+_B dendritic cell_2

8 Myeloid dendritic cell Myeloid dendritic cell

9 Cancer cell Cancer cell_1

10 B cell B cell_2

11 Fibroblast Fibroblast_2

12 Endothelial cell Endothelial cell

13 AXL+SIGLEC6+ dendritic cell AXL+SIGLEC6+ dendritic cell

14 Natural killer cell Natural killer cell_2

15 Cancer cell Cancer cell_2

16 CD1C+_B dendritic cell CD1C+_B dendritic cell_3

17 Beta cell Beta cell

18 Cancer cell Cancer cell_3

19 Basophil Basophil

peripheral blood, and blood were selected. By using enricher
function in clusterProfiler R package (32), the enrichment
score of these marker genes of each subgroup was calculated.
According to the high or low enrichment of these marker genes
in different subgroups, different cell types were defined. One cell
type having multiple subgroups was classified into different cell
types. “Minimum.spanning.tree” function was used to calculate
the minimum distance between two cell types, and a minimum-
cost spanning tree (MST) was constructed.MST andUMAP plots
were used to estimate whether two subgroups could be combined.

Analysis of Cell Trajectory and
Identification of key Regulator Genes
Cell trajectory reflected the development time and differentiation
degree of different cell types. Monocle 2 toolkit was applied to
generate the trajectory of cell development (33). Monocle is an
unsupervised algorithm for processing high-dimensionality data
and dynamically presents single-cell data. Branched expression
analysis modeling (BEAM) measurement in monocle 2 was
employed to identify regulator genes (33). BEAM is a regression
model for detecting critical genes involved in cell development.

ReactomeGSA for Functional Analysis
When analyzing functional pathways of subgroups,
ReactomeGSA R package (34) was implemented to calculate the
enrichment score of each pathway in each subgroup. The top 20
differentially enriched pathways were selected. ReactomeGSA
linking to reactome database can allow to analyze functional
pathways from multi-omics and derive novel biomedical
insights (34).

Ligand–Receptor Interactions Analyzed by
CellPhoneDB
CellPhoneDB, a public tool with curated receptors and
ligands, was applied to assess cell–cell communication (35).
Databases, including UniProt, Ensembl, PDB, the IMEx
consortium, and IUPHAR, were utilized by CellPhoneDB
for comprehensively assessing ligand–receptor interactions.
CellPhoneDB is convenient to screen important interactions
between different cell types for single-cell data. Mean expression
of each ligand–receptor and their p-values were calculated.
Ligand–receptor network was used to manifest the overall
interactions among cell types. Thick and thin interactions
between two cell types represent strong and weak interactions
between them, respectively. Dot plots presenting specific ligand–
receptor pairs were used to display interactions between specific
cell types under a condition of mean interaction >1.

Constructing Protein–Protein Interaction
Network
Univariate Cox regression analysis was performed to screen
marker genes of C4, C10, C16, and C18 associated with prognosis
(p < 0.001). For these screened genes, rcorr function in Hmisc R
package (https://cran.r-project.org/web/packages/Hmisc/index.
html) was applied to analyze the correlation among each genes.
Correlation coefficient| > 0.9 and p < 0.001 were selected to
screen gene pairs. Based on the screened marker genes associated
with prognosis, STRING database (https://string-db.org/) and
Cytoscape software (version 3.6.1) (36) were introduced
to construct protein–protein interaction (PPI) network for
identifying hub genes involved in cancer development.

Statistical Analysis
All statistical analyses were performed in R platform (version
3.4.2). Student’s t-test was conducted to test the significance
of expression between two groups. ANOVA was performed to
test the distribution of cell types between normal and tumor
samples. Log-rank test was conducted in the Kaplan–Meier
survival analysis and univariate Cox regression analysis. p <

0.05 was considered as significant. All parameters of tools not
specifically shown were default.

RESULTS

Clustering Single-Cell Data of Pancreatic
Cancer Based on Dimensionality
Reduction
Single-cell data (GSE165399), including three samples (one
normal samples and two tumor samples), was preprocessed by
SEURAT R package. Parameters of one gene expressing at least
in three cells and one cell expressing at least 250 genes were set
to screen gene expression data. “PercentageFeatureSet” function
was conducted to calculate the proportion of mitochondria and
rRNA in cells. One cell expressing at least 500 genes with not
more than 30% percentile mitochondria was set to ensure the
quality. The quality control and total cell counts before and
after filtration were displayed (Supplementary Figures S1–S3).
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FIGURE 3 | Confirmation of 20 subgroups. (A) MST of 20 subgroups. Yellow points labeled with different numbers represents different subgroups. (B) Violin plots

showing marker genes expressed in different subgroups.

