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Background: Amino acid metabolism plays a vital role in cancer biology. However, the

application of amino acid metabolism in the prognosis of colon adenocarcinoma (COAD)

has not yet been explored. Here, we construct an amino acid metabolism-related risk

model to predict the survival outcome of COAD and improve clinical decision making.

Methods: The RNA-sequencing-based transcriptome for 524 patients with COAD from

The Cancer Genome Atlas (TCGA) was selected as a training set. The integrated Gene

Expression Omnibus (GEO) dataset with 1,430 colon cancer samples was used for

validation. Differential expression of amino acid metabolism-related genes (AAMRGs)

was identified for prognostic gene selection. Univariate cox regression analysis, LASSO-

penalized Cox regression analysis, and multivariate Cox regression analysis were applied

to construct a prognostic risk model. Moreover, the correlation between risk score and

microsatellite instability, immunotherapy response, and drug sensitivity were analyzed.

Results: A prognostic signature was constructed based on 10 AAMRGs, including

ASPG, DUOX1, GAMT, GSR, MAT1A, MTAP, PSMD12, RIMKLB, RPL3L, and RPS17.

Patients with COAD were divided into high-risk and low-risk group based on the

medianrisk score. Univariate and multivariate Cox regression analysis revealed that

AAMRG-related signature was an independent risk factor for COAD. Moreover, COAD

patients in the low-risk group were more sensitive to immunotherapy targeting PD-1

and CTLA-4.

Conclusion: Our study constructed a prognostic signature based on 10 AAMRGs,

which could be used to build a novel prognosis model and identify potential drug

candidates for the treatment of COAD.

Keywords: colon adenocarcinoma, amino acid metabolism, prognostic model, immune checkpoint, immune

therapy
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INTRODUCTION

Colon adenocarcinoma (COAD) is the most common type
of colorectal cancer (1). According to the Global Cancer
Observatory (GCO) (gco.iarc.fr) in 2020, there were an estimated
1.4 million new cases of colon cancer and 0.5 million deaths
worldwide (2). Late diagnosis and lack of reliable biomarkers
account for the poor prognosis of COAD (3). Despite many
efforts, the attempt to use a single biomarker to predict the
outcome of COAD has been unsuccessful (4).

Metabolic reprogramming is a common feature of tumor
cells, which is crucial for rapid tumor growth and adaption to
tumor microenvironment (5, 6). Apart from the well-known
Warburg effect, metabolic alterations in lipid and amino acid
metabolism have been observed in a number of tumors, including
colorectal cancer, lung cancer, and breast cancer (7). Mounting
evidence have indicated that changes in amino acid metabolism
contributed to the metastasis, proliferation, angiogenesis, and
drug resistance of colorectal cancer (8–11). Recent study has
demonstrated that inhibition of ASCT2 (function as a glutamine
transporter) exerted a great anti-tumor effect in colorectal cancer
(12). Meanwhile, new insights into the metabolic signatures of
tumors have revealed the potential of risk prediction model,
which is based on the amino acid metabolism-related genes
(AAMRG) (13, 14). In addition, amino acid metabolism plays
an important role in regulating tumor immunity and targeting
amino acid metabolism may help to overcome immunotherapy
resistance and improve existing therapies for COAD patients.
Therefore, targeting the amino acid metabolism might provide
novel ideas for the diagnosis and management of COAD.

MATERIALS AND METHODS

Data Acquisition
The COAD cohort’s transcriptional dataset with matching
clinical information were downloaded from The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov/). Total
524 mRNA expression profiles including 482 COAD tissues
and 42 normal colon tissues were enrolled. Three datasets with
1,430 patients with colon cancer from Gene Expression Omnibus
(GEO), including GSE39582 (15), GSE29621 (16), and GSE17536
(17) were selected to verify the results of TCGA data analysis
(https://www.ncbi.nlm.nih.gov/geo/). The “sva” software package
in R version (4.0.2) was devoted to remove the batch effects.

