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Due to urbanization, solid waste pollution is an increasing concern for

rivers, possibly threatening human health, ecological integrity, and ecosystem

services. Riverinemanagement in urban landscapes requires bestmanagement

practices since the river is a vital component in urban ecological civilization,

and it is very imperative to synchronize the connection between urban

development and river protection. Thus, the implementation of proper and

innovative measures is vital to control garbage pollution in the rivers. A robot

that cleans the waste autonomously can be a good solution to manage river

pollution e�ciently. Identifying and obtaining precise positions of garbage are

the most crucial parts of the visual system for a cleaning robot. Computer

vision has paved a way for computers to understand and interpret the

surrounding objects. The development of an accurate computer vision system

is a vital step toward a robotic platform since this is the front-end observation

system before consequent manipulation and grasping systems. The scope

of this work is to acquire visual information about floating garbage on the

river, which is vital in building a robotic platform for river cleaning robots.

In this paper, an automated detection system based on the improved You

Only Look Once (YOLO) model is developed to detect floating garbage under

various conditions, such as fluctuating illumination, complex background, and

occlusion. The proposed object detection model has been shown to promote

rapid convergence which improves the training time duration. In addition,

the proposed object detection model has been shown to improve detection

accuracy by strengthening the non-linear feature extraction process. The

results showed that the proposed model achieved a mean average precision

(mAP) value of 89%. Hence, the proposed model is considered feasible for

identifying five classes of garbage, such as plastic bottles, aluminum cans,

plastic bags, styrofoam, and plastic containers.
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Introduction

The production of solid waste is one of the main concerns

in urban clusters. Urbanization and population growth have

been identified as major indicators of the growing rate of solid

waste, particularly in water bodies, such as rivers, lakes, seas,

and oceans (1). River ecosystems are the main elements in the

universal water cycle and are vital for human health since rivers

connect the inland watersheds to the marine environment (2).

Hence, rivers act as channels that link terrestrial and aquatic

realms. Nevertheless, pollutants may accumulate from various

situations in the waterways (3). For example, microplastic

pollution in aquatic systems is a progressively prevailing

international problem that contributes to severe impacts on

ecosystem functioning and human health (3, 4). Generally,

urbanization is the main factor in the increment of microplastic

loads along a subtropical river system. The interference of plastic

in the food chain is a huge concern for human health. This is

because when plastic is exposed to natural forces, plastic breaks

down into microplastic and nanoplastic particles, which contain

chemical components that can enter the tissues of marine

organisms, including species consumed by humans. Research

on associations among micro- and nanoplastic exposure,

toxicology, and human health are actively performed in previous

works. It can be seen that the impacts of pollution affect the

ecological system and humans as well (5–7).

Managing solid waste appropriately in the riverine

ecosystem is important for building sustainable cities, yet it

remains a challenge for certain developing countries and cities.

In the absence of automation and modernization of waste

management operations, the collection of solid waste remains

to be labor-intensive activity. Hence, this work proposed an

automatic solid waste collecting system. Several initiatives have

been adopted to manage pollution, for example, manual and

machine-based cleaning require human supervision constantly.

In addition, the requirement of manual labor for cleaning waste

can be a threat to the person (8–10). Hence, an autonomous

cleaning robot that can clean waste from the water contributes

to a significant impact on river pollution control. However,

the suitable design of the robot is a challenging task. Riverine

monitoring has become an important first step for most

countries and an automated system has been demanded to
support their efforts (11, 12). Research studies on designing

cleaning robots are increasingly becoming ubiquitous. Cleaner
robots can be applied to lessen the labor volume of sanitation
workers and improve the land and water ecological environment

(13–16). The main tasks to be performed by cleaner robots are

garbage detection and garbage collection. Garbage detection is

mainly important since it is responsible for providing accurate

object location information for the cleaning robot. Accurate

garbage detection will aid the garbage collection task to be

performed efficiently. Therefore, an efficient object detection

method that incorporates computer vision is highly demanded.