Then, data of three samples were merged and normalized
by log-normalization. High-variable genes were identified by
“FindVariableFeatures” function, and the top 20 high-variable
genes were shown (Supplementary Figure S4).

The PCA was performed to construct a two-dimensional
distribution of gene expression (Supplementary Figure S5).
Then, function of “FindNeighbors” and “FindClusters” was
performed to cluster cells, and 20 subgroups were generated.
The dimensionality of expression data was further reduced by
UMAP function based on the top 40 components (Figures 1B,C).
In total, 20 subgroups from C0 to C19 were identified, and
their proportions in each sample were shown (Figures 1D,E).
We observed that three samples had significantly different
distribution of 20 subgroups even within two tumor samples,

indicating that there was a difference in cancer development
within difference cancer types. Using “FindAllMarkers” function,
we screened the marker genes of each subgroup significantly
differential expressed among the subgroups (p < 0.05), and only
the top five marker genes were exhibited (Figure 2).

Defining Cell Types for 20 Subgroups
To accurately classify 20 subgroups into different cell types, we
downloaded cell markers of specific tissues, including pancreas,
pancreatic acinar tissue, fetal pancreas, peripheral blood, and
blood, from CellMarker database. By implementing “enricher”
function in clusterProfiler R package, 20 subgroups were defined
into 12 different cell types, and 6 out of 12 cell types could be
further classified into different cell subtypes (Table 2).
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FIGURE 4 | Cell trajectory of 20 subgroups grouped by normal and tumoral. (A) Pseudotime of different subgroups. Colors from red to blue indicates pseudotime

from early to late. (B) The location of 20 subgroups in the trajectory. (C) Three states with different colors defined by three branches.
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TABLE 3 | The cell counts of 20 subgroups in three types of status.

Cell type State 1 State 2 State 3

0 1,712 3 2

1 951 0 4

2 19 1 842

3 64 762 1

4 19 736 3

5 31 623 3

6 2 0 558

7 473 35 1

8 381 0 1

9 4 0 297

10 21 253 2

11 0 0 265

12 10 1 231

13 0 0 132

14 4 92 1

15 3 0 94

16 74 0 0

17 44 8 0

18 1 0 33

19 13 12 0

To further classify the 6 cell types, MST was used to calculate
the minimum distance between the two subgroups (Figure 3A).
C4 and C10 could not be combined, as the closest distance to
C4 was C19. C4 and C10 were defined as B cell_1 and B cell_2,
respectively. Cancer cells had three subgroups (C9, C15, and
C18), where C18 was the closest to C17, and C9 was close to both
C12 and C15. Therefore, three subgroups of cancer cells were
defined into three cell types. CD1C-CD141-dendritic cells and
CD1C+_B dendritic cells (DCs) had multiple subgroups, but
their distance was not close. Fibroblasts (C2 and C11) were close
to C13, and natural killer cells (C5 and C14) were close to C4.
The multiple branches of C4 and C13 indicated that they may
develop into different subgroups. The development of one cell
type was affected by the cancer microenvironment; therefore, we
did not merge different subgroups in both fibroblasts and natural
killer cells.

Analysis of marker genes in these cell types demonstrated
that different cell types expressed specific markers, supporting
that these subgroups should be classified into different cell types
(Figure 3B). For example, CD1C+_B dendritic cell_1 specifically
expressed LAMA3 and S100A16, CD1C+_B dendritic cell_2
specifically expressed IL1R2 and LGALS2, and CD1C+_B
dendritic cell_3 specifically expressed S100B and CXCL10
(Figure 3B).

Cell Development and Key Regulatory
Genes of 20 Subgroups
To delineate the cell development of different cell types, we
applied monocle to predict their cell trajectory. Pseudotime
was used to evaluate the degree of their cell division, and 20

subgroups were divided into three major branches (Figure 4).
An obvious difference of cell distribution was observed between
normal and tumor samples. Tumor samples had a significantly
higher proportion of cells locating in the early pseudotime than
the normal sample, suggesting that tumor samples had a large
number of undifferentiated or incompletely differentiated cells,
which probably led to high potential of cell proliferation. Three
branches were defined as three different status (states 1, 2, and 3).

