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Combining and comparing
regional SARS-CoV-2 epidemic
dynamics in Italy: Bayesian
meta-analysis of compartmental
models and global sensitivity
analysis
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1Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy,
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During autumn 2020, Italy faced a second important SARS-CoV-2 epidemic

wave. We explored the time pattern of the instantaneous reproductive number,

R0(t), and estimated the prevalence of infections by region from August

to December calibrating SIRD models on COVID-19-related deaths, fixing

at values from literature Infection Fatality Rate (IFR) and average infection

duration. A Global Sensitivity Analysis (GSA) was performed on the regional

SIRD models. Then, we used Bayesian meta-analysis and meta-regression to

combine and compare the regional results and investigate their heterogeneity.

The meta-analytic R0(t) curves were similar in the Northern and Central

regions, while a less peaked curve was estimated for the South. The maximum

R0(t) ranged from 2.15 (South) to 2.61 (North) with an increase following

school reopening and a decline at the end of October. The predictive

performance of the regional models, assessed through cross validation, was

good, with a Mean Absolute Percentage Error of 7.2% and 10.9% when

considering prediction horizons of 7 and 14 days, respectively. Average

temperature, urbanization, characteristics of family medicine and healthcare

system, economic dynamism, and use of public transport could partly explain

the regional heterogeneity. The GSA indicated the robustness of the regional

R0(t) curves to di�erent assumptions on IFR. The infectious period turned out

to have a key role in determining the model results, but without compromising

between-region comparisons.

KEYWORDS

global sensitivity analysis (GSA), SARS-CoV-2, infection reproductive number, meta-

analysis, meta-regression, cubic regression spline, mean absolute percentage error
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1. Introduction

After the first SARS-CoV-2 outbreak during spring 2020,

Italy faced a stronger second epidemic wave during the

autumn of the same year. In order to reduce the rate of

contagion and prevent the collapse of the healthcare system,

the Italian government introduced regional-level measures of

social distancing of different degrees, starting from November

6th 2020. Among others, a national curfew from 10 pm to 5

am was implemented, and the regions were weekly classified

as low risk, medium risk, and high risk zones (yellow, orange,

and red zones, respectively), according to indicators centrally

calculated by the Istituto Superiore di Sanità (ISS). The timing

and the degree of the containmentmeasures likely influenced the

epidemic dynamics (1), but also socio-economic, demographic

characteristics of the population, and environmental factors may

have had a role in determining and moderating the level of

contagion and its pattern over time. Investigating this issue

might be important to prioritizing future interventions and

address prevention plans.

Several studies investigated different aspects related to

the epidemic dynamics during the first and/or the second

wave in Italy by using compartmental models (2–5) or

different approaches (6–8). Some studies performed descriptive

comparisons among regions (mostly during the first wave) (9–

12) or between the first and the second epidemic wave (13).

Others explored possible determinants of the heterogeneity in

COVID-19 incidence and mortality across the country, focusing

on the beginning of the emergency in spring 2020 (14–16).

The aim of our study was to describe the epidemic dynamics

in Italy fromAugust 1st 2020 to the end of the same year, in order

to obtain an overall picture of the second wave in the country

with a special focus on the contagion spread, highlighting and

investigating the heterogeneity among regions. We restricted

our analysis to the second wave of the COVID-19 epidemic

in order to explore associations net of extensive vaccination

campaigns. To this end, we adopted a two-step procedure.
First, we estimated a compartmental model of SIRD-type for

each region in order to investigate the trend of the contagions
over time. Compartmental models, which take their name

from the fundamental assumption that at each time during the

epidemic the population is divided into homogeneous groups or

“compartments”, are widely used in the literature for forecasting

and inference purposes, with examples also in COVID-19

research (17). When the interest is to make inference, the model

parameters are estimated minimizing the distance between

observed data and model predictions (calibration). In our study,

we calibrated the regional SIRD models on the daily number

of notified COVID-19-related deaths, made publicly available

by the Protezione Civile (18). Compared with the number of

notified cases, mortality data—although possibly subject to some

notification delays—can be considered as more reliable and

likely less influenced by the capacity of the healthcare system

to detect infections. The calibration procedure allowed us to

investigate the behavior of the contagion over time in terms

of instantaneous reproductive number R0(t), which quantifies

the average number of secondary infections caused by a single

infected individual over time, as well as in terms of the number

of infected individuals, which can exceed, even by far, the

number of the notified ones.

At the second step, we combined and compared the

regional results by using Bayesian multivariate and univariate

meta-analytic techniques, and we investigated through

meta-regressions the possible role of region-level variables

in explaining between-region discrepancies in terms of

contagion spread.

In the regional SIRD models, we set the infection fatality

rate (IFR) and the average time from infection onset to infection

resolution to plausible values arising from the literature, in

order to assure parameter identifiability. Treating part of the

parameters in the compartmental models as fixed is a common

practice that poses the problem, usually not addressed, of

evaluating the robustness of the results when different values are

specified for these parameters (19). In this paper, we performed a

sensitivity analysis on the estimated R0(t) curve and prevalence

of infections, by changing one at a time the values of IFR

and infection duration in the SIRD models. Additionally, we

implemented a Global Sensitivity Analysis (GSA) procedure

(20) to quantify and characterize the uncertainty around the

calibration results that propagated from the uncertainty around

the values of those parameters that were not the object of the

inference. Despite GSA is not yet widely used in epidemiology,

it appears as one of the recommendations in the Manifesto by

Saltelli et al. (21), which offers a critical view of modeling in time

of pandemic.

Finally, as an ancillary result, we obtained an evaluation of

the submerged fraction of contagion and an indirect assessment

of the admissible IFR values, by comparing the number of

infections estimated by the regional SIRD models, which by

definition includes both notified and non-notified cases, with

the observed number of notified infections reported by the

Protezione Civile (18).

2. Materials and methods

2.1. Data

For our analyses, we used the national database on the

evolution of the COVID-19 pandemic, made available on

a daily basis by the Protezione Civile (18). This database

collects the number of notified infections, COVID-19-related

hospitalizations and deaths and recovered subjects by region.

In the estimation phase, we used the daily number of COVID-

19-related deaths from August 1st 2020 to January 14th 2021

for all Italian regions, and the number of notified infections
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circulating on July 31st 2020. The daily number of new infections

and the daily number of circulating infections from August

1st 2020 to January 14th 2021 were used in a descriptive way

to indirectly assess the submerged fraction of contagion. We

extended the study period until January 14th to obtain a more

stable inference on the month of December, taking into account

that deaths observed today may result from contagions that

occurred weeks ago.

