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In this article, a new hybrid time series model is proposed to predict COVID-19 daily

confirmed cases and deaths. Due to the variations and complexity in the data, it is

very difficult to predict its future trajectory using linear time series or mathematical

models. In this research article, a novel hybrid ensemble empirical mode decomposition

and error trend seasonal (EEMD-ETS) model has been developed to forecast the

COVID-19 pandemic. The proposed hybrid model decomposes the complex, nonlinear,

and nonstationary data into different intrinsic mode functions (IMFs) from low to high

frequencies, and a single monotone residue by applying EEMD. The stationarity of each

IMF component is checked with the help of the augmented Dicky–Fuller (ADF) test and

is then used to build up the EEMD-ETS model, and finally, future predictions have been

obtained from the proposed hybrid model. For illustration purposes and to check the

performance of the proposed model, four datasets of daily confirmed cases and deaths

from COVID-19 in Italy, Germany, the United Kingdom (UK), and France have been

used. Similarly, four different statistical metrics, i.e., root mean square error (RMSE),

symmetric mean absolute parentage error (sMAPE), mean absolute error (MAE), and

mean absolute percentage error (MAPE) have been used for a comparison of different

time series models. It is evident from the results that the proposed hybrid EEMD-ETS

model outperforms the other time series and machine learning models. Hence, it is

worthy to be used as an effective model for the prediction of COVID-19.

Keywords: prediction, COVID-19, ensemble empirical mode decomposition, augmented Dicky-Fuller test, ARIMA,

error trend seasonal model

INTRODUCTION

There has been a growing recognition among data analysts and researchers to focus on the
prediction of COVID-19 in different parts of the world. The COVID-19 pandemic can be
traced back to a group of severe pneumonia cases identified in Wuhan, China, in December
2019 (1). The initial spread of this contagious virus has been linked to a living animal seafood
marketplace inWuhan, pointing to a zoonotic source of the pandemic. However, person-to-person
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transmission has driven rapid spread with cumulative numbers
reaching 53,164,803 reported cases, and 1,300,576 deaths globally
since the start of the pandemic until 14 November 2020
(2). The worst-hit countries are Italy, France, Germany, and
United Kingdom (UK) which recorded approximately 5,084,645
reported cases and 151,380 cumulative deaths. Extraordinary
measures have been taken by these countries to reduce the viral
spread, specifically in the densely populated regions to reduce the
chances that sick people might come into contact with healthy
ones. In recent times, the prediction of the current pandemic
of COVID-19 outbreak is a test for data experts as inadequate
information is available on the initial growing curve, and the
epidemiological properties of the virus to be fully elucidated.
There has been a renewed interest in using time series models
to predict the epidemics, namely, SARS, Ebola, influenza, and
dengue (3–10). These studies have shown an increasing curiosity
in applying time series models as valuable tools in estimating and
predicting epidemics. Unlike the regressionmodels that need one
response and at least one explanatory variable, univariate time
series models are data-driven and can be used for forecasting
without any explanatory variables. Predicting the daily confirmed
cases and deaths from COVID-19 is hard as compared to the
cumulative confirmed cases and deaths. The reason is that the
daily data follow a nonlinear and nonstationary pattern, and
hence, most of the linear time series models cannot capture its
nonstationary characteristics more precisely.

In recent years, the empirical mode decomposition (EMD)
and its modified form known as ensemble empirical mode
decomposition (EEMD) (11, 12) have emerged as an attractive
method for complex signal analysis. Using this method, a
complex signal can be partitioned into a limited number of
intrinsic mode functions (IMFs), having simpler frequency
mechanisms that lead to easy and precise forecasting. The EMD
has been extensively applied in numerous areas, such as the
investigation of the complex nonlinear sea wave data (13),
earthquake data analysis, construction state monitoring (14),
diagnosis of faults in the machines (15, 16), prediction of stock
markets, exchange rates, and crude oil (17–20).

Commonly, two approaches have been used in the past, i.e.,
the first one is statistical, and the second one is referred to as a
mathematical model for the prediction of different pandemics.
Following are a few studies available in the literature that
shows the importance of these models to forecast the spread of
the pandemics.

The method of serial interval (SI) of the infection was used by
Zhao et al. (21) to estimate the value of reproduction rate (R0). By
implementing this method, the estimated value of R0 for COVID-
19 is found to be 2.56 with a 95% confidence band of 249–2.53.
Based on the estimated value of R0, the initial cases of COVID-
19 in China followed an exponential growth. The unreported
cases from 1 January 2020 to 15 January 2020, are 469 with a
95% prediction interval of 403–540. It is concluded from this
study that the unreported cases probably happen during the first
2 weeks of January.

To find out the predicted reproduction number R0 of
COVID-19, the author in Tang et al. (22) used a deterministic
compartmental mathematical model with other variables,

namely, the progression of the disease, epidemiological status
of the individuals, and intervention measures. The method of
likelihood has been used for estimation; the estimated control
reproduction number was found to be 6.47 with a 95% prediction
interval of 5.71 to 7.23. It is also concluded from this study that
tracing, isolation, and quarantine can decrease the reproduction
and transmission rate of COVID-19.

Three different artificial neural networks (ANN), i.e.,
multilayer perception (MLP), radial basis function (RBF), and
time delay neural network (TDNN) have been compared with
the ARIMA model for predicting the hepatitis A virus (HAV)
(23). They used 13 years of data on the HAV in Turkey to check
the accuracy of ANN and ARIMA models. Based on the smallest
values of mean squared error (MSE), normalized mean squared
error (NMSE), and mean absolute error (MAE), the method
of MLP outperforms other methods to forecast the infections
caused by HAV.

A simple mean-field and susceptible-infected-recovered-
death (SIRD) model was used by Fanelli et al. (24) to predict
the dynamics of the COVID-19 in China, Italy, and France. The
simple mean-field model can be used efficiently to find out the
time and height of the peak of the cumulative confirmed cases.
The peak of the COVID-19 in Italy is around 21 March 2020,
with maximum cumulative cases of 2,600. Using the same data
for the SIRD model, it is estimated that the recovery rate for the
three different countries is the same, whereas rate of death and
infection is different.