By using branched expression analysis modeling, we then
screened a series of regulatory genes of three branches. The result
showed a total of 127 key regulatory genes highly associated
with cell development (corrected p < 0.0001). Gene expression
of 127 regulatory genes were shown in a heatmap grouped
by three status (Supplementary Figure S6). We found that the
expression of 127 genes significantly varied by the pseudotime,
indicating that these 127 genes may serve as key regulators in the
development of different cell types. There was also an obvious
difference in the expression pattern of 127 genes among three
branches, with cluster 1 mostly expressed in state 2, cluster
2 mostly expressed in states 1 and 3, and cluster 3 mostly
expressed in state 3 (Supplementary Figure S7). The distribution
of different 20 cell types in the three branches is shown inTable 3.
State 1 included the majority of CD1C-CD141- DCs, CD1C+_B
dendritic cell_2, myeloid DCs, CD1C+_B dendritic cell_3, and
beta cells. Plasmacytoid DCs, B cells, and natural killer cells were
mostly accumulated in state 2. Fibroblasts, CD1C+_B dendritic
cell_1, cancer cells, endothelial cells, and AXL+SIGLEC6+ DCs
were mostly enriched in state 3. The results suggested that these
regulatory genes may play different roles in the different status of
cancer cell development.

ReactomeGSA for Identifying Differential
Enriched Pathways
To evaluate functional pathways of 20 cell types, we applied
ReactomeGSA linking to reactome database to analyze the
enrichment score of each pathway in each cell type. The top 20
differentially enriched pathways of 20 cell types were visualized
in a heatmap (Figure 5). We observed that different cell types
in one cell type manifested different enrichment patterns of
these pathways. For instance, CD1C-CD141- dendritic cell_2
had two more enriched pathways (COX reactions and CYP2E1
reactions) than CD1C-CD141- dendritic cell_1. Three subgroups
of cancer cells exhibited obviously different enrichment in six
pathways, for example, beta Klotho-mediated ligand binding was
enriched in cancer cell_1, alanine metabolism and degradation
of GABA were enriched in cancer cell_2, and COX reactions
were enriched in cancer cell_3. The specific enrichment score
of all 20 pathways in each subgroup was also displayed
(Supplementary Figure S8).

Differential Distribution of Subgroups
Between Normal and Tumor Samples
Next, we used CIBERSORT measurement to analyze the
proportion of 20 subgroups in normal cells and tumor cells in an
independent dataset (TCGA-PAAD) according to the screened
marker genes in single-cell data. The results showed that 16 of
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FIGURE 5 | A heatmap of functional pathways differentially enriched in 20 subgroups. Enrichment score from high to low was labeled as colors from red to blue. The

right line indicates 20 subgroups and the bottom line indicates 20 functional pathways. ES, enrichment score.

20 subgroups were differentially enriched between normal cells
and tumor cells (p< 0.01, Figure 6). B cells, cancer cell_2, cancer
cell_3, and natural killer cell_1 were more enriched in normal
cells, whereas beta cells, cancer cell_1, DCs, endothelial cells, and
fibroblasts were more enriched in tumor cells.

In the independent comparison of the proportion of
16 subgroups between normal and tumor cells, we found
that except for fibroblast_1, 15 out of 16 subgroups were
significantly distributed between them (p < 0.05, Figure 7).
Interestingly, normal cells had limited proportion of beta cells,
cancer cell_1, CD1C-CD141- dendritic cell_1, CD1C+_B
dendritic cell_1, endothelial cells, fibroblast_2, and natural killer
cell_2. The proportion of these cell types were all markedly
elevated in tumor samples. Furthermore, we analyzed the

relation between 16 subgroups and survival in tumor samples,
and observed that only 4 subgroups were associated with
prognosis (p < 0.05, Supplementary Figure S9). B cell_1,
B cell_2, and cancer cell_3 were positively associated with
prognosis, whereas low enrichment of CD1C+_B dendritic
cell_3 had more favorable prognosis. We considered
that these four cell types possibly played critical roles in
cancer development.