We merged data of the two autonomous provinces of

Trentino Alto Adige (Bolzano-Alto Adige and Trento) that

were provided separately. We removed from the death counts

of Emilia-Romagna 154 cases that, although happened during

spring 2020, have been added to the data set on August 15th.

In the map of Supplementary Figure S1, we represented, for

each Italian region, the population size and the total number of

COVID-19-related deaths notified during the study period (see

also Supplementary Table S1).

We collected socio-demographic and economic indicators

measured at the regional level for 2020 or for the last available

year from the website of the ItalianNational Institute of Statistics

(ISTAT) (22) (see Section 2.4 for further details). We calculated

the regional average temperatures during the study period from

the daily temperature measurements reported on the website

www.ilmeteo.it.

2.2. Regional SIRD models

For each region, we adopted a compartmental model

of SIRD type, described by the following system of

differential equations:


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
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dS(t)

dt
= −β(t) S(t−1)

S(0) I(t − 1)

dI(t)

dt
= β(t) S(t−1)

S(0) I(t − 1)− αI(t − 1)− δI(t − 1)

dR(t)

dt
= αI(t − 1)

dD(t)

dt
= δI(t − 1)

(1)

where S(t), I(t), R(t) and D(t) are the sizes of the Susceptible,

Infected, Recovered and Deceased compartments at time t

(23). For each region, we fixed I(0) to the number of notified

infections circulating at time 0 (July 31st) as reported by the

Protezione Civile (18), from now on denoted by i0. Denoting

by N the regional population size as of January 1st 2020 (22),

we approximated the number of susceptible people at time 0 as

S(0) = N − i0, assuming that the total number of individuals

who had become immunized since the start of the pandemic

was negligible with respect to N (see Supplementary Table S1).

We set D(0) = 0 and R(0) = 0, thus starting to count

deaths and recoveries from August 1st. The parameters α and

δ are the transition rates from the compartment of the infected

individuals to the compartments of the recovered and deceased

ones, respectively. They depend on the IFR, denoted by p, and

on the average times from infection to death and from infection

to recovery, denoted by TD and TR, respectively. Having set

TD = TR = T, the following relationships hold: α =
1−p
T , δ =

p
T (24). The infection rate β(t) is related to the instantaneous

reproductive number R0(t), modeled as time-dependent, as

follows:

β(t) = R0(t)(α + δ) =
R0(t)

T
. (2)

At the beginning of the epidemic, R0(t) corresponds to the

basic reproductive number, defined as the number of secondary

infections generated by the first infected individual in the

population. R0(t) is also related to the effective reproductive

number, Rt = R0(t)S(t)/S(0) (25), that measures the actual

transmission at a specific time accounting for the natural

depletion of susceptible individuals as the contagion spreads.

Rt departs from R0(t) only if the level of immunity in the

population is not negligible, with a ratio S(t)/S(0) far from 1.

To get a flexible estimate of R0(t), we modeled it through a

natural cubic regression spline (26), with 4 internal equi-spaced

knots (6 degrees of freedom): R0(t) = s(t;ϑ), where ϑ is a vector

of unknown coefficients, to be estimated.

We assured parameter identifiability by fixing in the model

T = 14 days and p = 1.15%. The value p = 1.15% is

the IFR estimate reported for the upper-income countries by

the Imperial College COVID-19 response team (27). It is also

consistent with the value of 1.14% estimated for Italy by the

Italian Institute for International Political Studies (28) and used

in a previous paper by the authors (29). Regarding T, the value

of 14 days is in line with both the median time from symptoms

onset to death reported by ISS for Italy (12 days) (30) and the

estimated average time from infection onset to recovery of 13.4

days arisen from ameta-analysis (31).We explored these choices

on p and T through one-factor-at-a-time sensitivity analysis and

GSA.

In the estimation phase, we discretized the

differential equations in (1) and evaluated the size of the

compartments by considering unit time intervals (details in

Supplementary Section S1). This allowed us to estimate the

model minimizing over ϑ the following sum of squares:

Q(ϑ) =
K

∑

t=1

(

D(t;ϑ)− Dobs(t)
)2, (3)

where t = 1 corresponds to August 1st 2020, t = K to January

14th 2021, andDobs(t) denotes the cumulative number of deaths

observed from August 1st 2020.

We performed the minimization of (3) through the auglag

function of the nloptr package of R software (http://ab-

initio.mit.edu/nlopt), constraining the function R0(t) to positive

values. We ran the estimation algorithm 100 times, using
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different initial values sampled from a multivariate grid defined

on the values of ϑ . Among the 100 parameters estimates thus

obtained, we selected the estimate ϑ̂ associated to the lowest

value of Q(·).

We implemented a parametric bootstrap procedure, in

order to quantify the sampling variability around the estimates.

Following a consolidated procedure (32, 33), we assumed

a Negative Binomial distribution on the daily increments

of the estimated time series D(t; ϑ̂) and generated 500

bootstrap samples to be used as observed time series in as

many calibrations. The 90% confidence intervals or bands

for the quantities of interest have been calculated as the

5th and 95th percentiles of the bootstrap distributions (see

Supplementary Section S2 for further details).

We adopted a cross-validation approach similar to the one

proposed in Šušteršič et al. (34) to assess the performance of

our model in predicting COVID-19-related deaths in terms of

Mean Absolute Percentage Error (MAPE) (10). We focused on

prediction horizons of 7 and 14 days. Details on the validation

procedure are reported in Supplementary Section S3.

2.3. One-factor-at-a-time sensitivity
analysis and GSA

To investigate how changes in the values of p and T affected

the estimates of R0(t) and the shapes of the epidemiological

curves arising from the regional SIRD models, we repeated the

analyses for p = 0.78%, 1.79% and T = 10, 18. The values

p = 0.78% and p = 1.79% are the 95% confidence interval

bounds of the IFR estimate in Brazeau et al. (27). We performed

an additional analysis fixing p = 0.5%, as an extreme lower

bound for the IFR. The value T = 10 is consistent with the 95%

lower bound of the estimated mean time of Byrne et al. (31),

while T = 18 is the estimated mean duration of the maximal

infectious period from the same study.

Then, we went beyond the previous one-factor-at-a-time

sensitivity analysis by performing a GSA, calculating the Sobol’s

variance indexes (20). Given a function that relates inputs

to outputs, the GSA explores how the outputs vary as the

inputs change, to determine the inputs most contributing to

the behavior of the outputs (factor prioritization), finding

non-influential inputs (model simplification), and investigating

interaction effects between inputs. This can be done by

propagating the uncertainty around the inputs to the outputs

via MC simulations, then using the Sobol’s decomposition of

the variance of each output thus obtained, and apportioning it

among the different inputs (35) (see Supplementary Section S4).