Generally, computer vision is an area of artificial intelligence

(AI) that permits computers and systems to interpret

information from various visual inputs. Computer vision

aims to replicate the capability of human vision for computers

or devices to understand images. Object detection is a computer

visionmethod that aims to detect the location of target objects in

images or videos. The detection process includes two parts: (1)

the category information and probability of the target and (2)

the location of the target by applying bounding boxes with labels

(17–23). Recent developments in computer vision methods

have achieved significant improvements in various applications,

such as in medical diagnosis (17, 18), object detection (19, 20),

precision agriculture (21), transportation system (22), and

biometric system (23). With the expansion of deep learning

algorithms in machine vision applications, deep learning

techniques have attained state-of-the-art outcomes for the object

detection system. Besides that, the deep learning method also

has the capability to automatically extract deep features from the

input image by adopting self-learning (24–26). This is possible

since deep learning permits computational models to learn and

signify data with several levels of abstraction impersonating

how the brain distinguishes multimodal information. Hence,

this work focuses on developing a novel object detection model

by incorporating several improvements to the conventional

YOLOv4 model architecture. The contributions of this paper

are as below:

• A novel object detection algorithm that automatically

detects garbage by using a computer vision approach.

• The proposed object detection model promotes rapid

convergence that improves the training time duration.

• The proposed object detection model improves the

detection accuracy by strengthening the non-linear feature

extraction process.

This paper is arranged as follows. Section Background study

discusses the background study of object detection methods.

Next, Section Proposed method explains the methodology of

the proposed method. Experimental results are tabulated and

discussed in Section Results and discussion. Lastly, Section

Conclusion concludes the paper.

Background study

The mainstream object detection algorithms are based on

convolution neural networks (CNN), which are one-stage and

two-stage detections, using different feature extraction methods.

Object detection algorithms that adopt a two-stage detection

method include regions with CNN (R-CNN), fast regions with

CNN (Fast R)-CNN, and Faster R-CNN, which divide the

detection task into (1) region proposal and (2) classification.

Meanwhile, the one-stage detection method integrates region
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proposal and classification into one step, which reduces the

detection time. The mainstream methods of one-stage detection

are Single Shot Detector (SSD) and YOLO (27).

In recent years, deep learning algorithm in computer vision

is a rapidly developing research topic in classifying floating

debris. The work in Fulton et al. (28) classified three classes of

trash, which are plastic debris, biological materials, and man-

made objects. The work applied the Faster R-CNN method and

resulted in 81 mAP of performance when classifying 820 test

images. The trash detection system proposed in Fulton et al.

(28) applied the two-stage detection approach. Region proposal

network (RPN), which is a fully convolutional network (FCN),

predicts object boundaries and confidence scores at each point

of location simultaneously. The RPN is aimed to produce high-

quality region proposals. RPN is combined with Fast R-CNN

to form a network by sharing their convolutional features to

produce Faster R-CNN. In Faster R-CNN, regions of interest

are generated from the input image and these are transferred

to subsequent convolutional layers. The RPN generates region

proposals using the previously generated feature map. RPN

adopted a sliding window over the feature maps while each

window will generate k anchor boxes of different shapes and

sizes. Then, adjacent pixels are clustered by texture, color, or

intensity into the classifiers. After training, the classifiers on each

region proposal will be returned for object detection purposes

(29, 30). Despite the high localization and recognition accuracy,

a two-stage detection approach suffers from slow detection

speed and is not applicable for real-time applications.

On the other hand, a one-stage detection approach based on

the YOLOv3 model is applied in the garbage detection system in

Watanabe et al. (12) and Li et al. (16). The work in Watanabe

et al. (12) demonstrated YOLOv3-based object detection for

monitoring marine debris with an mAP of 77.2% by using 37

test images. Meanwhile, the work in Li et al. (16) developed

a vision-based water surface garbage capture robot using a

modified YOLOv3 model that is able to detect plastic bottles,

plastic bags, and styrofoam. The performance of the model was

evaluated based on 301 test images and achieved an mAP of

91.4%. The works in Watanabe et al. (12) and Li et al. (16)

solved object detection as a regression problem that considers

the whole image as input and instantaneously produces class

probabilities andmultiple bounding boxes. Hence, this hasmade

the detection model much faster compared to the two stages

of object detectors. A You Only Look Once (YOLO) detector

adopts the whole image as the network input, which will then

be separated into an s × s grid. Then, the model will provide

the position of the object border and the corresponding class

in the output layer (31). The idea of the YOLO detector was to

employ an exclusive neural network to the whole image, whereby

the network splits the image into sections and concurrently

predicts probabilities and bounding boxes for each section.