Different phenomenological models, i.e., the generalized
logistic growth model (GLM), Richard growth model, and
subepidemic growth models are implemented for the short-
term real-time forecast of COVID-19 in the Hubei Province
where the virus has been originated for the overall trajectory
in China. Among different phenomenological models, the GLM
and Richard model yield comparable prediction intervals in
Hubei, while the subepidemic model gives a wider interval than
the competing models. Furthermore, the prediction intervals
obtained by the subepidemic model are much wider than
the other two models both in Hubei and other provinces of
China (25).

An exponential model has been used to forecast the
number of infected people from COVID-19 in Italy (26).
Based on the exponent value of r=0.225 for the model,
the exponential prediction and the actual number of
confirmed cases are very much similar. According to this
model, the estimated reproduction rate R0 varies between
2.76 and 3.25, which is very much similar to the one
reported initially for the city of Wuhan in China. It is
predicted from this model that the cumulative number
of confirmed cases in Italy by March 15 will be more
than 30,000.

The SIRD model was fitted by Anastassopoulou et al. (27)
to estimate the basic reproduction number R0, daily confirmed
cases, and daily deaths along with a 90% confidence interval.
Based on the data of the confirmed cases, the average estimated
and simulated value of R0 for the SIRD model is approximately
2.6 and 2. According to this study, the total number of infected
people could reach 180,000 with a lower confidence interval of
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45,000, and the total number of deceased persons from COVID-
19 might be more than 2,700 by February 29. It is also evident
from this study that the fatality rates show a declining pattern
from January 26.

A simple time series predicting method from the exponential
family to forecast the total number of infected people from
COVID-19 was used by Petropoulos et al. (28). The forecast
accuracy of this method is better than the other time series
models and is hence used for short-term forecasting. Models
from the exponential family capture both trends and seasonal
components based on the nature of the data only trend, and
nonseasonal components of the dataset are used in this study.
The 10 days ahead forecasted value of cumulative confirmed cases
around the globe is 209,000 with a 90% prediction interval from
38,000 to 534,000 in the time window from 01 February 2020 to
10 February 2020. Similarly, the last 10 days (from 12March 2020
to 21 March 2020) ahead forecast of cumulative confirmed cases
from COVID-19 in the entire world are 210,000.

The well-known ARIMA model was used by Benvenuto et
al. (29) to predict the trend of the spread and prevalence of
novel coronavirus. Autocorrelation function (ACF) and partial
autocorrelation function (PACF) were used to estimate the
parameters of the model. Based on the estimated values of
the parameters, ARIMA (1,0,4) and ARIMA (1,0,3) were used
to predict the prevalence and incidence of the COVID-19.
The forecasted values based on the two ARIMA models of
prevalence and incidence for the time window from 11 February
2020 to 02 February 2020 (2 days) are 45,151 and 2,418 with
prediction intervals of (42,084 and 48,218) and (1,534 and
3,302), respectively.

An improved adaptive neuro-fuzzy inference system (ANFIS)
based on an enhanced flower pollination algorithm (FPA) and
slap swarm algorithm (SSA) was proposed by Al-Qaness et al.
(30) to forecast the 10 days of cumulative confirmed cases from
COVID-18 in China. The performance of the model has been
increased by determining the parameters of both the ANFIS and
FPASSA models. The efficiency of the proposed method in terms
of RMSE, MAE, and MAPE is better than the other models.
Based on the FPASSA-ANFS model, the estimated number of
cumulative confirmed cases by 28 February 2020, in China
is 99,453.

The well-known univariate time series ARIMA model
was used to predict the cumulative confirmed cases, deaths,
and recoveries from COVID-19 in Pakistan. Based on the
investigational results of this study, ARIMA (0, 2, 1) (1, 0, 0)
outperformed other time series models for predicting the next 10
days’ cumulative confirmed cases. Similarly, ARIMA (0,2,1) was
found to be the best candidate model for forecasting aggregate
recoveries and deaths (31).

The problem of predicting the daily confirmed and daily
deaths from COVID-19 has gained limited attention in the
literature. Although some attempts have been made to address
this issue, it is still a potential area to be investigated. Literature
offers no clear methodology for the problem of predicting the
daily confirmed and deaths from COVID-19. Here, we report
a neglected aspect in previous studies, and an attempt has
been made to address the issue with a more sophisticated and

simple hybrid model. It can be observed from the graphical
representation of the daily confirmed cases and deaths, as shown
in Figures 2, 3, which follow a nonlinear and nonstationary
pattern that cannot be predicted easily by using any linear
statistical or mathematical models.

To capitalize the strength of these models and address the
issues and weaknesses of the abovementionedmodels, an attempt
has been made to predict the daily confirmed cases and deaths
from COVID-19 by suggesting a new hybrid EEMD-ETS model
whose detailed description is outlined in the “Proposed hybrid
EEMD-ETS model” section.

Since the daily confirmed cases and deaths from COVID-
19 follow an irregular pattern, therefore, the traditional time
series models might not enhance their nonlinear and stochastic
characteristic and thus produce very unrealistic prediction
results. This has been achieved primarily through the use of
EEMD. The first step of this method is to decompose the
nonlinear pattern of the data into dissimilar IMFs, and a single
monotone residue component followed by the selected IMFs is
then used to build the hybrid ETS model, which is then used for
short-term prediction.

The novelty in this article is the development of a hybrid time
series model which is based on the well-known idea of a divide-
and-conquer algorithm that works recursively by breaking down
the nonlinear COVID data into subgroups technically known as
IMFs and then efficiently predicts COVID-19 in Italy, Germany,
UK, and France.

The remaining article is organized in the following sections
with techniques for future predictions in the “Prediction
methods” section and the proposed hybrid EEMD-ETS model in
the “Proposed hybrid EEMD-ETS model” section; experimental
results on four COVID-19 datasets of Italy, France, Germany,
and the UK are briefly explained in the “Experimental results”
section, followed by discussion, and finally the conclusion
is presented.