The contribution of each input to the output variance can be

quantified by computing first order indexes (and superior order

indexes) and total variance indexes. In particular, the first order

index of a given input represents the proportion of the output

variance which is due to the main effect of the input (i.e., the

first-order effect), while the total effect index represents the

proportion of the output variance which is due to the main

effect of the input and all its interactions with the other inputs

(higher-order effects) (see Supplementary Section S4).

In our application, we considered as inputs the fixed

parameters of the SIRD model (p, TR, TD, I(0)) and as outputs

the parameters estimated by calibration, as well as derived

quantities, such as the maximum and minimum R0(t), the peak

of infections, and the dates at which they occurred, together

with the first date when R0(t) reached the threshold of 1 after

the maximum infection peak. The model was the calibration

algorithm, given the observed data.

We calculated the first order and total variance indexes of

each input on each output, relying on the results of 5’040 MC

simulations, that in our case corresponded to 5’040 calibrations

of the SIRD model. Each calibration was performed under a

different combination of inputs, obtained by sampling p from

the continuous uniform distribution U[0.0078, 0.0179] (27), and

the transition times and I(0) from the following discrete uniform

distributions: TR ∼ U{7, 21}, TD ∼ U{7, 21}, I(0) ∼ U{i0, 3i0}.

For each input, the aggregate total variance index on the vector ϑ

was calculated as a weighted average of the total variance indexes

of the single spline coefficients, with weights proportional to the

output variability (36).

Given the huge computational effort required by the GSA

implementation, we performed it on a virtual machine with 16

vCPU only for one region (Tuscany). However, we expect that

the results can be generalized to the other regions. The GSA

was conducted by using the soboljansen and the sobolMultOut

functions of the R package sensitivity (https://cran.r-

project.org/web/packages/sensitivity/sensitivity.pdf).

2.4. Bayesian meta-analyses and
meta-regressions

We used a Bayesian multivariate random effects meta-

analysis model to combine the estimated region-specific R0(t)

curves, accounting for the heterogeneity among regions, and

to combine the regional estimates of the monthly average

prevalence of infection from September to December.

Additionally, we conducted Bayesian univariate random

effects meta-analyses on the following quantities obtained from

the regional R0(t) curves:

• average value of R0(t) from October 1st to December 31st;

• maximum value of R0(t) during the study period;

• variation of R0(t) during the 4 weeks following November

6th, date of the introduction of social distancing measures

by the central government, with a classification of the

regions according to three risk levels;

• variation of R0(t) during the 4 weeks following the

beginning of the school.
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For the variation of R0(t) during the 4 weeks following

November 6th, we performed also meta-analyses by risk level

assigned to the region in the first week of the introduction

of restrictions. Univariate and multivariate meta-analyses were

conducted on all regions and separately by geographical

area: Southern regions (Basilicata, Calabria, Campania, Molise,

Puglia, Sardegna, Sicilia), Central regions (Abruzzo, Lazio,

Marche, Toscana, Umbria), Northern regions (Emilia Romagna,

Friuli Venezia Giulia, Liguria, Lombardia, Piemonte, Trentino,

Valle d’Aosta, Veneto).

Finally, Bayesian meta-regression analyses were performed

on the average R0(t) fromOctober 1st to December 31st in order

to investigate possible sources of between-region heterogeneity.

Specifically, we evaluated as possible effect modifiers the

following variables measured at the regional level (for 2020

or for the last available year): percentage of people with at

least two chronic diseases in the population, number of general

practitioners per 10’000 residents, number of pediatricians

per 10’000 children, number of hospitals per 1,000 residents,

percentage of public hospitals over the total number of hospitals,

aging index (number of over 65 per 100 individuals younger

than 15), mean age of the population, average size of households,

percentage of people aged 24–65 with an academic degree per

10’000 residents, schooling index (percentage of the individuals

aged 20–24 who have at least a high school diploma), percentage

of children attending kindergartens, percentage of workers using

public transport to go to work, percentage of people aged

0–34 using public transport to go to school, poverty index

(percentage of people living in households below the poverty

threshold), employment rate (percentage of employed persons in

the class of age 15–64), tourism rate (days of presence of tourists

during the year per inhabitant), total energy consumption of

industries and manufactures, percentage of residents living in

high-urbanization areas, average temperature from October

to December 2020 (see Supplementary Table S2 for details

on meta-regressors and related references). We specified

separate meta-regression models each of which included only

one meta-regressor.

In all analyses, non-informative priors were assumed on

the model hyperparameters. We get a sample from the joint

posterior distribution of the hyperparameters via MCMC

algorithm. A description of models and software used for the

analysis is reported in Supplementary Section S5.

3. Results

3.1. Results of the main analysis
(p = 1.15%, T = 14)

The fit of the SIRD model was good for all regions, with

the expected cumulative deaths close to the observed ones

(Supplementary Figure S2).

In Figure 1 we reported the estimated curves of R0(t) arising

from the regional SIRD models with their 90% point-wise

confidence bands. For the regions where the first COVID-19-

related death was observed after the second week of August, the

curve was shown starting 14 days before the first death, because

of the extremely poor information on the previous period. We

highlighted in gray the last 14 days of the study period, included

in the analysis to make estimates more stable for the last weeks

of 2020.

The pattern of R0(t) was heterogeneous among regions,

but a mid/late-October peak was visible as the culmination

of a growth started in early/mid-September, with only two

exceptions: Campania and Friuli Venezia Giulia. In several

regions, R0(t) declined and then increased again starting from

mid-December.

Figure 2 summarizes these regional results showing the

overall meta-analytic Italian R0(t) curve and the meta-

analytic curves by geographical area, obtained from Bayesian

multivariate meta-analyses (posterior mean curve and 90%

point-wise credible intervals). It is quite evident that during the

second epidemic wave the shape of R0(t) was similar in the

Northern and Central regions, with an initial increase and a

clear peak around the middle of October. On the contrary, the

overall curve for Southern regions was flatter, without the initial

decrease. The combination of all the regional curves leads to an

overall R0(t) curve (left plot) similar to the one obtained for the

Northern and Central regions, even though with tighter credible

bands.