The weight of the bounding boxes is computed based on

the predicted probabilities. Each bounding box will have its

confidence score and the prediction is produced as a static

number of boundary boxes. The prediction detects one object for

each grid cell by applying a non-maxima suppression algorithm.

YOLO usually adopts ImageNet to pre-train parameters and

then applies a target detection dataset to recognize the training

(32). Nevertheless, previous works in Refs. (12, 16, 28) focused

on a small number of test images, which is <1,000 test images.

Asmore test images are considered, the classification process will

become more complex. Hence, a more effective object detection

algorithm is required to achieve good classification accuracy.

Based on previous works reported in Junos et al. (27);

Morera et al. (32), SSD and YOLO detectors have provided

feasible outcomes under various conditions with respect to

image sizes, illumination, viewing perspectives, incomplete

occlusion, and complex background. The benefit of applying the

SSD model was the exclusion of False Positive (FP) cases. On

the contrary, YOLO had shown to give better object localization

results detecting a higher number of True Positive (TP) panels

with higher accuracy. Moreover, YOLOv4 had shown to have

significantly good precision and a real-time object detection

algorithm that combined the features of YOLOv1, YOLOv2,

and YOLOv3. In addition, YOLOv4 can achieve the existing

optimum detection speed with a trade-off in detection accuracy.

On the other hand, YOLOv3-tiny and YOLOv4-tiny are the

lightest versions of the YOLOv3 model and YOLOv4 model,

respectively. Although the YOLO-tiny models are simpler and

less complex structures, the detection performance of the

YOLO-tiny models was reduced significantly due to the weak

feature extraction process (27).

Generally, the model structure of YOLOv4 consists of

backbone, neck, and prediction. By adopting the learning

ability of Cross-Stage Partial Network (CSPNet), YOLOv4

built the CSPDarkNet53. Darknet-53 is a convolutional neural

network that consists of 53 layers deep and functions as a

backbone of the YOLOv4 model. Meanwhile, the Neck includes

the Spatial Pyramid Pooling Network (SPPNet) and Path

Aggregation Network (PANet). SPPNet focuses on removing

the fixed-size constraint of the network. In SPPNet, the feature

layer is convolved three times, followed by the input feature

layer, which is maximally pooled by applying the maximum

pooling cores using different sizes. Then, PANet convolves the

feature layers after the operation of Backbone and SPPNet.

PANet enhances the segmentation process by conserving spatial

information. This is computed by accurately localizing the

signals in lower layers and adopting path augmentation, which

lessens the information path between lower layers and the

topmost feature. Moreover, YOLOv4 adopted a newmosaic data

augmentation technique with the aim to increase the dataset and

presented DIOU as the positioning loss function (25). Hence,

the network tends to optimize toward increment of overlapping

areas, therefore successfully improving the accuracy. With

the increasing number of layers in the convolutional neural

networks, the depth of the network deepens, and the deeper
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TABLE 1 The training and test datasets.

Object class Training images Test images

Plastic bottle 3,798 1,085

Aluminum can 2,799 586

Plastic bag 2,060 551

Styrofoam 487 146

Plastic container 410 113

Total 9,554 2,481

network structure is useful for the feature extraction process.

On the other hand, the prediction module performs predictions

based on the features obtained from the network. The prediction

results will tune the positions of the three preceding frames, and

lastly, they will be filtered by the non-maximum suppression

(NMS) algorithm to attain the final prediction frame (33–36).

In a complex situation that includes external interference, such

as occlusion and multi-scale, there are still some limitations in

the garbage detection when applying the conventional YOLOv4

model, such as long training time, high computation cost,

and overfull parameters. Besides, the conventional YOLOv4

model also suffers from insufficient shallow feature extraction

for the multi-scale object. Therefore, this work focuses on

improving the conventional YOLOv4 model architecture in

detecting the floating debris for the river monitoring system.

The improvements performed in the proposed YOLO model

include (i) modification of CSPDark-Net53 into the backbone

to overcome limitations due to training time, (ii) adoption of the

Hard-Swish activation function, and (iii) improved PANet in the

Neck module to aid the feature extraction process.