PREDICTION METHODS

In this section, we provided the details of the experimental
procedures carried out in this study. Numerous research articles
have shown that the time series forecasting model’s emphasis
on the past behavior of a random phenomenon best captures
the underlying trends and patterns. The ideal model is then
employed for the prediction of the future behavior of the
underlying study variable. Over the past few years, there have
been fabulous efforts carried out on the expansion of different
time series models for forecasting the spread of contagions. In
this article, we have suggested a hybrid technique that is based
on EEMD and error trend seasonality (ETS) to predict the daily
confirmed cases and deaths from COVID-19. A brief explanation
of all the time series methods is outlined along with the proposed
method in the following subsections.

Mean Method
In this method of forecasting, the mean value of all the historical
time series is equal to the future forecast value. If we denote
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the historical time series values by x1, x2, ..., xt , then the future
forecast value of the k period ahead is given by

x̂t+k = x
¯
= (x1 + x2 + x3 + . . .+ xt) /t (1)

Simple Exponential Smoothing
The simple exponential smoothing (SES) technique is one of the
most common techniques of exponentially smoothing methods.
Consider a time series x1, x2, ..., xt with no seasonal or symmetric
trend, the future forecasted value x̂t+k is a weighted sum of the
past values

x̂t+k = a0xt + a1xt−1 + a2xt−2 + . . . (2)

where {ai} are weights in such a manner that more weights are
given to the most recent values and fewer weights to the values
that lie far away in the past. When the weights are increasing
geometrically, the final equation for SES becomes

x̂t+k = γ xt + γ (1− γ ) xt−1 + γ (1− γ )
2xt−2 + . . . (3)

Naïve Method
This method of forecasting works very efficiently for many
economic and financial time series, especially when the time
series follows random walks, that is why this method is
sometimes known as the random walk forecasting method. In
this method of point forecasting, the future forecast value is equal
to the value of the last observation, i.e.,

x̂t+k = xt (4)

Theta Model
This theta model was proposed by Assimakopoulos and
Nikolopoulos (32), where the basic idea of this forecasting
method is altering the local curvature of the univariate time
series through a coefficient known as “Theta” (θ) which is
directly applied to the second difference of the time series.
Therefore, a new series of time series known as Theta-lines are
constructed and denoted as L(θ). Each of these Theta-lines is
extrapolated individually and the forecasts are aggregated either
equally weighted or through a weighed optimization procedure.
Consider that the initial time series Y = [Y1,Y2,Y3, . . . ,Yt] is
decomposed into two Theta-lines, i.e., L (θ = 0) and L(θ = 2),
then the algebraic equation for the model in its modified form is
as follows:

Yt =
1

2
(Lt (θ = 0)+ Lt (θ = 2)) , ∀ t = 1, 2, . . . , n (5)

TBATS Model
The trigonometric seasonality Box–Cox transformation ARIMA
errors trend seasonal (TBATS) model developed by De Livera et
al. (33) uses a combination of Fourier terms with an exponential
smoothing state-space model and a Box–Cox transformation
in an entirely automatic method. There is a slight difference
between harmonic regression and the TBATS model, in the sense
that the seasonal patterns are repeated without changing for the

time in harmonic regression, while in the TBATS model, the
seasonal components change slowly over time. The matrices for

the TBATS model can be written as = (1,φ, a,ϕ, θ)
′

, g =

(α,β , γ , 1, 0p−1, 1, 0q−1)
′, and

F =





















1 φ 0τ αφ αθ

0 φ 0τ βφ βθ

0′τ 0′τ A B C

0 0 0τ ϕ θ

0′p−1 0′p−1 Op−1,t Ip−1,p Op−1,q

0 0 0τ 0p 0q
0′q−1 0′q−1 Oq−1,τ Oq−1.p Iq−1,q





















(6)

Here, if all the components in the TBATS model are available,
then these matrices are valid but if any of the components of
the model is not available, then the corresponding term must be
omitted from the matrices too.

The Holt-Winters Linear Trend Forecasting
Procedure
This method of forecasting is the generalization of the SES
technique by introducing two smoothing parameters α, γ for
updating the local level (Lt) and trend (Tt) components of the
time series. The values of these smoothing parameters generally
fall in the range of (0, 1). The one forecast and two smoothing
equations for the level and trend are given by

x̂t+k = Lt + kTt (7)

Lt = αxt + (1− α) (Lt−1 + Tt−1) (8)

Tt = γ (Lt − Lt−1)+ (1− γ )Tt−1 (9)

It can be seen from the level component given in equation 7
that Lt is a weighted average of the observations xt and the one-
step-ahead forecast given by (Lt−1 + Tt−1). Similarly, the trend
component given in equation 8 indicates that Tt is the weighted
average of the estimated trend at time t based on (Lt − Lt−1)

and Lt−1. The final k-step-ahead forecasted values are the linear
combination of the last estimated level Lt and k times the last
estimated trend values Tt .

Damped Trend Methods
The motivation behind this forecasting technique is the
limitation of Holt’s linear trend method that exhibits an endless
trend component in the future horizon either increasing or
decreasing those results in over-forecast, specifically for longer
horizons. To overcome this drawback, Gardner and McKenzie
(34) introduced a parameter that dampens the effect of the
trend component in the future, and the values of this dampen
parameter also lie in the range (0, 1). Mathematically, the
holt-linear method is modified by incorporating the dampen
parameter, i.e.,

x̂t+k = Lt +
(

ψ + ψ2 + ψ3 + . . .+ ψk
)

Tt (10)

Lt = αxt + (1− α) (Lt−1 + ψTt−1) (11)

Tt = γ (Lt − Lt−1)+ (1− γ )ψTt−1 (12)
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FIGURE 1 | NNAR model with p autoregressive terms as inputs and one hidden layer with k nodes.