In Figure 3A, we reported the regional curves describing the

prevalence of infections per 1, 000 inhabitants over time, arising

from the SIRD models (see also Supplementary Figures S3, S4

and Supplementary Table S3). These estimates are inclusive of

detected and undetected cases, thus, in principle, they should be

an upper bound for the number of notified cases provided by

the Protezione Civile (see Section 3.3 for a discussion about this

point). Valle d’Aosta exhibited the largest peak of prevalence,

reached in the first half of November, with more than 50

circulating infections every 1,000 inhabitants. It was followed—

even though with less than half the value of its prevalence—by

Friuli Venezia Giulia, Veneto, Piemonte, Lombardia, Trentino

Alto Adige and then by Liguria and Emilia Romagna. The

lowest prevalence was estimated for Calabria. Liguria and Valle

d’Aosta reached the peak of circulating infections before the

other regions, while Veneto was the last one.

The overall estimates of the average monthly prevalence

arising from the Bayesianmultivariate meta-analysis (Figure 3B)

highlight how the prevalence of infections in the Northern

regions was larger than in the Central and Southern ones,

exceeding on average 15 cases every 1,000 inhabitants during the

month of November.

The values of the MAPE averaged over the regions were

7.2% and 10.9% for the 7 days and 14 days prediction horizons,

respectively. The region-specific MAPEs at 7 days ranged from
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FIGURE 1

Estimated R0(t) with point-wise 90% confidence bands, by region; p = 1.15%, T = 14 days.

FIGURE 2

Posterior mean of the meta-analytic curves of R0(t) with point-wise 90% credible bands for the entire country and by geographical area;

p = 1.15%, T = 14 days.

3.3% (Veneto) to 22.6% (Valle d’Aosta), those at 14 days

ranged from 4.1% (Basilicata) to 26.0% (Valle d’Aosta) (see

Supplementary Table S4).

3.1.1. Results of univariate meta-analyses and
meta-regressions

Table 1 summarizes the results of the Bayesian meta-

analyses on the quantities derived from the regional R0(t)

curves: average value of R0(t) from October to December,

maximum value of R0(t) over the study period, changes in

R0(t) arising in 4 weeks after school re-opening and after the

introduction of national restrictions on November 6th. For all

quantities, the heterogeneity among regions was high, with the

lowest I2 index estimated among the Southern regions (the

I2 index is the percentage of the total variability due to the

between regions heterogeneity—see Supplementary Section S5).

The average level of R0(t), as well as its maximum, was higher

in the Central and Northern regions than in the Southern

ones. An overall increase of R0(t) equal to 0.50 was estimated

during the first 4 weeks after school re-opening in September

(the dates of school re-opening in every region are reported
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FIGURE 3

(A) Estimated prevalence of infections (number of circulating infections over 1,000 inhabitants) by region, and (B) posterior mean of the

meta-analytic monthly-average prevalences, for the entire country and by geographical areas, with 90% credible intervals (lower panel);

p = 1.15%, T = 14 days.

TABLE 1 Results of the Bayesian meta-analyses (posterior mean of the quantity of interest and posterior median of the I2 index, with associated 90%

credible intervals) conducted on: average value of R0(t) from October to December, maximum value of R0(t) over the study period, changes in R0(t)

after school re-opening and after the introduction of national restrictions on November 6th; p = 1.15%, T = 14 days.

Estimate 90% CrI I
2 90% CrI

Average R0(t) from October to December

All regions 1.59 1.53 1.65 90.2 83.0 94.7

North 1.66 1.57 1.76 92.1 82.0 97.4

Center 1.61 1.44 1.78 93.1 79.6 98.6

South 1.48 1.39 1.56 80.2 56.5 94.0

Maximum R0(t) over the study period

All regions 2.61 2.39 2.83 91.6 84.8 95.7

North 2.83 2.44 3.26 94.5 85.0 98.3

Center 2.78 2.27 3.32 87.5 65.2 97.5

South 2.15 1.97 2.35 55.3 20.3 88.9

4 week change in R0(t) after school re-opening

All regions 0.50 0.35 0.66 87.5 78.0 93.3

North 0.74 0.54 0.94 74.4 32.5 93.0

Center 0.58 0.15 1.03 89.7 69.9 98.0

South 0.16 0.02 0.30 55.7 24.6 86.1

4 week change in R0(t) after November 6th

All regions -0.75 -0.84 -0.66 88.4 80.9 93.7

North -0.72 -0.91 -0.54 95.8 90.4 98.7

Center -0.73 -0.90 -0.56 76.7 46.6 94.8

South -0.81 -0.97 -0.66 76.3 45.0 93.1
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in Supplementary Table S5). This increase was lower in the

Southern regions than in the Central and Northern ones.

We found also evidence of an overall decline of R0(t) equal

to 0.75 during the 4 weeks following the introduction of the

restrictions on November 6th. This decline was similar across

geographical areas (Table 1), but appeared to be associated with

the strength of the measures adopted at a regional level, as

shown by the posterior distributions reported in Figure 4A. In

the four regions initially classified as at high risk (red regions:

Calabria, Lombardia, Piemonte, Valle d’Aosta), where stronger

restrictions were immediately adopted, the decline was steeper

than in the two regions classified as at medium risk (orange

regions: Puglia, Sicilia) and in the remaining 14 low risk regions

(yellow), subject to lighter measures.

Figure 4B and Supplementary Table S6 show the results of

the meta-regressions on the average value of R0(t) from October

to December. For each meta-regressor, the result is reported in

terms of change in the average value of R0(t) associated with a

variation of one interquartile range (IQR) in the meta-regressor

itself. The change was multiplied by 100 so that the reported

value indicates the change in the number of secondary infections

derived from 100 infected individuals. For example, we found

that an increase of 6.75 in the percentage of students that

used public transport—6.75 is the IQR for this meta-regressor

reported in Supplementary Table S6—was associated with an

increase of 5.76 units in the average number of secondary

infections derived from 100 infected subjects, or that an increase

of 1.14 in the number of family physicians per 10’000 residents

was associated with a 10 units decrease in the average number

of secondary infections derived from 100 infected subjects. We

considered a meta-regressor relevant if the posterior probability

that the change was larger than 5 or lower than -5 exceeded

50%, i.e., if the posterior median, represented by the horizontal

line through the box in Figure 4B, was outside the range [−5, 5]

(notice that median and mean are very close given the symmetry

of the posterior distributions). According to this criterion, it

was evident a positive marginal association of the average R0(t)

with employment rate, use of kindergartens, tourism rate and,

to a less extent, with the percentage of population living in

high urbanization areas, schooling index, and use of public

transport to go to school. A negative association was found with

the number of practitioners and pediatricians per inhabitant,

poverty index, temperature, prevalence of people with at least

two chronic diseases, and, to a less extent, with the proportion of

public hospitals.