Differentially Expressed AAMRGs in TCGA
Total 374 AAMRGs were extracted from the
amino acid metabolism-related genes dataset
(REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_
DERIVATIVES), which were recorded in Molecular Signatures

Abbreviations: COAD, colon adenocarcinoma; GEO, Gene Expression Omnibus;

TCGA, The Cancer Genome Atlas; AAMRGs, amino acid metabolism-related

genes; MSI, microsatellite instability; TPM, transcripts per million; LASSO, least

absolute shrinkage and selection operator; ROC, receiver operating characteristic;

TCIA, The Cancer Immunome Atlas database; OS, overall survival; AUC, area

under the curve; HR, Hazard ratio; TMB, tumor mutation burden; GSEA, Gene

Set Enrichment Analysis.

Database (13, 18). Then, total 327 common expressed AAMRGs
in TCGA and GEO were selected. Subsequently, differentially
expressed AAMRGs between the COAD and control groups
were analyzed using the “limma” software package in R version
(4.0.2) (based on |log2FC| > 1 and false discovery rate < 0.05).

Construction and Validation of Prognostic
Risk Score Model
The univariate Cox regression analysis was conducted for
prognosis-related AAMRGs screening. The LASSO algorithm
was executed to avoid overfitting the model. The multivariate
Cox regression was conducted to get the optimal prognostic
genes for the model. Finally, the stable AAMRGs, as the
final prognosis model was constructed. We used the following
equation to calculate the risk score, which was combined by
regression coefficients and expression values of each AAMRG.
Risk score= (index gene1× expression of gene1)+ (index gene2
× expression of gene2) + . . . + (index gene10 × expression
of 10). All COAD patients in TCGA were divided into two
subgroups (high- risk group and low-risk group) according to the
median risk score. Kaplan-Meier curves were used to determine
the differences in prognosis between the different groups. Finally,
the first, third, fifth-year survival proportions of patients were
calculated using the ROC curve. Then, the prognosis model was
validated in the above merge GEO dataset.

Establishment of Nomogram Prognosis
Prediction Model
We combined age, TNM stage and risk scores to plot a
nomogram model using the “rms” software package in R version
(4.0.2). The calibration curves were built to show the agreement
between the nomogram-predicted survival probabilities and the
actual survival probabilities at first-, third-, and fifth-year.

Gene Set Enrichment Analysis Between
High-Risk Group and Low-Risk Group
To reveal the effect of differential expression of AAMRGs on
biological pathways in COAD, Gene Set Enrichment Analysis
(GSEA) was introduced to extract the potential biological
function (19). Firstly, “c2.cp.kegg.v7.1.symbols.gmt” set was
downloaded from Molecular Signatures Database. Secondly,
“GSEA” software was applied to identify the enriched pathways
in the two subgroups. The “ggplot2” software package in R
version (4.0.2) was employed to visualize the top five significantly
enriched biological processes in each subgroup.

Association Between Different Subgroups
and Somatic Variation
Mutation data of COAD was downloaded from TCGA. The
tumor mutation burden (TMB) value in each COAD patient
was calculated the number of mutations in each patient. Then,
differences in TMB values were analyzed between high-risk
group and the low-risk group. The association between the risk
score and TMB level was detected using Spearman correlation
coefficient. Finally, the “maftools” software package in R version
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(4.0.2) was applied to visualize the top 20 most frequently
mutated genes in each group.

Correlations Between Immune Cell
Infiltration Between High-Risk Group and
Low-Risk Group
The CIBERSORT was performed to analyse the tumor immune
microenvironment of COAD. CIBERSORT (https://cibersort.
stanford.edu/) is a method of enumeration of 22 immune related
cell subsets, which including naïve and memory B cells, seven
types of T cell, myeloid cells, NK cells, and plasma cells (20).
The “CIBERSORT” software package in R version (4.0.2) was
applied to analyse the proportion of 22 immune cells between
high-risk group and low-risk group. Bar plot was applied to
visualize the differences in immune cells between high-risk group
and low-risk group.

Differences in Immunotherapy Sensitivity
Between High-Risk Group and Low-Risk
Group
The immunotherapy sensitivity data of patients with COAD was
obtained from The Cancer Immunome Atlas (TCIA, https://tcia.
at/) which included the effectiveness score of patients with PD-
1 and CTLA-4 inhibitors. Then, we detected the differences of
immunotherapy sensitivity score between two subgroups.