Ligand–Receptor Interactions Among
Different Subgroups
As B cell_1 (C4), B cell_2 (C10), cancer cell_3 (C18),
and CD1C+_B dendritic cell_3 (C16) were identified to be
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FIGURE 6 | The fraction of 20 cell subgroups in TCGA-PAAD dataset. Red indicates tumor samples and green indicates normal samples.

significantly associated with prognosis, we therefore analyzed
their interactions among them and with other subgroups
based on CellPhoneDB. The ligand–receptor interactions among
20 cell types were displayed in a network (Figure 8A). The
interactions of four cell types (C4, C10, C18, and C16)
with other types were independently displayed (Figures 8B–E).
Within these four cell types, CD1C+_B dendritic cell_3 (C16)
had the most interactions with other types, especially CD1C-
CD141- dendritic cell_1 (C0), CD1C+_B dendritic cell_1 (C6),
and myeloid DC (C8) (Figure 8E). Both B cell_1 (C4) and
B cell_2 (C10) had close interactions with CD1C-CD141-
dendritic cell_2 (C1) and CD1C+_B dendritic cell_3 (C16)
(Figures 8B,C). Cancer cell_3 (C18) strongly interacted with
CD1C+_B dendritic cell_1 (C6) and CD1C+_B dendritic cell_3
(C16) (Figure 8D).

In addition, we screened the specific ligand–receptor
interactions of four cell types to others under the condition
of averaged interaction value >1 (Figure 9). Three ligand–
receptor pairs, including CD74_MIF, CD74_COPA, and
CD74_APP, were the most active among these interactions.
Overall, these four cell types had close interactions with
DCs, indicating that different types of DCs probably played
important roles in constructing microenvironment beneficial to
tumor growth.

Screening the hub Gene BUB1 of
Pancreatic Cancer Through PPI Networks
To identify the hub genes responsible for cancer development,
we focused on four cell types (C4, C10, C16, and C18) and
conducted univariate Cox regression analysis for their marker
genes. A total of 73 genes were strongly correlated with
prognosis, with 2 marker genes in C4, 15 genes in C10, 54
genes in C16, and 2 genes in C18. Through conducting rcorr
function in Hmisc package, the correlation and significance
among these marker genes were calculated. In total, 14 pairs
of marker genes were screened under |correlation coefficient
> 0.9 and p < 0.001 (Supplementary Table S1). The PPI
network revealed that BUB1 gene was in the center, and it was
the bridge to link CD1C+_B DCs and B cells (Figure 10A).
Survival analysis of the relation between BUB1 expression
and survival showed a significant association, with low BUB1
expression showing more favorable prognosis (p = 0.00066,
Figure 10B). Moreover, we determined BUB1 expression in
two tumor samples and one normal sample. It almost had no
expression in the normal sample but was obviously expressed
in tumor samples, specially expressed in natural killer cell_2
and CD1C+_B dendritic cell_3 (Figures 10C–F). Integrating
the data of normal samples and tumor tissues of pancreas from
GTEX and TCGA showed that BUB1 in tumor samples was
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FIGURE 7 | The independent proportion of 16 subgroups in normal and tumor samples. High and low indicates the enrichment of cell types. *p < 0.05.

significantly higher than that in normal samples (Figure 10G).
In addition, in the transcriptome samples, we also analyzed
the relationship between BUB1 expression and immunity. By
evaluating the immune cell infiltration score of patients with
ciberport and mcpcounter, we can observe that the monocytes,
CD8T cells, endothelial cells, cytotoxic lymphocytes, and T-cell
infiltration of patients with low expression of BUB1 were
significantly higher than that of patients with high expression of
BUB1 (Figures 11A,B). Similarly, estimate was used to evaluate

the immune microenvironment infiltration of patients, it can
be observed that the immune microenvironment infiltration
in patients with low BUB1 expression was significantly higher
than that in patients with high BUB1 expression (Figure 11C).
Furthermore, the enrichment score of each patient in Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway was
evaluated by single-sample gene set enrichment analysis.
We calculated the correlation between BUB1 expression and
pathway, selected KEGG pathway with significant correlation
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FIGURE 8 | Ligand–receptor interactions among 20 subgroups analyzed by CellPhoneDB. (A) A network of ligand–receptor interactions among 20 subgroups. (B–E)

Ligand–receptor interactions of B cell_1 (C4), B cell_2 (C10), cancer cell_3 (C18), and CD1C+_B dendritic cell_3 (C16) to other subgroups, respectively. Circles with

different colors indicate different subgroups. Thick lines and fine lines between subgroups indicate strong and weak interactions between them.