3.2. Results of the sensitivity analyses

The shape of the regional R0(t) curves appeared quite similar

under different IFR scenarios when T = 14, as shown by

the comparison of the overall meta-analytic curves obtained

by fixing the IFR to different values in the regional SIRD

models (left panel of Figure 5A). Some discrepancy was observed

only at the beginning of the study period, when larger values

of R0(t) were obtained in correspondence of smaller values

of p. The regional curves obtained changing p are shown in

Supplementary Figures S5–S7.

The right panel of Figure 5A compares the overall meta-

analytic curve obtained by assuming different values for T,

having fixed p = 1.15%. A shorter infection duration

corresponded to a less peaked curve, but the date when R0(t)

was maximum and the date when it first crossed the value of 1

after the introduction of containment measures were preserved.

In the lower panel of Figure 5, we reported the meta-analytic

estimates of the monthly averaged prevalence of infections per

1,000 inhabitants from September to December, when changing

p, fixed T (second row), and when changing T, fixed p (third

row). The estimated prevalence decreased consistently with the

value of p and increased with the values of T. Notice that the

number of prevalent infections when T = 10 and p = 1.15% and

when T = 14 and p = 1.79% resembled one another. The same

happened with the pairs of parameters T = 14, p = 0.78%, and

T = 18, p = 1.15%. This suggests that increasing (decreasing)

p produces the same effect of decreasing (increasing) T, when

the other parameter is fixed, and that a global evaluation of the

impact of these quantities on the results is required.

Table 2 shows the total variance indexes, including the

aggregate index for the vector ϑ , and the first order indexes

obtained from the GSA procedure. As suggested by the

magnitude of the total variance indexes, changes of the fixed

parameters p, TD, and I(0) had a very low impact on the

coefficients vector ϑ . On the contrary, TR exhibited the greatest

aggregated total variance index (0.72), proving to be an input

that contributed very much to the R0(t) curve as a whole.

Regarding the impact on the derived quantities, TR was still the

most relevant input (the only relevant on the maximum values

of R0(t)), even if non-negligible indexes were found also for

the other inputs, especially on the date of occurrence of the

maximum R0(t), on the date when R0(t) crossed the threshold

of 1 and on the date of the peak of infections.

In order to correctly interpret these results, one should

however consider that some outputs could vary within a small

range of values as the inputs change. Hence, the corresponding

total variance indexes, although high, could actually derive

from the apportionment of a small total variance. This is

in itself indicative of overall robustness of these outputs to

inputs perturbations. For instance (Supplementary Figure S8

and Supplementary Table S7), the date of the infection peak

(coefficient of variation 0.002) was almost unaffected by

variations of the model inputs as well as the date in which

R0(t) crossed the value of 1 (coefficient of variation 0.01).

Analogously ϑ4 had the most dispersed distribution among the

other coefficients, suggesting its greater sensitivity to changes of

the inputs values. This larger dispersion was considered in the

calculation of the aggregate total variance index, which averages
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FIGURE 4

(A) Posterior distributions of the change in R0(t) during the first 4 weeks following the introduction of the restriction measures on November 6th,

by level of alarm assigned to the region, and (B) results of the meta-regressions on the average value of R0(t) from October to December

(posterior distribution of the variation in the average value of R0(t) ×100, associated to a change in the meta-regressor equal to its observed

interquartile range); p = 1.15%, T = 14 days.
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FIGURE 5

(A) Posterior mean and 90% credible bands of the meta-analytic R0 curves and (B) posterior mean and 90% credible intervals of the

meta-analytic monthly-averaged prevalence per 1,000 inhabitants (second and third rows) for the entire country, when using di�erent values for

p, fixed T = 14 days, and when using di�erent values for T, fixed p = 1.15%.

the single total variance indexes with weights proportional to the

ϑi variances (36).

While in the regional SIRD models we constrained TD =

TR = T, the GSA was conducted allowing TD to vary

independently of TR. This choice emphasized that TD was
less relevant than TR on output variability. Therefore, we can
conclude that, when TR is properly set, misspecification of TD
has a negligible effect. In such a case, forcing TD to be equal to

TR, as in our regional analysis, produces a simplification of the
SIRDmodel without inducing relevant variations in the outputs.

Finally, being the total variance indexes for ϑ only slightly
higher than the corresponding first order indexes, it was
evident that interactions among inputs were not relevant on
the estimated R0(t) curve. On the contrary, interactions were a
relevant source of variability in the derived quantities.

The fact that the first order indexes on the derived quantities

were sometimes negative, in most cases close to zero, was due

to a poor MC approximation. Negative indexes are not unusual

when the contribution of the inputs is negligible and can be

avoided by increasing the number of MC simulations (20).

3.3. Comparison between observed
infections and infections predicted by the
model

The number of new infections estimated by the SIRD model

should be interpreted as inclusive of the undetected cases, thus

one would expect it to be an upper bound for the observed

number of new notified cases reported by the Protezione

Civile. However, for some regions the observed number of

new notified infections sometimes exceeded the number of

new infections estimated by calibrating the SIRD model on the
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TABLE 2 Total variance indexes and first order indexes of each model input (by row) on the coe�cients of the R0(t) regression spline, maximum and

minimum values of R0(t) with the corresponding dates, date in which R0(t) first crossed the value of 1, infection peak with the corresponding date

(by column).

Total variance indexes

Spline coefficients R0(t) Infections

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 Aggr. ϑ Max Max Min Min (date) Cross 1 (date) Peak Peak (date)

p 0.10 0.21 0.12 0.08 0.08 0.21 0.09 0.02 0.39 0.19 0.14 0.16 0.16 0.50

I(0) 0.18 0.35 0.23 0.16 0.14 0.36 0.17 0.02 0.58 0.27 0.19 0.03 0.00 0.45

TD 0.18 0.40 0.21 0.15 0.14 0.34 0.17 0.03 0.73 0.30 0.20 0.18 0.32 0.57

TR 0.68 0.10 0.61 0.72 0.78 0.23 0.72 0.99 0.72 0.69 0.78 0.87 0.74 0.85

First order indexes

Spline coefficients R0(t) Infections

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 Max Max (date) Min Min (date) Cross 1 (date) Peak Peak (date)

p 0.07 0.20 0.09 0.07 0.05 0.12 −0.01 −0.06 0.10 0.03 0.01 0.04 0.14

I(0) 0.12 0.34 0.16 0.11 0.08 0.32 0.00 0.00 0.13 0.02 −0.04 −0.04 0.05

TD 0.11 0.32 0.13 0.09 0.07 0.21 −0.03 −0.26 0.14 0.06 0.00 0.11 0.02

TR 0.53 0.03 0.43 0.60 0.64 0.09 0.95 −0.18 0.42 0.61 0.73 0.56 0.25

observed COVID-19-related deaths (Supplementary Figure S3).