ARIMA
This technique was first introduced by Box and Jenkins (35) and
has been widely used for univariate time series forecasting. This
method is completely data-driven, with the forecasted values of
a variable depending upon the past or lagged values of the same
variable. In terms of Yt , the general forecasting equation is

Yt = β + α1Yt−1 + α2Yt−2 + . . .+ αpYt−p + εt − ϕ1εt−1

− ϕ2εt−2 − . . .− ϕqεt−q (13)

Here, the moving average parameters ϕ′s are described so that
their signs are negative in the equation, following the convention
presented by Box and Jenkins. Several researchers and software
(i.e., the R) described them so that they have plus signs as an
alternative. When real values are plugged into the equation,
there is no doubt, but it is significant to distinguish which rules
the software practices when interpreting the output. Often, the
parameters are denoted by AR (1), AR (2),. . . and MA (1), MA
(2), . . . . To recognize a suitable ARIMA model for Yt , starting
from the order of differencing (d) demanding to make the
series stationary and eliminate the unstructured characteristics of
seasonality, possibly in combination with a variance-stabilizing
conversion, such as logging or deflating. If you end at this
point and predict that the differenced series is constant, you
have merely fitted a random walk or random trend model.
However, the stationary series may still have auto-correlated
errors, signifying that some values of AR terms (p ≥ 1) and/or
some number of MA terms (q ≥ 1) are also desirable in the
forecasting equation. The procedure of determining the values of
p, d, and q that are excellent for a specified time series and plots of
ACFs and partial autocorrelation functions (PACFs) will be used
for this purpose.

Neural Network Autoregression
The ANNs are forecasting techniques that are founded on easy
mathematical models of the brain. They permit compound
nonlinear associations amid the response and predictor variables.
A neural network is similar to a network of “neurons” which are
ordered in layers. The predictors (or inputs) form the bottom
layer, and the forecasts (or outputs) form the top layer. In the
case of time series data, the lagged values can be used as inputs
to the neural network and are known as the neural network
autoregression (NNAR) model. In this study, we consider only
the feed-forward neural network with one hidden layer denoted
by NNAR (p, k), meaning that there are p lagged inputs and k
nodes in the hidden layer. A schematic diagram of the NNAR
model is shown in Figure 1.

Long Short-Term Memory Model
Long short-term memory (LSTM) models belong to the artificial
recurrent neural network (RNN) architecture that is widely used
to handle sequence dependence in complex problem domains,
namely, machine learning translations, speech recognition,
handwriting recognition, and anomaly detection in network
traffic of IDSs (intrusion detection systems). LSTM networks
are compatible to classify, process, and make forecasts based
on time series data with different activation functions, namely,
sigmoid, hyperbolic, and hyperbolic tangents. LSTMs were
established to solve the problem of vanishing gradients and
exploding gradients that can be confronted by the traditional
RNNs during the training phase (36). The most common
LSTM network is comprised of a cell, an input gate, an
output gate, and a forget gate. The cell recalls values over
arbitrary time intervals, and the three gates control the
flow of data into and out of the cell. The mathematical
equations for the forward pass of an LSTM unit with forget
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gate are

mt = ϑg
(

Rmyt + Pmlt−1 + am
)

(14)

nt = ϑg
(

Rnyt + Pnlt−1 + an
)

(15)

ot = ϑg
(

Royt + Polt−1 + ao
)

(16)

d̃t = ϑg
(

Rdyt + Pdlt−1 + ad
)

(17)

dt = mt ◦ dt−1 + nt ◦ d̃t) (18)

lt = ot ◦ ϑl (ct) (19)

where the initial values of d0 and l0 are both equal to zero, and
the operator ◦ is identified as a Hadamard product.

Error Trend and Seasonal Model
This method can forecast trends and seasonal components and
is thus suitable for predicting the univariate time series. The
ETS model is a special case of exponential smoothing models
known as state-space models. There are different versions of
these models which can be represented by the error, trend, and
seasonality types, generally, a three-character string classifying
method. The error component is denoted by the first letter (“A,”
“M,” or “Z”); the trend type is represented by the second letter
(“N,” “A,” “M,” or “Z”); and the season type is represented by
the third letter (“N,” “A,” “M,” or “Z”). In all of these scenarios,
“N” = none, “A” = additive, “M” = multiplicative, and “Z”
= automatic selection. Therefore, for example, the SES with
additive errors is denoted by “ANN”; similarly, the multiplicative
Holt-Winters’ method with multiplicative errors is “MAM” and
so forth.

There are 30 models with different combinations of error,
trend, and seasonality (37). Supplementary Table 1 shows
different combinations of these models. These models have fitted
automatically to the data by using the method of maximum
likelihood (ML) by optimizing the smoothing parameters and
initial conditions with the help of a simple optimizer (38).

where N, M, A, Ad, and Md denote None, Multiplicative,
Additive, Damped Additive, and Damped multiplicative,
respectively. Akaike’s information criteria (AIC) and Bayesian
information criteria (BIC) will be used for the selection of the
best candidate ETS model. An ETS model with a minimum
AIC value among the considered models will be chosen for
application. The mathematical structure of AIC and BIC is given
below (39, 40).

AIC = −2∗ ln ln
(

l
)

+ 2∗p (20)

BIC = −2∗ ln ln
(

l
)

+ 2∗ ln ln (n)∗ p (21)

Ensemble Empirical Mode Decomposition
The method of EMD uses the well-known Hilbert–Huang
transform (HHT) technique to decompose the complex signal
into dissimilar oscillatory components varying from low to high
frequency and a single monotone residue (7). These oscillatory
functions are technically known as IMFs. There are two basic
conditions for each IMF: (i) the difference between the number
of extrema and the number of zero-crossing will be one, and

(ii) the upper and lower envelope will have zero mean. Given
a signal y(t), the algorithm of EMD can be used successfully
to divide signals into their different components (11, 12, 41,
42). This method is robust, simple, and efficient that does not
require any strong model assumptions. It is worthy to mention
that some authors have used this method for the prediction of
different complex and nonlinear time series datasets (43–45).
The issue with this method relates to the problem of mode
mixing which refers to the situation when an IMF resulting from
EMD decomposition has components of different frequencies.
Numerous efforts have been made on solving the problem of
mode mixing and thus EEMD is one such alternative approach
(8). This method has the flexibility to handle very complex signals
without the mode mixing problem. In this technique, the white
noise would be added to fill in the whole time–frequency space
homogeneously, which can smooth an accepted separation of
the frequency scales and diminish the existence of mode mixing.
According to the properties of the EMD method, the procedure
of EEMD can be described as follows:

Step 1: Add a random Gaussian white noise ni(t) to the original
time series y(t), the noise-added signal yi(t) is as follows:

yi (t) = y (t)+ ni (t) (22)

Step 2: Recognize all the local extrema (local maxima and
minima) in the new signal {yi (t)}.