Sensitivity Prediction of Anticancer Drugs
The prediction of the difference in drug sensitivity between high-
risk group and low-risk subgroups in COAD was conducted
using the “pRRophetic” software package in R version (4.0.2)
based on Cancer Genome Project (CGP),which including 138
anticancer drugs (21).

Statistical Analysis
GraphPad 8.0 software and R version (4.0.2) were applied to
analyse and visualize the statistical profile. The univariate Cox
regression analysis, LASSO algorithm, and the multivariate Cox
regression analysis were used to narrow down the number of
candidate genes (22, 23). The “survival R” and “surviviner R”
software package in R version (4.0.2) were used for Kaplan-
Meier analysis. We compared the two groups by student’s test
or Wilcoxon test. The Pearson or Spearman correlation test was
utilized to evaluate the correlations between variables. The P <

0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Identifying Differential Expressions of
AAMRGs Between COAD and Normal
Tissues From the TCGA Dataset
The workflow of the study is displayed in Figure 1. Total
263 differentially expressed AAMRGs (180 upregulated genes
and 83 downregulated genes) in TCGA dataset were identified.
The heatmap exhibited the differentially expressed AAMRGs
(Figure 2A).

Construction of Prognosis-Risk Signature
Based on 10 AAMRGs
Fourteen AAMRGs were identified as prognostic related genes
based on the univariate Cox regression analyses (Figure 2B).
Finally, 10 prognostic related AAMRGs was screened for
AAMRGs-risk signature after the LASSO analysis and the
multivariate Cox regression analysis (Figures 2C,D). The
boxplot showed the expression of 10 prognostic related AAMRGs
in TCGA including ASPG (asparaginase), DUOX1 (dual oxidase
1), GAMT (guanidinoacetate N-methyltransferase), GSR
(glutathione-disulfide reductase), MAT1A (methionine
adenosyltransferase 1A), MTAP (methylthioadenosine
phosphorylase), PSMD12 (proteasome 26S subunit, non-
ATPase 12), RIMKLB (ribosomal modification protein rimK like
family member B), RPL3L (ribosomal protein S17), and RPS17
(ribosomal protein L3 like) between COAD and normal samples
(Figure 2E).

Three AAMRGs including PSMD12, MAT1A and DUOX1
were identified asprotective factors in the prognostic model.
Meanwhile, seven AAMRGs including ASPG, GAMT, GSR,
MTAP, RIMKLB, RPL3L and RPS17 were identified as risk
factors in the prognostic model. The risk score of each COAD
patient in TCGA was assessed through the equation: Risk score
= (−0.33×ASPG expression) + (0.37×DUOX1 expression)
+ (0.22×GAMT expression) + (−0.47×GSR expression) +

(0.15×MAT1A expression) + (0.48×MTAP expression) +

(−0.81×PSMD12 expression) + (0.25×RIMKLB expression) +
(0.65×RPL3L expression) + (0.45×RPS17 expression). Finally,
the COAD patients in TCGA were divided into two groups
(high-risk and low-risk group) based on the median risk score.

The Figures 3A,C conferred a better prognosis and longer
survival time in patients with COAD in the low-risk group
and worse prognosis with shorter survival time in the low-risk
group (Figure 3B). In addition, the result of ROC curve analysis
showed that the area under the curve (AUC) of first, third, fifth-
year survival was 0.715, 0.750, and 0.759, which indicated a
good sensitivity and specificity in predicting the prognosis of
COAD based on 10 AAMRGs (Figure 3D). To further validate
the accuracy and sensitivity of the prognosis risk signature, the
above merged GEO dataset was used as an external validation
dataset. Consistently, a difference in OS between high-risk and
low risk group was observed (P < 0.05) (Figures 3E–G). The
AUC of first, third, fifth-year survival was 0.576, 0.596, and 0.599
(Figure 3H).