Proposed method

Image dataset and transfer learning

In this work, the training images are obtained under various

conditions in terms of brightness and positions to prevent

overfitting (33). Five classes of the floating debris database are

developed, which include styrofoam, plastic bags, plastic bottle,

plastic containers, and aluminum cans (Table 1). Pre-trained

convolutional weights are applied for the training process to

improve the accuracy of the object detector and lessen the

computation time. Generally, applying inadequate learning data

will produce inaccurate object detection performance. Thus,

transfer learning is applied to aid the training process and obtain

substantial results without having to include massive data (37).

Hence, this work adopted transfer learning and applied the pre-

trained weights from Microsoft Common Objects in Context

(MS-COCO) dataset to improve the model performance. The

weights of the convolutional layers for the proposed model are

pre-trained based on the MS-COCO dataset. The MS-COCO

dataset is a large-scale image dataset that contains annotations

that enable users to train the computer vision models to

recognize, label, and describe objects. In addition, the MS-

COCO dataset complements the transfer learning process where

the data is applied for one model which serves as an initial point

for another. The MS-COCO dataset is an important benchmark

for computer vision to train, test, and refine the object detection

model. The formerly learned MS-COCO features provide the

model with additional image recognition necessities required for

the object detection process (38).

The proposed optimized YOLO model

This work proposed a novel detection model for the

automatic garbage detection system that consists of three stages:

backbone feature extraction network, neck network, and object

detection stage. The novelty of the proposed work is the

development of an improved YOLO model by optimizing the

network structure of a YOLOv4 model to detect solid wastes

from the image dataset. Several improvements are performed

to optimize the network structure of the conventional YOLOv4

model, such as follows: (1) CSPDarkNet53 is improved by

adopting CSP1_X with the aim to reduce network modules

which will lead to a reduction of parameters in feature

extraction, (2) Hard-Swish (H-Swish) activation function is

adopted to strengthen the non-linear feature extraction ability

of the network, and (3) PANet in the Neck module is improved

by adopting CSP2_X to enhance feature extraction and enhance

the accuracy of the model. Finally, the performance of the

proposed algorithm is compared with previous works to justify

the contribution of the proposed model.

Backbone feature extraction network

A residual module is proposed for the conventional YOLO-

v4 to improve the network’s learning ability and reduce the

parameters of the network. The computation of the residual

module (Res-unit) can be summarized as follows. First, a

1 × 1 convolution process is performed followed by a 3

× 3 convolution; then, the two outputs of the module are

weighted. The weighting computation is performed to increase

the information of the feature layer without altering the

dimension data. In CSPDarkNet53, the input is the set of feature

layers of the image, and then down-sampling convolution is

executed continually to obtain better semantic information.

Consequently, the last three layers of Backbone have the highest

semantic information, and then the last three layers of features

are selected as the input of the Spatial Pyramid Pooling Network

(SPPNet) and Path Aggregation Network (PANet). Though

YOLOv4 applies a residual network to decrease the computing

power requirement, its memory requirement still needs to be

improved. Therefore, in this work, the network structure of
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FIGURE 1

The fine-tuned module structure.

CSPDarkNet53 of YOLO-v4 is modified to the CSP1_X, as

shown in Figure 1.

Hard-Swish (H-Swish) activation function plays an

important role in weight reduction. As compared to

CSPDarkNet53, the modified network adopts the H-swish

activation function (34), as presented in Equation (1):

H− swish (x)= x
ICIC (x+ 3)

6
(1)

In this case, the Swish function includes the Sigmoid function,

which leads to a higher computation cost compared to

the ReLU function. However, the Swish function has been

shown to be more effective than the ReLU function (34,

35). The work in Ref. (35) also presented the capability of

the H-swish function on reducing the number of entries

in the model’s memory. Hence, this work applied the H-

Swish function to further reduce the computation time and

justify the benefits of the H-swish function in reducing the

computation time and concurrently ensuring no gradient

explosion and disappearance.

In the fine-tuned module structure as shown in Figure 1,

the input feature layer of the residual block is separated into

two parts. The first part is used as the residual edge to

perform the convolution operation. The second part performs

the role of the trunk which computes 1 × 1 convolution

at first, then performs 1 × 1 convolution to fine-tune the

channel after incoming the residual block. Accordingly, it

performs the 3 × 3 convolution process to improve the feature

extraction. Finally, the two parts are concatenated, therefore

integrating the channels to gain more feature layer information.

In this work, three CSP1_X modules are adopted in the

improved Backbone, where X denotes the number of residual

weighting operations in the residual structure. Consecutively,

after stacking, a 1 × 1 convolution is computed to integrate

the channels.