Step 3: Find out the upper {U (t)}, and lower envelope {L (t)} in
the new white noise added signal yi(t).

Step 4: Join all the local extrema through the cubic spline
interpolation technique to find out the mean of both the
upper and lower envelope, i.e.,M (t):

Mean (t) =
U (t)+ L(t)

2
(23)

Step 5: The mean envelope calculated in step 4 will be subtracted
from the actual signal to obtain the first component, i.e.,

k1 (t) = y (t)−Mean (t) (24)

If k1 (t) meets the two properties of the IMF defined
above, then it should be well-thought-out as the first IMF;
else, steps 1 to 5 will be repeated by considering k1 (t) as
a new-fangled signal.

Step 6: The first IMF obtained in step 5 will be deducted from
the signal y (t) to obtain r1 (t), i.e.,

r1 (t) = y (t)− k1 (t) . . . (25) (25)

Step 7: In this step, r1 (t) will be considered as a new signal and
the sifting process of step 1 will be applied once again.
The above process will continue until the last IMF is
taken out from the signal. The overall trend of the signal
will be a smooth monotonic residue obtained in the last
step of EMD, and finally, the actual signal y (t) can be
decomposed as:

y (t) =

n
∑

i=1

ki (t)+ rn . . . (26) (26)
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where rn is the residue and k1(t), k2(t),. . . .,kn(t) are
different IMFs with different frequencies that vary from
high to low. The final results of this decomposition are
shown in Supplementary Figures 1–4.

It can be observed that the EEMD approach produces good
quality results in terms of breaking the variations into their
different components. In the first step, we decomposed the
data into their different subparts varying from high- to low-
frequency IMFs and a single monotone residual component.
The results of this decomposition are presented and can be
verified from Supplementary Figures 1–4 given earlier. For all
the four countries, seven (07) different IMFs are obtained for
both the daily confirmed cases and daily deaths. After rigorous
examination, it is revealed from these IMFs that there are two
types of variation in the COVID-19 data, i.e., short term and
long term. There are different reasons for short-term fluctuations
that bring ups and downs in the daily confirmed cases and daily
deaths, namely, imposing new restrictions, building emergency
hospitals, and facilitating patients in intensive care units (ICU).
These IMFs justify that any linear, mathematical, or statistical
model will not produce good forecasting results unless they are
used on the cumulative number of confirmed cases and the
number of deaths.

PROPOSED HYBRID EEMD-ETS MODEL

The idea behind the proposed model is based on the well-
famous divide-and-conquer algorithm that decomposes
a given problem into multiple subproblems and their
results are then combined efficiently. The proposed idea
can be seen as a two-stage process, and the method of
EEMD is implemented to decompose the nonlinear and
nonstationary COVID-19 time series data into different IMFs
in the first place and then the proposed method belongs
to building the novel hybrid model in the second stage.
The whole procedure is schematically shown in Figure 2,
followed by a step-by-step implementation of the proposed
hybrid model.

Step 1. Themethod of EEMDdefine above is used to decompose
the actual COVID-19 daily confirmed cases and deaths
data of all the four countries into different IMFs
and residues.

Step 2. After decomposing the daily confirmed cases and deaths
data into different IMFs and monotone residue in
step 1, the proposed hybrid model is developed based
on univariate time series ETS that belongs to the
exponential family.

Step 3. In this step, the stationarity of each IMF is checked
with the help of the augmented Dickey–Fuller (ADF)
test (36). The ADF test is a well-known technique to
test the null hypothesis that a unit root is present in
the time series data. The alternative hypothesis is usually
considered that the under-observation time series data
are stationary. The results of this test are presented
in Supplementary Table 3, Tables 1–4. After dividing

IMFs into a non-overlapping sequence of stationary
and nonstationary components, the overall mean of the
stationary IMFs is subtracted from the actual data, to get
the denoising signal, i.e.,

yN (t) = x (t)− G.Mean[St(IMF (t)] (27)

where yN(t) is the new denoised univariate time series
data, x(t) is the original data, and G. Mean [SIMF(t)] is
the overall mean of the stationary IMFs.

Step 4. The univariate time series denoised signal is given as
input to build the ETS model. The summary of each of
these fitted ETS models is presented in Table 4, showing
the corresponding values of smoothing parameters, the
values of AIC and BIC, and the type of the best ETS
model fitted.

Step 5. Once the ETS model is developed for the denoising data,
the next step is to predict the future daily confirmed cases
and deaths from COVID-19 for Italy, France, Germany,
and the UK.

Step 6. Finally, the comparison is made between the predicted
and hold-out datasets. Contrary to the traditional
method of dividing the dataset into 80% training
and 20% testing, the validity of this novel approach
is demonstrated by using 259 observations out
of 266 for model training, and the remaining
7 observations for checking its validity. Four
statistical measures, i.e., root mean square error
(RMSE), MAE, mean absolute percentage error
(MAPE), and systematic mean absolute percentage
error (sMAPE) (46) are used as a performance
assessment criterion for the proposed model. The
final results of these met1rics measures for the
proposed and considered models are presented
in Supplementary Table 4, Tables 5–7 for all
four countries.