Relationship Between the
Clinicopathological Characteristics and
Risk Score
Compared with the clinicopathological characteristics, the
AAMRG-related prognostic risk model showed better capability
in predicting one-, three-, and five-year overall survival (OS)
(Figure 4A). Subsequently, the univariate Cox and multivariate
Cox regression analyses revealed that the AAMRG-related
prognostic risk model was an independent predictor of COAD
prognosis (Figure 4B). The expression levels of the 10 screened
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FIGURE 1 | The workflow of the study.

AAMRGs and clinicopathological characteristics between high-
risk and low-risk group are depicted by heatmaps. Interestingly,
there was a difference in the risk tumor stages, T, N, and M stage
between high-risk and low-risk groups (Figure 4C). Notably,
the COAD female patient in T3–T4 stage, N1–N2 stage, M1
stage, and Stage III–IV in high-risk group showed worse survival
(Supplementary Figures S1A–F). These results indicated that
the risk model may have high sensitivity and specificity for
COAD patients.

Development and Evaluation of a
Risk-Nomogram Based on the AAMRGs for
Predicting OS in COAD Patients
The nomogram of age, stage, and risk score based on 10
AAMRGs was constructed to predict first-, third-, and fifth-
year survival (Figure 5A). The calibration curve in Figure 5B

demonstrated that the prediction and actuality of fifth-year
survival values were in good agreement.

GSEA With the Prognostic Risk Signature
The GSEA was conducted between the high-risk and low-
risk group based on the prognosis-risk scores. As displayed
in Supplementary Figure S2A, the melanoma related signal
pathway, ECM receptor interaction, WNT signaling pathway,
mTOR signaling pathway and TGF-β signaling pathway might
be positively correlated with the higher risk scores in COAD
patients. In addition, the porphyrin and chlorophyll metabolism,
proteasome, pentose and glucuronate interconversions, citrate
cycle, TCA cycle, and drug metabolism related signal pathway

were negatively correlated with COAD patients in high-
risk group.

The Correlations Between Tumor
Microenvironment Cell Infiltration
Characteristics and Risk Score
The CIBERSORT results showed that activated NK cells,
eosinophils, and neutrophils were more abundant in patients in
the low-risk group (P < 0.05) (Figure 6). On the other hand,
the infiltration of monocytes increased significantly in the high-
risk group.

Correlations Between the Risk Score
Model and Somatic Variants
The TMB levels were calculated between high-risk and low-risk
groups. However, there was no significant difference in TMB
between the two groups (Supplementary Figure S2B). However,
the somatic mutations of TTN, SYNE1, PIK3CA, MUC16, FAT4,
ZFHX4, RYR2, OBSCN, DNAH5, PLCO were more common
in the low-risk group, whereas the mutation frequency of APC,
TP53, and KRAS mutations was higher in the high-risk group
(Supplementary Figures S2C,D).

Risk Score Predicts Resistance to
Immunotherapy
The COAD Patients from TCIA database were divided into three
groups based on the MSI status: high microsatellite instability
(MSI-H), microsatellite-stable (MSS), and low microsatellite
instability (MSI-L). As shown in Figure 7A, the proportion of
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FIGURE 2 | Identifying candidate genes associated with the prognosis of COAD patients. (A) Differential expression heatmap of amino acid metabolism-related genes

in COAD and normal tissues from the TCGA. (B) Univariate Cox regression analysis of AAMRGs. (C) Turning optimal parameter (lambda) screening in the LASSO

model. (D) LASSO coefficient profiles of the prognostic genes. (E) Box plot of mRNA expression of AAMRGs. **P < 0.01 and ***P < 0.001.
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FIGURE 3 | Evaluation of the prognostic performance of the AAMRGs signature in the TCGA dataset and GEO dataset. (A) The Kaplan-Meier survival curves of the

AAMRGs signature in TCGA dataset. Patients from the TCGA dataset were stratified into two groups according to the median risk scores. (B,C) The distribution of

risk score, survival outcomes, and the expression pattern of 10 AAMRGs in the TCGA dataset. (D) The ROC curves for predicting the 1-, 3-, and 5-year OS in the

TCGA dataset. (E) The Kaplan-Meier survival curves of the AAMRGs signature in GEO dataset. Patients from the GEO dataset were stratified into two groups

according to the median risk score. (F,G) The distribution of risk score, survival outcomes, and the expression pattern of nine AAMRGs in the GEO dataset. (H) The