Neck network

The neck network consists of SPPNet and the modified

PANet. In this work, the SPPNet component expands the

acceptance range of backbone features efficiently, and this

contributed to the separation of the vital contextual features.

The high computational cost of model reasoning is mostly

produced by recurrent occurrences of gradient data in

the network optimization process. Therefore, this paper

proposes the CSP2_X module into PANet to split the basic

feature layer from Backbone into two sections and then

reduce the repeated gradient information via a cross-stage

process. The CSP2_X model architecture is presented in

Figure 2.

The adoption of an improved CSPNet network module will

have the ability to improve the network feature fusion stage. The

collective process can perform the top to down transmission

using deeper semantic features in PANet. Simultaneously,

the bottom to up deep features is fused from the SPPNet

network, hence appreciating feature combination between

different backbone layers and different detection layers in

the Neck network to provide discriminant features for the

prediction network.

Object detection stage

The proposed detection model commences with

understanding an image by applying logical SxS grids and

computing the weighted feature sets to obtain a probability on

each area of cells. If the middle of a possible object belongs to

one of the cells, a preliminary bounding box will be created

based on the prediction probability as determined by the trained

model in (2) (36).

Pr
(

object
)

=







0, has potential objects

1, has no potential objects
(2)

Then, the detectionmodel performs the prediction process using

K numerous boxes and extracts a 3D tensor based on (3), where

C denotes the defined number of classes.

S∗S∗(K∗(4+ 1+ C)) (3)

In Figure 3, the prediction’s bounding box is computed

based on the width pw and height ph, which had offsets cx and cy

from the cluster centroid. Once the cell is offset from the upper
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FIGURE 2

CSP2_X module structure.

FIGURE 3

Bounding box prediction with specifications.

left by (cx, cy) and the box takes values of pw and ph, then the

prediction is computed as (4–7).

bx = σ (tx)+ cx (4)

bx = σ (tx)+ cx (5)

bw = pwe
th (6)

bh = phe
th (7)

During the formation of bounding boxes, the intersection over

union (IoU) computes the matching of the prediction with

the ground truth image. The confidence score decreases if the

originally predicted object does not represent the ground truth,

hence, resulting in an unsatisfied prediction. For each cell, C

is computed based on Pr (Classi|Object). As shown in (8), the

object that fulfills the threshold will obtain an initial bounding

box despite having multiple predictions over the specific object.

Pr(Classi|Object)∗Pr(Object)∗IoU = Pr(Classi)∗IoU (8)

This work adopted Bag of Specials (BoS), cross-stage partial

connections (CSP), and multi-input weighted residual

connections (MiWRC). BoS is simply defined as a set of

modules that have a significant improvement on the accuracy

of the object detection with a small increment of inference

cost. Meanwhile, the BoS features for the proposed YOLOv4

detector in this work also included distance-IoU-non-maximum

suppression (DIoU-NMS). DIoU is applied by computing the

IoU and the distance among the central points of two bounding

boxes during the suppression of redundant boxes. The rest of

the boundary boxes that predict a similar object will be filtered

by NMS while maintaining the one with the highest confidence

value. This increases its robustness when it comes to cases

with occlusions.

Results and discussion

The experiments in this work are executed using an epoch

of 10,000 and the input image size of 416 × 416 × 3. First,

this study investigates the contribution of transfer learning to

the performance of the object detector by applying the MS-

COCO dataset, in which the pre-trained convolutional weight

is applied in the training stage. Figure 4 shows that the detection

model with transfer learning provides a better converging rate

compared to the model without transfer learning. The model

that applied transfer learning continues to decrease its average

loss until it achieves training steps of approximately 1,800

where the average loss converges to a constant level. This event

shows a small value of decrement in the average loss until

the termination of the training process. In the meantime, the

model without transfer learning suffered from overfitting at

about 3,700 training. This means that the detection model does

not generalize well without including transfer learning. As a

result, the overfitted model will not be able to perform well

on the new test dataset which will affect the accuracy of the

detection system. After some time, the average loss for both

models constantly decreases but the model without transfer

learning has a higher average loss until the end of the training

process. Hence, this shows that the application of the transfer

learning process will contribute to lower generalization error

during the training process which will aid the detection process

on the new test dataset.