EXPERIMENTAL RESULTS

Datasets
For this study, COVID-19 time series data on the number of daily
confirmed cases, and the number of daily deaths were collected
for four major European countries, i.e., Italy, United Kingdom
(UK), Germany, and France from the website of the World
Health Organization (WHO) during 23 February 2020, and 14
November 2020. A visual representation of the confirmed cases
and deaths data for these countries is shown in Figures 3, 4.

From Figure 4, it can be observed that the curves of the
deaths flatten after attaining peak value, followed by a second
spike that occurs in august after the relaxation in the restrictions
across Europe. Keeping in view of the trajectory of COVID-19,
these four countries implemented a second lockdown to stop
the further spread of the virus and save the precious lives of
their citizens.

The analysis of these figures suggests the nonlinear and
nonlinear pattern of COVID-19 daily data for the number of
confirmed cases and the number of deaths; therefore, it cannot
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FIGURE 2 | Flowchart of the proposed hybrid EEMD-ETS model. Where “DS” means denoised signal.

be predicted more accurately with any linear time series or
mathematical models. Thus, based on the nature of the data,
a more robust technique is required to accurately predict the
COVID-19 in these four countries.

An overall descriptive summary for the study variables is
given in Supplementary Tables 2, 3, confirming that Italy, the
UK, Germany, and France are the most affected countries by
COVID-19 in Europe with more than 5 million cumulative
confirmed cases and 151,380 cumulative deaths. Based on these
statistics, it implies that Germany has taken all the protective
measures issued by WHO to stop the spread of COVID-19 with
only 2,908 average daily cases. Similarly, their health system
efficiently managed the hospitalized patients which seems to
be the only reasonable reason that is why the average of daily
and cumulative deaths in Germany are slowed as compared to
their neighboring countries. Similarly, the standard deviation
(SD) of the daily confirmed cases and deaths is minimum
for Germany, indicating that the data points tend to be very
close to the average which showed their resilience against the
contagious COVID-19.

Forecast Accuracy Criteria
The performance of the proposed approach and its resilience
can be assessed by the following four statistical measures. The
mathematical expressions of these four-performance metrics are
given as follows:

RMSE =

√

√

√

√

1

N

N
∑

t=1

(

At − Ph,t
)2

(28)

MAE =
1

N

N
∑

t=1

∣

∣At − Ph,t
∣

∣ (29)

MAPE =
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N

N
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∣

∣

∣

∣
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∣
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∣
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sMAPE =
100%

n

n
∑

t=1

∣

∣Pt,h − At

∣

∣

(|At| +
∣

∣Pt,h
∣

∣)
2

(31)

where At and Pt denote actual and predicted values.
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TABLE 1 | ADF test results along with the overall mean for Italy.

Component ADF test value P-value Decision Mean

IMF1confirmedcases 1.9403 0.99 Non-stationary Not required

IMF1dailydeaths −7.686 0.01 Stationary −0.334

IMF2confirmedcases −10.868 0.01 Stationary −11.384

IMF2dailydeaths −11.444 0.01 Stationary 0.102

IMF3confirmedcases −6.2013 0.01 Stationary 26.675

IMF3dailydeaths −3.922 0.0133 Stationary −9.361

Overall Mean of

daily confirmed

cases

−9.49

Overall Mean of

daily deaths

−3.197

IMF4dailyconfirmed −2.95 0.175 Non-stationary Not required

IMF4dailydeaths −3.446 0.068 Non-stationary Not required

IMF5confirmed −1.249 0.891 Non-stationary Not required

IMF5deaths 2.209 0.99 Non-stationary Not required

IMF6confirmed −1.5308 0.773 Non-stationary Not required

IMF6deaths 2.84 0.99 Non-stationary Not required

IMF7confirmed −0.049 0.99 Non-stationary Not required

IMF7deaths 1.578 0.99 Non-stationary Not required

TABLE 2 | ADF test results along with the overall mean for France.

Component ADF test value P-value Decision Mean

IMF1confirmedcases −9.0304 0.01 Stationary 75.483

IMF1dailydeaths −7.842 0.01 Stationary −6.631

IMF2confirmedcases −8.943 0.01 Stationary −37.356

IMF2dailydeaths −7.006 0.01 Stationary 1.114

IMF3confirmedcases −5.846 0.01 Stationary −35.881

IMF3dailydeaths −5.589 0.01 Stationary 5.192

IMF4dailyconfirmed −4.132 0.01 Stationary 115.706

IMF4dailydeaths −5.052 0.01 Stationary −28.361

The overall mean

of daily confirmed

cases

29.488

The overall mean

of daily deaths

−7.171

IMF5confirmed −0.59 0.9773 Not stationary Not required

IMF5deaths 1.067 0.99 Not stationary Not required

IMF6confirmed −2.2627 0.4652 Not stationary Not required

IMF6deaths 2.243 0.99 Not stationary Not required

IMF7confirmed 0.0833 0.99 Not stationary Not required

IMF7deaths −0.0373 0.99 Not stationary Not required

These metrics are commonly used techniques to evaluate the
accuracy of different point forecasts of the competing models.
The most popular and widespread is MAPE as it is very
effective, easily understandable, and interpretable. It measures
the prediction accuracy as a percentage and can be calculated as
the average absolute percent error for each period minus actual
values divided by actual values. Subsequently, RMSE, MAE, and
sMAPE have also been extensively applied in the literature,

TABLE 3 | ADF test results along with the overall mean for Germany.

Component ADF test value P-value Decision Mean

IMF1confirmedcases −6.904 0.01 Stationary 20.086

IMF1dailydeaths −7.607 0.01 Stationary 0.48

IMF2confirmedcases −7.353 0.01 Stationary −8.189

IMF2dailydeaths −10.394 0.01 Stationary 0.2

IMF3confirmedcases −3.607 0.032 Stationary 12.276

IMF3dailydeaths −4.551 0.01 Stationary 0.619

IMF4dailyconfirmed −3.579 0.0356 stationary −133.804

IMF4dailydeaths −3.396 0.055 Stationary −7.759

Overall Mean of

daily confirmed

cases

−27.407

Overall Mean of

daily deaths

−1.614

IMF5confirmed −0.965 0.9427 Not stationary Not required

IMF5deaths 1.078 0.99 Not stationary Not required

IMF6confirmed −1.466 0.8005 Not stationary Not required

IMF6deaths 1.913 0.99 Not stationary Not required

IMF7confirmed 0.022 0.99 Not stationary Not required

IMF7deaths −0.039 0.99 Not stationary Not required

TABLE 4 | ADF test results along with the overall mean for UK.