ROC curves for predicting the 1-, 3-, and 5-year OS in the GEO dataset.
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FIGURE 4 | The predictive efficacy of the risk model and the relationship between risk score and clinical outcome, pathological characteristics, and prognostic value

of COAD. (A) ROC curve to evaluate the predictive efficacy of the risk model. (B) Univariate Cox regression analysis and multivariate Cox regression analysis of

clinicopathological characteristics and risk score. (C) The relationship of clinicopathological characteristics and risk scores between high- and low-risk groups from

TCGA dataset. **P < 0.01 and ***P < 0.001.
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FIGURE 5 | Prognostic nomogram incorporating the risk score model and clinicopathological characteristics. (A) The nomogram of age, stage, and risk score for

predicting 1-, 3-, and 5-year survival. (B) The 1-, 3-, and 5-year calibration curves of TCGA dataset.

MSI-H patients in low-risk group (26%) was higher than the
high-risk group (12%). The results showed that patients in the
MSI-L and MSS groups had higher risk scores, compared with
MSI-H group (P< 0.05) (Figure 7B). This indicated that patients
with lower risk scores were more sensitive to immunotherapy.
Notably, the COAD patients in low-risk group were more
sensitive to the combination of PD-1 and CTLA-4 inhibitors (P
< 0.05) or CTLA-4 inhibitors alone (P < 0.05) than in the high-
risk group (Figures 7C,D). However, there was no difference
observed in the sensitivity PD-1 inhibitors alone between the two
subgroups (Figures 7E,F). These data suggest that the risk score
of COAD patients may affect the immunotherapy selection in
COAD patients.

Results of Risk Score Model and Drug
Sensitivity
Four drugs including imatinib (P = 6.8e−09, Figure 8A),
midostaurin (P = 1.2e−06, Figure 8B), pazopanib (P =

3.7e−04, Figure 8C), and elesclomol (P = 8.2e−03, Figure 8D)
were identified with lower IC50 level in high-risk group
of COAD patients, which are suggestive of better efficacy.
Besides, we found that COAD patients in the low-risk
group were more sensitive to drugs including paclitaxel,
metformin, rapamycin, bortezomib, sorafenib, and gemcitabine
(Supplementary Figures S3A–F).

DISCUSSION

Colorectal cancer is one of the most common types of
malignant tumors. The majority of COAD patients in high-
risk stage II and stage III were recommended to receive
surgery combined with adjuvant chemotherapy to reduce
the risk of recurrence. However, approximately half of the
patients in the early stage received radical surgery developed
recurrence and metastasis (24). Therefore, there is still an
urgent need for constructing a prognostic model that
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FIGURE 6 | Correlations between the risk score model and tumor-infiltrating immune cells. *P < 0.05; **P < 0.01; ***P < 0.001.

provides personalized prognosis and precision medicine for
COAD patients.

Characteristic metabolic changes in malignant cells were
observed including abnormalities in amino acid metabolism,
increased fatty acid synthesis and glucose uptake (25). The
reprogramming of amino acids played an essential role in
the tumorigenesis and tumor progression. The abnormalities
in amino acid metabolism also deeply reshaped the tumor
microenvironment, especially the function of immune cells
(26). Several studies have demonstrated that amino acid
metabolism could be a therapeutic target in multiple solid
tumors (27–33). Therefore, we constructed and validated a
predictive model based on AAMRGs to predict the prognosis of
COAD patients.

In this study, we analyzed the differentially expressed genes
related to amino acid metabolism in TCGA by performing
the univariate Cox regression analysis, LASSO algorithm, and
multivariate Cox regression analysis. Ten AAMRGs (ASPG,
DUOX1, GAMT, GSR, MAT1A, MTAP, PSMD12, RIMKLB,
RPL3L, and RPS17) were screened to construct a prognosis
risk model for prediction. GSR was downregulated in COAD
and inhibited the metastasis of colon cancer cell (34). In
addition, GSR plays an important role in the conversion
of GSSG to GSH in COAD (35). MTAP was upregulated
in COAD and could accelerate the proliferation, invasion
and migration of COAD (36, 37). However, the functional

role of PSMD12, MAT1A, ASPG, GAMT, RIMKLB, RPL3L,
and RPS17 in COAD remains unknown. The accuracy and
sensitivity of the model were further validated with a merged
GEO dataset. Our results indicated that high-risk is linked to
worse prognosis.