To determine the optimized network structure of the

proposed model, the subdivision parameter is varied between

8 and 64 while keeping other parameters constant. Subdivision
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FIGURE 4

The detection model’s convergence rate during the training process.

FIGURE 5

The detection model’s convergence rate for various subdivisions parameter.

simply means the batch is split by the value of subdivision into

mini batches. For example, for batch=64 and subdivision=8,

the training will have 64/8 = 8 images per mini batches. These

mini batches will then be sent to the GPU for the computation

process. The computation process will be repeated 8 times until a

batch is completed. The new iteration begins to be 8 in this work

because it produces the lowest average loss during the training

process. Averaging over more images helps to speed up the time

for training and to generalize the training even more. However,

this can be a problem when the subdivision is reduced because

a memory issue might occur if the GPU does not have enough

memory to process more images at one time. From Figure 5, it

can be seen that when the subdivision is set to 64, the average

loss drops drastically between 0 and 1,800 epochs with irregular

fluctuations before it becomes overfit at about 8,000 epochs. As

for subdivisions parameters 16 and 24, the pattern for both is
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TABLE 2 The detection performance for di�erent convolutional

weights.

Convolutional mAP F1-Score Recall Training

weights (%) (%) time (hours)

Yolov4-csp.conv.142 58.5 0.6 55 10

Yolov4-sam-mish.conv.105 70.9 0.7 64 10.3

Cspx-p7-mish_hp.344.conv 55.2 0.6 51 12.5

Darknet19_448. conv. 23 50.2 0.5 47 12.5

Yolov4. conv. 137 71.2 0.7 68 11

The proposed work 89.0 0.8 86 7.5

TABLE 3 The hyperparameters of the proposed model.

Hyperparameters Values

Initial learning rate 0.00100

Epoch 10,000

Batch size 64

Subdivisions 8

Optimizer weight decay 0.00050

Momentum 0.84900

Classification coefficient 0.20600

Hue 0.01700

Saturation 1.50000

Exposure 1.50000

Value 0.50000

Scale 0.10000

Shear 0.00000

Mosaic 1.00000

Mix up 1.00000

Flip up-down Horizontal, vertical

Rotation 30◦ , 45◦ , 60◦ , 90◦ , 180◦

quite similar. It can be observed that the lower the subdivisions

parameter, the lower the average loss is at the end of the training.

The model with subdivision = 8 has the lowest value in terms

of average loss throughout the training. Hence, the subdivision

parameter is chosen for weights. Besides that, the proposed work

required the shortest time to train the image dataset as compared

to other models.

Moreover, various pre-trained convolutional weights as

feature extraction mechanisms are compared. This analysis was

performed to determine the optimized convolutional weights

for the network. In addition, the loss function of the proposed

model is optimized by computing the IoU thresholds, which

indicate the degree of overlap area between the target bounding

box generated by the proposed model and the original labeled

bounding box. In this work, the IoU loss function is optimized

by applying the DIoU-NMS. In the training process, the

adoption of DIoU loss in the network loss function has been

shown to decrease the number of iterations and improve the

TABLE 4 Performance comparison of the proposed model with other

YOLOmodels.

YOLOmodels mAP (%) F1-Score Recall (%)

Yolov3-tiny 52.5 0.4 40

Yolov4-tiny 58.3 0.5 51

Yolov3 65.8 0.6 62

Yolov4 71.2 0.7 68

The proposed work 89.0 0.8 86

degree of the overlap area. Hence, this contributes to higher

detection accuracy. Several experiments have been performed

to verify the effectiveness of the optimization approach.

The evaluation parameters used in this work are precision,

recall, mAP, and F1 score. Based on Table 2, the proposed

work produced the highest mAP, F1 score, and recall values

compared to other convolutional weights. In summary, Table 3

tabulates the optimized hyperparameters of the proposedmodel.

The proposed model continuously optimizes the parameters

throughout the training process with the aim to speed up the

network convergence and avoid overfitting.

Figures 6–9 show several detected objects, such as aluminum

cans, plastic containers, plastic bottles, and plastic bags, when

using the IoU threshold of 0.3.