This paradoxical result could be partly due to systematic errors

(e.g., notifications concentrated on particular days of the week)

and delays in the notification of cases but it could be also related

to an inappropriate assumption on p. In fact, as the lower panel

of Figure 5B shows, the predicted number of infections strongly

depends on the value of p assumed in the model. In other words,

given the observed time series of COVID-19-related deaths, we

could have estimated a lower prevalence of infections assuming

a higher IFR scenario, and conversely a higher prevalence of

infections assuming a lower IFR scenario. Accounting for this,

if the observed number of new notified infections exceeds the

estimated number of new infections, the value p = 1.15% could

be too high.

As an example, in Figure 6 we compared the predicted

number of new infections for Campania and Liguria under

different IFR scenarios. As the value assumed for the IFR

increased, the number of new infections estimated by the model

became smaller, to the extent of being, in the case of Campania,

inconsistently lower than the observed number of new notified

infections when p = 1.15% and p = 1.79%. On the contrary,

for Liguria the estimated curves were overall consistent with the

observed number of new notified infections, regardless of the

IFR used in the analysis. The only exception was for p = 1.79%,

when the observed number of new cases notified during August

and September slightly exceeded the model predictions.

4. Discussion

In this paper, we used official data publicly available to

study the SARS-CoV-2 epidemic dynamics in Italy and to

investigate regional heterogeneity. We conducted our analyses

on the time window corresponding to the second epidemic wave

in Italy, which did not include the first months of 2021, when

an extensive vaccination campaign began in the country. This

permitted us to specify regional models that did not account for

the immunity progressively acquired by part of the population.

In the literature a variety of indexes describing the evolution

of the pandemic have been proposed (see Giraudo et al.

(37) among others). However, here we focused only on the

instantaneous reproductive number, R0(t), and we modeled it

through a regression spline in order to capture how the strength

of contagion varied over time. R0(t) describes the speed of

the contagion and depends directly or indirectly on countless

factors, including virus infectiousness, socio-demographic and

economic characteristics of the population, the efficacy of

contact-tracing procedures, restriction policies. Being directly

related to the number of contacts across the population, it is very

sensitive to the introduction of social distancing measures.

Alternative methods exist to estimate R0(t) (25), but the

main advantage of estimating R0(t) through compartmental
models is that they allow quantifying also the number of incident

and prevalent infections over time, and, more in general, the
size of all defined compartments. Additionally, they permit
to estimate R0(t) relying on the observed time series of daily

COVID-19-related deaths, which, in our context, was the most
reliable quantity among those reported in the Protezione Civile
database. Even though we cannot exclude a certain amount of

mortality under-reporting—an important problem during the
initial phase of the COVID-19 emergency—this was probably
negligible during the second epidemic wave.

Under the hypothesis that the assumptions underlying the

SIRD model are acceptable, the good predictive performance

of our approach suggests that we are correctly describing the

variations of the infectious reproductive number over time.
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FIGURE 6

Estimated number of new infections (black line) in Liguria and Campania with pointwise 90% confidence bands, when setting in the SIRD model

the infection fatality rate p to 0.5, 0.78, 1.15, and 1.79%, along with the observed number of new notified infections (green points), by region;

T = 14 days.

4.1. Discussion on the main analysis

Our results indicated that in Italy, during the second SARS-

CoV-2 epidemic wave, the instantaneous reproductive number

changed over time heterogeneously across regions, but with

some important common elements. Among them, the increase

of R0(t) during September, stronger in the Northern and Central

regions than in the Southern ones, which led to a dangerously

high level of contagion in mid-October, followed by a decline

of the contagion spread. We cannot exclude that this pattern

was due to a phenomenon of seasonal variation typical of

respiratory infections (38), but it was also suggestive of a

possible role of school reopening in September in amplifying

infection spreading, as argued also by Larosa et al. (39).

Although contagion within school has been sometimes declared

to be no higher than in other contexts (40, 41), this issue is

still debated (42). In particular, reopening schools may have

facilitated contagions through intensifying the number and the

duration of interpersonal contacts within and outside schools,

especially with the use of the public transport (1). This seems to

be confirmed by the meta-regression results: the regions where

the percentage of students using public transport was higher

tended to be characterized by higher average levels of R0(t).

Also meteorological conditions (temperature, humidity and

UV radiations) may have had an impact on contagion spread

through modulating SARS-CoV-2 infectiousness (38, 43–45).

Additionally, with the arrival of the autumn, recreational

and sport activities moved, as usual, to closed places, with a

consequent increase of the contagion risk (46, 47). The possible

role of ambient temperature as a moderator of the contagion was

suggested also by the meta-regression: higher average regional

temperatures were associated with lower values of the average

R0(t) from October to December. One factor that may have

contributed to the peak of the R0(t) curve in October was

also the full resumption of many work activities after the

summer vacation.

Finally, at the end of September (20th-21st) regional

elections took place in seven regions (Toscana, Marche,

Campania, Puglia, Veneto, Liguria, Valle d’Aosta) and

administrative elections took place in 1,184 municipalities

around the country. The fact that, as per tradition, voting

stations have been set up in school buildings during the

weekend and that people moved within and between regions to

reach their places of residence in order to vote should not be a

priori ruled out as a possible source of contagion amplification,

as documented elsewhere (48, 49).

The decline of the R0(t) curves after the October peak was

likely related to the restrictions progressively put in place by

the central government. This decline tended to be steeper in

the regions earlier classified as high-risk zones, where stronger

restrictions were immediately introduced. However, it should

be also noticed that, especially in the Northern and Central

regions, the decline apparently started before the introduction

of restrictions on November 6th. This could be indicative of

the efficacy of local measures introduced in some regions before

the national ones or reflect spontaneous changes in behavior of
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the population in the face of worrying levels of contagion. At

the end of November, the instantaneous reproductive number

was below or very close to the threshold of 1 everywhere.

Then, a new increase was observed during the second half of

December. This was particularly evident in the Southern regions,

probably due to travels within and between regions related to the

Christmas holidays.