Component ADF test value P-value Decision Mean

IMF1confirmedcases −5.529 0.01 Stationary −29.176

IMF1dailydeaths −6.651 0.01 Stationary −2.736

IMF2confirmedcases −8.915 0.01 Stationary −2.778

IMF2dailydeaths −7.875 0.01 Stationary 0.385

IMF3confirmedcases −4.912 0.01 Stationary −21.64

IMF3dailydeaths −4.523 0.01 Stationary 7.43

IMF4dailyconfirmed −3.813 0.018 Stationary −15.715

IMF4dailydeaths −3.553 0.0381 Stationary −24.06

The overall mean

of daily confirmed

cases

−17.33

The overall mean

of daily deaths

−4.745

IMF5confirmed −1.457 0.8044 Not stationary Not required

IMF5deaths 1.51 0.99 Not stationary Not required

IMF6confirmed −3.838 0.99 Not stationary Not required

IMF6deaths 1.1087 0.99 Not stationary Not required

IMF7confirmed 0.69 0.99 Not stationary Not required

IMF7deaths 0.1228 0.99 Not stationary Not required

although the interpretation of RMSE is more challenging to
understand (47).

Analysis and Discussion
In this section, we discuss different time series model fittings,
including the proposed hybrid model, and summarize the
main findings of this study. All the COVID-19 data of the
four countries were initially arranged into an excel sheet and
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TABLE 5 | Performance of different models for 7 days prediction of Italy’s daily

confirmed cases.

Method RMSE MAE MAPE sMAPE

Mean 31998.353 31613.531 948.659 1.645

SES 5712.565 4365.085 11.54 0.124

Naïve 5712.774 4365.144 11.545 0.126

Theta 3526.853 2665.955 8.457 0.078

TBATS 4091.085 3568.494 9.636 0.107

HW 8790.664 7661.137 18.088 0.206

Damped 8200.137 6999.388 16.837 0.191

ETS 2552.256 2434.029 6.985 0.07

ARIMA 2711.679 2163.304 6.308 0.066

NNAR 4820.24 4019.41 11.667 0.112

LSTM 4874.481 3905.596 11.904 11.503

Hybrid EEMD-ETS 2404.163 1969.82 5.125 0.042

TABLE 6 | Performance comparison of different models for 7 days prediction of

Italy’s daily deaths.

Method RMSE MAE MAPE sMAPE

Mean 362.743 343.019 218.311 1.009

SES 139.556 121.623 28.576 0.252

Naïve 129.816 118.714 26.617 0.245

Theta 142.302 123.514 29.296 0.256

TBATS 87.509 75.007 14.687 0.158

HW 106.762 78.143 14.153 0.164

Damped 87.145 74.356 14.47 0.156

ETS 87.144 74.351 14.465 0.153

ARIMA 95.504 81.858 16.348 0.171

NNAR 115.198 105.808 22.691 0.218

LSTM 86.34 75.962 17.058 0.158

Hybrid EEMD-ETS 77.867 70.54 14.049 0.141

TABLE 7 | Performance comparison of different models for 7 days prediction of

France’s confirmed cases.

Method RMSE MAE MAPE sMAPE

Mean 37398.196 30671.534 487.759 1.317

SES 27427.455 26493.717 48.953 0.61

Naïve 31616.717 30863.438 51.238 0.675

Theta 27631.862 26714.523 49.135 0.614

TBATS 28348.173 27378.319 49.297 0.622

HW 31772.71 30910.284 52.713 0.677

Damped 27561.259 26395.92 49.811 0.609

ETS 31773.431 30910.951 52.71 0.677

ARIMA 26013.185 24794.244 47.679 0.581

NNAR 29952.856 27340.347 53.578 0.618

LSTM 27989.713 26956.326 49.987 0.618

Hybrid EEMD-ETS 23252.42 14253.33 40.654 0.353

then for further analysis, RStudio version 1.3.1093 and Python
3.3.6 with Jupyter Notebook were used. The data were first

decomposed by successfully implementing the EEMD method
into different IMFs, followed by finding out the stationary
IMFs using the well-known ADF test. The results of which
appear to tally with the authors’ expectations that the high-
frequency IMFs are mostly stationary and clustered around
their mean.

From Tables 1–4, it can be seen that the ADF test results for
which predefined value of α = 0.05, the calculated p-value is
less than the pre-specified alpha value that leads to the rejection
of the null hypothesis that the given IMF is nonstationary, the
nonstationary IMFs are not used to build our model, therefore
their means are not required. The tabulated results of the ADF
test confirm that the majority of the IMFs ranging from 1 to
4 for all the four countries, both for daily confirmed cases and
daily deaths, are stationary. These are the most relevant findings
and, perhaps, the most significant part of the composition of the
proposed hybrid model based on EEMD and ETS approaches.
The grand mean given in the tables presents the average short-
term variations in the data. These short-term fluctuations are
then subtracted from the original signal to get denoised COVID
data as an ingredient for the ETS model followed by predictions.
The values of smoothing parameters, AIC, BIC, and the type of
models are presented in Supplementary Table 4.

At present, based on the minimum values of AIC and BIC, the
best candidate ETS model is chosen for prediction, e.g., for Italy’s
daily confirmed cases, the best-reportedmodel is ETS (M, Ad,M)
which means that errors are multiplicative, and the trend in the
data is damped additive withmultiplicative seasonality. Similarly,
to avoid repetition, the same description and interpretation can
be made for other models as well.