and correlation coefficient >0.4, and identified a total of 33 key
pathways, which included cell_ Cycle, DNA_REPLICATION and
MISMATCH_REPAIR and other important pathways related
to cell proliferation, such as P53_SIGNALING_PATHWAY,
SMALL_CELL_LUNG_CANCER and BLADDER_CANCER,
and other pathways closely related to tumors (Figure 11D).
These results showed that the abnormality of BUB1 was closely
related to the occurrence and development of tumors. To
validate the above results, we introduced other expression
data, including GSE21501, GSE28735, GSE57495, GSE62452,
and GSE85916, to evaluate BUB1 expression and its relation
to prognosis. Five datasets were preprocessed and normalized
for removing batch effects. The expression profiles of five
datasets were combined without bias, and their distribution
before and after preprocessing was shown in PCA plots
(Supplementary Figures S10A,B). The Kaplan–Meier survival
analysis demonstrated that low BUB1 expression was still
significantly correlated with overall survival (p = 0.023,
Supplementary Figure S10C). In addition, using SangerBox
(http://vip.sangerbox.com) to analyze the relationship between
BUB1 expression and clinical features, we observed that
although there was no significant expression difference of
BUB1 in different clinical stages, but there were significant
expression differences in patients with different depth of
invasion (Supplementary Figure S10D). We also evaluated
the relationship between the expression of BUB1 in Pan-
cancer and prognosis. It can be observed that BUB1 had
a significant prognostic correlation in many other tumors,
such as renal cancer, glioma, liver cancer, leukemia,
lung cancer, and so on (Supplementary Figure S10E),
indicating that BUB1 acted as an essential role in
pancreatic cancer.

DISCUSSION

The application of single-cell sequencing technology improves
the past understanding of tumor microenvironment (TME),
pathological process, molecular characteristics in different
subtypes of pancreatic cancer (21, 23). In the current study,
we characterized the distribution of different cell types between
normal samples and tumor samples, and aimed to identify
a molecular target highly associated with pancreatic cancer
development for potentially used in drug exploration.

We included three samples (IPMN, PASC, and normal
samples) with scRNA-seq data and identified 20 subgroups (C0
to C19). Obvious differences of subgroup distribution among
three samples were observed, indicating the possible distinct
mechanisms of cancer development between IPMN and PASC
and great alternation of TME. In the normal pancreatic tissue,
myeloid DCs (C8), cancer cell_1 (C9), fibroblast_2 (C11), and
endothelial cells (C12) contributed to an over 3/4 proportion
of all cells. On the contrary, these cell types were less enriched
or almost disappeared in two tumor samples. In IPMN, CD1C-
CD141- dendritic cell_1 (C0), fibroblast_1 (C2), plasmacytoid
DCs (C3), B cell_1 (C4), and natural killer cell_1 (C5) were
the most enriched. In PASC, two cell types of CD1C-CD141-
dendritic cell_2 (C1) and CD1C+_B dendritic cell_1 (C6)
consisted of about 3/4 in all cell types. Notably, (DCs comprise
a majority number in all cell types, and it largely varied in
these three samples, suggesting that DCs underwent immense
transformation or abnormal division during tumorigenesis.

A line of studies have demonstrated that DCs play key roles
in activating immune response in tumors, such as capturing
antigens, processing, and presenting them as antigenic peptides
to T cells (37). However, its function can be impaired by tumors
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FIGURE 9 | Dot plots of specific ligand–receptor interactions of C4 (A), C10 (B), C18 (C), and C16 (D) to other subgroups.

through suppressing DC accumulation, activation, and antigen
presentation (38). With the exploring study on DCs, DCs have
been considered as promising vaccines for integrating tumor
peptides and presenting antigens against tumors (37). In the
present study, different types of DCs in TME may play different
roles in tumor development.

The distinct distribution of cell types between normal and
tumor samples was also validated in the independent dataset.
Importantly, we discovered that four cell types (B cell_1, B cell_2,
cancer cell_3, and CD1C+_B dendritic cell_3) were significantly
associated with prognosis. We assumed that these four cell
types may be essential in tumor progression. Therefore, ligand–
receptor interactions among different cell types were analyzed.
Within the above four cell types, CD1C+_B dendritic cell_3 was
found to have strong cell–cell communications with other cell
types. Especially, three ligand–receptor pairs, including CD74-
MIF, CD74-COPA, and CD74-APP, were much more enriched in
the interactions of CD1C+_B dendritic cell_3 to other cell types.