Overall, our results about the shape of R0(t) are coherent

with those reported in other analyses of the second epidemic

wave in Italy. In particular, Ferrari et al. (10), who estimated

the reproductive number at the provincial level by calibrating

on notified cases, found that by mid-October the reproductive

number was greater than 2 in almost all provinces. Furthermore,

in many provinces of Liguria, Abruzzo, Toscana and Umbria

they estimated a reproductive number consistent with our

finding that in these regions R0(t) reached the value 1 faster than

in others (Figure 1). Finally, similarly to us, they conclude that in

December the reproductive number was smaller than 1 in almost

all of Italy.

The “flat” R0(t) curve estimated for the Southern regions,

with a maximum value slightly larger than 2, versus a maximum

close to 3 in the rest of the country, was indicative of apparently

different dynamics of contagion in the South, perhaps related

to specific environmental, demographic, and socioeconomic

characteristics or to a greater ability to control contagion.

Focusing on the average level of R0(t), we tried to explain

through meta-regression part of the observed between-region

heterogeneity. Our meta-regression results should not be used

to draw conclusions about the existence of causal relationships

linking the strength of contagion with the regional features,

but suggest hypotheses that should be investigated through

subsequent ad-hoc studies. The positive association of the

average value of R0(t) with employment rate and schooling

rate, and its negative association with the poverty index seems

to indicate that population lifestyles typical of richer socio-

economic contexts may have helped the virus spread. Also,

population density, here measured in terms of percentage

of people residing in high urbanization areas, was one of

the possible predictors of a higher instantaneous reproductive

number, as well as tourism attractiveness of the region. However,

in interpreting this latter result, one should consider that

tourism flows have undergone considerable changes due to

the COVID-19 emergency and that in our meta-regression we

included the tourism rate of the year 2018, the last available.

As already discussed, our meta-regressions highlighted the

potential role of school-related commuting in enhancing the

contagion. We also found that the percentage of children

attending kindergarten had a positive association with the

R0(t) level. This result could simply reflect the fact that taking

advantage of the kindergartens service is a proxy of the

employment level in the region or could be indicative that

kindergartens themselves have had a role in spreading infections.

Notice that kindergartens have been usually kept open during

the second epidemic wave. Interestingly, we found that the

average R0(t) was lower where the number of family physicians

and pediatricians per inhabitants, as well as the proportion of

public healthcare institutes, were higher. These results could

indicate the important role of family medicine and public

sanitary service in preventing contagion.

In interpreting the results of the meta-regression, we must

take into account that some of the meta-regressors followed

a North-South gradient, so it is difficult to disentangle their

role from that of possible unobserved factors that varied with

latitude. However, it is also worth noting that our meta-

regression results are very similar to those reported elsewhere

and obtained using analytical approaches different from ours

(e.g., regressions and geographical modeling) on data from

different countries. There are several studies in the literature that

have explored the association of socioeconomic, demographic,

and health variables with COVID-19-related cases and deaths

(50–56). Chang et al. (55) analyzed the role of variables

measured before the COVID-19 outbreak in explaining the

number of confirmed infections and deaths in 91 countries

during the second epidemic wave. Similarly to us, they list as

"aggravating" factors the level of urbanization, the average age of

the population, tourism, and indicators of economic well-being

such as GDP; temperature and health infrastructure are listed

among the "mitigating" factors, as well as, unlike in our analysis,

the level of education of the population. In line with us, most

studies have found a positive association between infection level

and population density (50–54) and, interestingly, Gonzalez-Val

et al. (50) report a negative association between the number

of infections and physician density. Sã (54), focusing on the

early months of the COVID-19 epidemic in England and the

Wales, found that areas where there was a higher fraction of

people using public transport had a higher number of COVID-

19 infections per 100,000 people. Our result on the percentage of

children attending kindergarten is not confirmed in González-

Val and Sanz-Gracia (50), where a negative association is

reported between the number of cases and the percentage of

schoolchildren and children attending daycare.

Since the onset of the COVID-19 emergency, interest on the

relationship between contagion andweather conditions has been

very strong (57, 58). Several studies conducted on a global scale

and on specific countries focused on the association between

climate and the spread of the SARS-CoV-2 virus (59–61). In

most cases, the evidence indicated that the level of contagion

was lower where temperatures were higher. Ourmeta-regression

results are consistent with this literature.

4.2. Discussion on the sensitivity analyses

Compartmental models can be very complex when many

compartments are defined and many transitions between them

are allowed. Complexity goes hand in hand with an increase in

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2022.919456
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cereda et al. 10.3389/fpubh.2022.919456

the number of unknown parameters that cannot be estimated

due to structural and practical identifiability problems. Most

of the complicated compartmental models proposed in the

literature rely on fixing the values of a large number of

parameters without even studying the impact on the results of

those arbitrarily chosen values (21, 62).

In this paper, we performed both one-factor-at-a-time

sensitivity analysis and GSA. These two sensitivity analyses have

a different interpretation and their results were not directly

comparable. In fact, in the one-factor-at-a-time sensitivity

analysis we ignored how the inputs interacted and inspected

the model outputs only for a few values of IFR and infection

duration. On the contrary, with the GSA, we explored the whole

space of the non-estimated parameters of the SIRD model.

The GSA indicated that there was interaction among the

inputs and that there were no completely negligible inputs. The

initial number of infected I(0) resulted to be the less influential

input. Notice that we were interested in evaluating the relevance

of I(0) since in the main analysis we forced it to be equal

to the number of notified infections present in the region on

July 31st, thus assuming that the regional screening and tracing

systems were initially able to detect all new infections. A second

important result was related to the model simplification that

we adopted in the regional SIRD models, assuming TD =

TR = T: this simplification is admissible if the infection

duration is set to plausible values for TR. On the other hand,

TR resulted to be the most influential parameter, suggesting

that an accurate knowledge of TR would be needed for better

predictions and understanding of the pandemic. Unfortunately,

improving the empirical evidence on TR is not trivial, because of

its complex nature (TR is both the average time from infection

onset to recovery and the average time of infectiousness) and its

dependence on undetected infections.

Finally, the GSA confirmed the robustness, already

documented elsewhere (29), of the estimated R0(t) curve to

the value assigned to p. Under the reasonable assumption

that the average infection time was homogeneous across the

regions (the infection time is mainly related to virus and disease

characteristics) and considering that changing the value of T

the regional R0(t) curves inflated/deflated but preserved their

overall shape, this robustness should assure that the conclusions

drawn from the comparison of the regional R0(t) curves are not

affected by specific choices of IFR and T.