To explore the correlations between immune cell infiltration
and risk score, we use CIBERSORT algorithm and estimate
the difference in immune infiltration between two subgroups.
We found that the levels of monocytes, activated NK cells,
eosinophils, and neutrophils were significantly increased
in the low-risk group. These results suggested that the
amino acid metabolism-related gene signature may affect
the infiltration of immune cells and potentially the response
of immunotherapy.

It was known that TMB is associated with the production
of neoantigens and the response of immunotherapy in various
tumors (38). There was only a small population of COAD
patients who benefited from immunotherapy (39–42). Currently,
TMB and MSI are the best predictors of the therapeutic
effects of immune checkpoint inhibitors (ICIs) in COAD
patients (43, 44). We further analyzed the relationship
between the risk score and MSI. The low-risk group was
found to have higher MSI level and increased sensitivity to
immunotherapy. Data in the TCIA database showed that
patients with low risk score might show greater sensitivity
to the combination of PD-1 and CTLA-4 inhibitors and
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FIGURE 7 | Role of risk score in predicting MSI and immunotherapy benefits. (A) The proportion of different MSI levels in the subgroups with high and low risk score.

(B) Differences in risk score among groups with different MSI levels. (C–F) Sensitivity of patients with high and low risk score subgroups to four treatments. (C) PD-1

inhibitor in combination with CTLA-4 inhibitor. (D) CTLA-4 inhibitor alone. (E) Without immune checkpoint inhibitors. (F) PD-1 inhibitor alone.
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FIGURE 8 | Differential chemotherapeutic response based on IC50 between the high- and low-AAMRGs-risk groups. (A–D) The half-maximal inhibitory concentration

(IC50) of 4 chemotherapeutic agents (imatinib, midostaurin, pazopanib and elesclomol).

CTLA-4 inhibitors alone. In conclusion, dual CTLA-4/PD-1
blockade might be considered as suitable drug for patients with
low-risk scores.

The combination of traditional chemotherapy drugs and
targeted therapy has been widely used in the treatment of
advanced colon cancer. We found that patients in the high-risk
group had a higher sensitivity to elesclomol, midostaurin,
pazopanib, and imatinib than in the low-risk group. Elesclomol,
a reactive oxygen species (ROS) inducer, plays an important
role in mediating cuproptosis (45). Pazopanib is a multi-
targeted receptor tyrosine kinase inhibitor that selectively
restraining the autophosphorylation of receptors such as
VEGFR-2, Kit, and PDGFR-β in renal cell carcinoma
(46). In our study, we may provide a new complementary
for the treatment of advanced colon cancer. However, the
results of this drug screening still need further validation in
clinical trials.

CONCLUSIONS

In summary, we constructed a prognostic signature based on 10
AAMRGs with strong predictive value. This study paved the way
for personalized treatment of COAD patients.
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Supplementary Figure S1 | Kaplan-Meier survival subgroup analysis according

to the signature stratified by clinical characteristics. (A) Age ≤ 70 years and age >

70 years. (B) Female and male. (C) T1-2 and T3-4. (D) N0 and N1-2. (E) M0 and

M1. (F) Stage I–II and stage III–IV.

Supplementary Figure S2 | Correlation between risk score and GSEA, somatic

variation. (A) Enriched gene sets annotated by the KEGG collection between the

high- and low-AAMRGs-risk groups in the cohort. (B) TMB levels between the

high- and low-risk groups. (C) Correlation analysis between risk score and

mutation load. (D,E) The mutation rates of reported prognostic-related genes in

low- and high-risk groups.

Supplementary Figure S3 | Differential chemotherapeutic response based on

IC50 available between the high- and low-risk groups. (A–F) The half-maximal

inhibitory concentration (IC50) of six chemotherapeutic agents (Paclitaxel,

Metformin, Rapamycin, Bortezomib, Sorafenib, Gemcitabine).
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