CD74-MIF has been reported to regulate immune activity
(39). CD74 is an essential receptor to DCs for their migration
and mediating immune response and regulates the development

of T and B cells (40). Macrophage migration inhibitory factor
(MIF) is a key cytokine involving in inflammatory diseases such
as pulmonary inflammation through CD74 signaling (41). Tanese
et al. (42) found that CD74-MIF serves as mediators to activate
PI3K/AKT signaling pathway in melanoma. Moreover, a study
illustrated that blockading CD74-MIF on macrophages and DCs
can recover antitumor activity of immune system in metastatic
melanoma (43). Apart from melanoma, CD74 and MIF have
been considered as therapeutic targets in other cancer types such
as prostate cancer and gastric cancer (44, 45). In pancreatic
cancer, CD74-MIF is possibly a promising target for molecular
therapy, but further experimental study is needed. CD74-COPA
and CD74-APP were seldom reported, so their high enrichment
also indicated the important function in tumor progression in
pancreatic cancer, but this needs further verification.

As four cell types were identified to be associated with
prognosis, we considered that there were key marker genes in
them regulating tumorigenesis in pancreatic cancer. Therefore,
the marker genes of B cell_1, B cell_2, cancer cell_3, and
CD1C+_B dendritic cell_3 were screened by regression analysis.
Through correlation analysis and constructing the PPI network,
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FIGURE 10 | Screening of hub genes highly contributing to cancer development. (A) A PPI network of marker genes of C4, C10, C16 and C18. Red triangle indicates

cell types and blue circle indicates marker genes. (B) Kaplan–Meier survival plot of BUB1 grouped by high and low expression. (C–E) UMAP plots showing distribution

and expression of BUB1 in IPMN, PASC and normal samples. Colors from gray to blue indicate expression from low to high. (F) Violin plot of BUB1 expression in 20

subtypes. (G) Difference in expression and distribution of BUB1 between cancer and normal samples.

we discovered that BUB1 gene displayed as a bridge to
communicate CD1C+_B dendritic cell_3 and B cells.

BUB1 is a multitask protein kinase for chromosome
segregation in eukaryotes. BUB1 impairment or dysregulation
leads to chromosomal instability and results in tumorigenesis
(46, 47). BUB1 has been widely reported to be associated with
tumorigenesis in various cancer types including gastric cancer

(48), breast cancer (49), and pancreatic ductal adenocarcinoma
(50). Piao et al. (50) proved that high expression of BUB1
was associated with worse overall survival of pancreatic ductal
adenocarcinoma, which was consistent with our observation.
BUB1 could serve as a biomarker for predicting prognosis of
patients with pancreatic cancer, as it also presented robust
performance in the independent dataset. Importantly, we
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FIGURE 11 | BUB1 expression and immune and functional analysis. (A) Distribution difference of 22 kinds of immune cell infiltration in patients with high and low

expression of BUB1. (B) Distribution difference of immune cell infiltration in 10 kinds of patients with high and low expression of BUB1. (C) Differences in the

distribution of immune infiltration in patients with high and low expression of BUB1. (D) BUB1 expression was significantly related to KEGG pathway.

Frontiers in Public Health | www.frontiersin.org 15 June 2022 | Volume 10 | Article 900853

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Li et al. Therapeutic Target for Pancreatic Cancer

discovered that BUB1 was specifically expressed in natural killer
cell_2 and CD1C+_B dendritic cell_3, suggesting that BUB1
probably played a critical role in modulating the expression
of MIF that had close relation to tumorigenesis. To date, no
study has reported this novel possible mechanism in cancer
development. Therefore, BUB1 had great potential to be a
therapeutic target for molecular therapy, but this needs more
evidence in cell or animal experiments.

Immunotherapy is recognized as a promising strategy in
many cancer types. According to our observations, DCs play
a critical role against tumor cells, and they were impaired in
TME, probably resulted from the dysregulation of cytokines
or chemokines in TME. Currently, surgery is the only
treatment with curative possibility for patients with pancreatic
cancer. Considering the insensitivity of pancreatic cancer to
chemotherapy and radiotherapy, other molecular-targeted drugs
are particularly needed. In this study, CD74-MIF and BUB1
were found to be potential therapeutic targets for treating
pancreatic cancer.

In conclusion, this study identified four cell types that are
significantly associated with pancreatic cancer prognosis based
on single-cell data and integrated bioinformatics analysis. Cell
types largely varied in different cancer types and between normal
and tumor samples. DCs, especially CD1C+_B dendritic cell_3,
played a critical role in cancer progression probably through
CD74 signaling. Three pairs of ligand–receptor interactions
(CD74-MIF, CD74-COPA, and CD74-APP) were considered

to be closely involved in tumorigenesis. Importantly, BUB1
could serve as a biomarker for predicting prognosis and a
therapeutic target for treating pancreatic cancer, but this needs
further experiments.
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