4.3. Discussion on the IFR value

Our model produced regional estimates of the number of

circulating infections, inclusive of the submerged fraction of the

contagion. This quantity, combined with R0(t), determines the

number of new infections, and it is useful to assess the actual

impact of the contagion on the healthcare system: if a large

instantaneous reproductive number can be sustainable at the

beginning of the epidemic when the number of cases is low, a

low instantaneous reproductive number may not be sustainable

when the number of infections is large.

For identifiability reasons, we did not estimate the IFR,

but our analysis indirectly provided indications about plausible

values for this parameter through a comparison between the

observed cases reported by the Protezione Civile (18) and the

number of infections predicted by the SIRD model under three

different scenarios of IFR. Under the assumption of an average

waiting time from infection onset to infection resolution (death

or recovery) equal to 14 days, our findings seem to indicate that

during the study period the IFRmay have changed over time and

space. In particular, according to our results, the IFR was likely

lower than 1.15% in the initial phase of the second epidemic

wave, when the virus mainly circulated among younger people

(63), as well as in many Southern regions, including Campania,

which is, not by chance, the region with the lowest aging index

in Italy (22). Conversely, an IFR equal to 1.79%, the upper

bound considered in our sensitivity analysis, is not consistent

with the observed infection dynamics in most regions, because

it would lead to a predicted number of infections smaller than

the observed number of notified cases.

Assuming p = 0.5%, not far from the IFR estimate

reported in the review by Ioannidis (64), we would obtain

quite high estimates of infection prevalence which could

be reasonably considered as an extreme—even though not

impossible—upper bound.

Notice that, in principle, the observed inconsistency between

predicted infections and notified infections in the Southern

regions could partly be solved by assuming for them a longer

average waiting time T (e.g., T = 18 days), with p =

1.15%. Indeed, as shown by the sensitivity analysis results, the

parameters p and T jointly affect the epidemic curve generated

by the SIRD. However, as already explained, this hypothesis

seems less plausible than the hypothesis of a heterogeneous IFR.

4.4. Study limitations

Our study has some limitations. Regarding the regional

analyses, the SIRD model relied on strong assumptions that

could be partly unrealistic: the population was homogeneously

mixed, with people making contact at random, and closed,

with no contacts among individuals belonging to different

regions or countries; transition parameters were constant across

individuals who were present at the same time in the same

compartment; there was not reinfection and no incubation

period. Importantly, an individual becoming infected on the

day t was supposed to be infectious starting from the day

t + 1 until infection resolution. This was quite an unrealistic

assumption for the infected individuals that were notified, thus

isolated. Additionally, as usual in compartmental models in their

simplest form, we implicitly assumed that the transition times

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2022.919456
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cereda et al. 10.3389/fpubh.2022.919456

were exponentially distributed (65), inducing a non-negligible

probability of infection durations much longer than the average,

as well as a high probability of very short waiting times.

As already discussed in Section 4.3, also the assumption of

an IFR which is constant over time was questionable, in the light

of the comparison between the observed notified cases and the

infections predicted by the SIRD model. In fact, the IFR may

have changed over time due to the spread of new variants with

different lethality, as well as to changes in the composition of the

population at risk that may have become on average more or less

frail over time.

We calibrated the SIRD models only on the observed

COVID-19-related deaths, without exploiting the availability of

other observed time series, like the ones of notified infected.

Calibrating on the notified infected would have required the

formulation of a more complex compartmental model with

separate compartments for detected and undetected cases and

the introduction of additional unknown transition parameters

(2–4, 29). On the other hand, this more complex model

would have also allowed us to take into account the fact that,

once detected and isolated, the infected individuals spread

the contagion less than the undetected ones. An additional

limitation concerns the fact that the regression spline used to

model the regional R0(t) curves could be quite sensitive to the

knots position. One could extend the procedure to the use of

penalized splines (26).

Following a procedure which is frequently used in

compartment models literature (32, 66), we did not make

assumptions about data distribution in the phase of estimation

of the SIRD parameters, but we generated bootstrap samples

for confidence intervals construction by assuming a Negative

Binomial distribution on the daily increments of deaths.

Alternative approaches rely on likelihoods maximization or

Bayesian inference, but compartmental models often exhibit

complex likelihoods requiring particle filtering methods to be

maximized (67) or computationally intensive methods based on

data augmentation procedures (68). In the Bayesian framework,

likelihood-free approaches have been also proposed (69).

The bootstrap percentile intervals could have lower coverage

than the nominal one (70). Bias-corrected and accelerated

bootstrap confidence intervals could have better performance

(71), but they are too computationally demanding to be applied

in this context.

In meta-regression we did not focus on environmental

variables other than the regional average temperature, but also

solar radiation, humidity, and air pollution have been suggested

as affecting the contagion rate as well as COVID-19-related

mortality or hospitalization (72–74). Finally, a finer geographic

detail, such as considering provinces or municipalities instead of

regions, would have allowed us to better appreciate the sources

of heterogeneity in the spread of contagion. However, besides the

fact that in Italy mortality data are not made freely available at

this detail, estimating R0(t) at the provincial or finer level would

have led to a more unstable inference. Not to mention that, at

this geographic detail, the assumption of a closed population

would be even more questionable.

5. Conclusion

Despite the difficulty of drawing information from limited

data, our approach allowed us to estimate R0(t) and to evaluate

the prevalence of infections during the second SARS-CoV-2

wave in Italy at the regional level.

Beyond the common elements—including a peak in mid-

October and a decline during November, which was more

pronounced in regions where stronger restrictions were applied

first—the rate of contagion changed heterogeneously among

regions over time. This shows that models treating the

phenomenon at the national level could ignore important

characteristics, specific to certain areas.

The meta-regression results show that the observed

heterogeneity can be partly explained by socioeconomic and

demographic factors, such as level of urbanization, family

medicine and healthcare system, employment rate, use of public

transport for school commuting. Higher temperatures were

associated to lower R0(t) levels. These factors should be further

explored with finer geographical scale analyses.

The results of the sensitivity analyses reassure us that the

overall shape of the estimated R0(t) curves and the conclusions

drawn from the comparisons of the regional curves are robust

to changes in the values of the parameters that we considered as

fixed to make the SIRD model identifiable. On the contrary, the

estimate of the prevalence of infections was strongly influenced

by the assumptions regarding the IFR. Furthermore, our results

seem to support the hypothesis of a heterogeneous IFR over time

and across regions, that may have been lower than 1% in some

regions, especially at the beginning of the epidemic wave.

Regarding sensitivity analysis, GSA has proven to be a

powerful and promising tool and its use should be encouraged

in this and other research contexts.
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