It can be seen that the proposed detection model was able

to detect multiple objects in an image even under an occluded

condition which justifies its feasibility in detecting floating

debris for the river cleaning robot. The plastic bag class has

the lowest precision value which indicates that detecting plastic

bags is the most challenging task as compared to detecting

other types of debris. This is because the plastic bag has

complex physical characteristics thus making it challenging to

be detected. For analysis purposes, the detection of every image

is tested using four threshold values. As shown in Figure 10,

different IoU thresholds will produce different detection results

because threshold values limit the confidence of the object

detector to detect certain objects. Even though the threshold

of 0.9 produces the highest precision, it produces the lowest

performance in terms of Recall and F1-score values as shown

in Figures 11, 12, respectively.

A Receiver Operating Characteristic (ROC) curve is

computed tomeasure the performance of the proposed classifier.

Figure 13 shows the ROC curves of the proposed model and

several YOLO models for comparison purpose to validate

the contribution of the optimized model to the conventional

YOLO models. Generally, the ROC curve indicates the trade-

off between sensitivity and specificity. A high sensitivity value

corresponds to high negative predictive output while high

specificity corresponds to high positive predictive output.

As can be seen, the ROC curve of the proposed model

is the highest in the top-left corner, which indicates better

classification performance compared to othermodels.Moreover,
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FIGURE 6

Aluminum cans.

FIGURE 7

Plastic containers.

the performance of the proposed model is benchmarked with

state-of-the-art models as shown in Table 4. It can be seen that

the proposed YOLO model provides the highest mAP, F1-score,

and Recall values after optimizing the network structure of

the conventional YOLOv4 model. Hence, this justifies the

contribution of the proposed model in detecting different types

of solid waste for the riverine monitoring system. A detection

model that has high precision could assist the cleaning robots

to complete the cleaning tasks more efficiently. A real-time

and high-precision detection technique is crucial to achieving
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FIGURE 8

Plastic bottles.

FIGURE 9

Plastic bags.
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FIGURE 10

The precision of the object detector using a di�erent threshold value.

FIGURE 11

The recall of the object detector using a di�erent threshold value.
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FIGURE 12

The F1-score of the object detector using di�erent threshold values.

FIGURE 13

The ROC curves of the proposed model and other models.
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TABLE 5 Benchmarking the proposed work with previous works on

garbage detection.

Work Data mAP

Watanabe et al. (12) applied

YOLO-v3 on 37 test images

4 classes (plastic bottles, plastic

bag, drift wood, and other debris)

77.2%

Fulton et al. (28) applied

Faster R-CNN on 820 test

images

3 classes (plastic debris, biological

materials and man-made objects)

81 %

Li et al. (16) applied modified

YOLO-v3 on 301 test images

3 classes (plastic bottle, plastic bag,

and Styrofoam)

91.4%

The proposed work on 2,481

test images

5 classes (styrofoam, plastic bag,

plastic bottle, plastic container, and

aluminum can)

89 %

the successful collection of water surface garbage based on

machine vision.

In addition, Table 5 benchmarks the proposed detection

model with previous works on garbage detection. The

performance of the proposed YOLO-v4 model is evaluated on

2,481 test images and has produced the highest mAP value of

89% as compared to the works in Watanabe et al. (12) and

Fulton et al. (28). Despite achieving the highest mAP value

of 91%, the work in Li et al. (16) only focused on detecting

three classes of objects, which are plastic bottles, plastic bags,

and styrofoam. Meanwhile, the proposed work focused on

detecting five classes of debris (styrofoam, plastic bags, plastic

bottles, plastic containers, and aluminum cans). Hence, it can

be concluded that the proposed detection model is considered

feasible due to its ability to detect more types of debris accurately

compared to previous works.

Conclusion

In conclusion, an automated detection system based on

the optimized YOLO model is developed to detect floating

solid wastes that include plastic bottles, aluminum cans,

plastic bags, styrofoam, and plastic container. In this work,

the proposed model optimized the network structure of the

conventional YOLOv4 model that includes (i) modification

of CSPDark-Net53 into the backbone to overcome limitations

due to training time, (ii) adoption of Hard-Swish activation

function, and (iii) improved PANet in the Neck module to

aid the feature extraction process. The performance of the

proposed YOLO model is compared with previous works

and has shown promising results with an mAP value of

89%. This research demonstrates that computer vision system

plays an important role in environmental monitoring and

provides novel insights for improved decision-making and

sustainable management. In a nutshell, this study is important

for riverine management in urban landscapes since the river

is an important part of urban ecological civilization and

human health.
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