Model Comparison
In this section, the proposed hybridmodel is evaluated along with
different selected time series models that demonstrate prediction
results in the case of nonlinear and nonstationary COVID-19
data for the four selected countries. Here, we used a total of
11 methods; of these, 9 are conventional time series, one is
a simple neural network with autoregressive terms (NNAR),
and one is an RNN with LSTM), and the proposed hybrid
method is based on EEMD and ETS models. We also checked
the prediction performance of different potential hybrid models,
namely, EMD-ARIMA, EMD-ETS, EEMD-ARIMA, and EEMD-
ETS, of which the best hybrid model is chosen and the same
is then compared with the competing models in terms of
performance. To avoid confusion, we reported the best candidate
model out of all potential hybrid models. The experimental
results of the overall performance of these selected models are
presented in terms of the following four measures, i.e., RMSE,
MAE, MAPE, and sMAPE.

A key strength of this research lies in the fact that the
prediction performance of our proposedmodel is equally efficient
in all scenarios, i.e., for daily confirmed cases and daily deaths for
all 4 countries. It can be verified easily from the investigational
results presented in Tables 5–12 that the four statistical measures
of the suggested model are minimum. The values of RMSE for
daily confirmed cases and deaths of Italy are 2404.13 and 77.86.

The second-best model based on the values of RMSE in this
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FIGURE 3 | Daily confirmed cases: time window from 23 February 2020 to 14 November 2020.

FIGURE 4 | Daily deaths: time window from 23 February 2020 to 14 November 2020.
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TABLE 8 | Performance comparison of different models for 7 days prediction of

France’s daily deaths.

Method RMSE MAE MAPE sMAPE

Mean 539.424 420.586 275.178 0.996

SES 337.894 282.903 50.15 0.486

Naïve 422.35 395.571 47.832 0.626

Theta 281.609 214.945 40.914 0.366

TBATS 298.616 272.944 39.239 0.475

HW 359.555 328.171 44.652 0.55

Damped 328.118 298.227 46.379 0.51

ETS 299.161 265.928 42.413 0.461

ARIMA 288.136 244.529 41.183 0.426

NNAR 146.13 124.111 21.697 0.237

LSTM 335.04 310.608 46.969 0.528

Hybrid EEMD-ETS 102.733 82.378 14.101 0.146

TABLE 9 | Performance comparison of different models for 7 days prediction of

Germany’s confirmed cases.

Method RMSE MAE MAPE sMAPE

Mean 16654.38 16243.24 654.767 1.517

SES 5948.078 4715.722 20.153 0.24

Naïve 5948.227 4715.857 20.154 0.24

Theta 1385.131 1000.46 6.46 0.063

TBATS 1372.604 1008.138 6.015 0.529

HW 6933.016 6255.89 25.386 0.302

Damped 6652.431 5843.291 24.053 0.286

ETS 1772.325 1401.285 7.065 1.97

ARIMA 3043.065 2901.103 13.631 0.147

NNAR 2320.36 1904.506 10.035 0.109

LSTM 4593.045 3566.093 16.485 0.191

Hybrid EEMD-ETS 1298.967 935.492 5.348 0.053

competition is ETS with an RMSE value of 2552.25, and the well-
known ARIMAmodel stands in the third position with an RMSE
of 2711.67. Similarly, the values of MAE, MAPE, and sMAPE of
our developed hybrid model are also minimum. Interestingly, the

ARIMA model beats the ETS model in these metrics and stands
in the second position in this forecast competition of COVID-
19 for daily confirmed cases but failed to show good prediction
results for daily deaths data (Table 6). In this scenario, the ETS

model stands in the second position with minimum values of

MAE, MAPE, and sMAPE after the proposed hybrid model.
The experimental results for France’s daily deaths and daily

confirmed cases presented in Tables 7, 8 show that our model

outperformed other models in this forecast competition, while
the well-known ARIMA model’s performance is much better
than his strong rival, the ETS model, and stands with the second
position with minimum values of RMSE, MAE, and sMAPE.

Investigational results for Germany and the UK are shown
in Tables 9–12. It can be verified from the values of four

TABLE 10 | Performance comparison of different models for 7 days prediction of

Germany’s daily deaths.

Method RMSE MAE MAPE sMAPE

Mean 140.659 121.227 279.69 1.024

SES 79.27 72.855 56.041 0.505

Naïve 79.271 72.857 56.043 0.505

Theta 51.394 40.253 27.565 0.228

TBATS 38.225 30.126 20.943 0.23

HW 59.52 48.717 28.418 0.349

Damped 58.292 49.025 30.143 0.35

ETS 37.547 32.468 22.259 0.24

ARIMA 47.14 37.354 26.018 0.258

NNAR 91.139 1117.111 20.697 0.302

LSTM 61.177 51.285 35.68 0.362

Hybrid EEMD-ETS 17.604 15.01 10.258 0.105

TABLE 11 | Performance comparison of different models for 7 days prediction of

UK’s daily cases.

Method RMSE MAE MAPE sMAPE

Mean 20472.959 20003.733 451.902 1.373

SES 4459.872 3418.096 14.555 0.136

Naïve 4505.504 3390.143 14.558 0.134

Theta 4165.609 3253.262 14.716 0.133

TBATS 4355.468 3380.606 14.399 0.134

HW 4084.515 3444.378 13.839 0.137

Damped 4184.243 3437.578 14.117 0.137

ETS 3954.365 3333.344 13.418 0.133

ARIMA 4288.603 3226.114 13.809 0.127

NNAR 4686.289 3288.208 14.549 0.13

LSTM 4515.138 3395.429 14.597 0.135

Hybrid EEMD-ETS 4076.516 3130.997 12.573 0.123

TABLE 12 | Performance comparison of different models for 7 days prediction of

UK’s daily deaths.

Method RMSE MAE MAPE sMAPE

Mean 271.024 225.884 120.689 0.663

SES 167.729 148.916 41.115 0.409

Naïve 169.672 152.98 42.816 0.418

Theta 119.826 88.672 26.12 0.216

TBATS 114.393 109.527 29.814 0.308

HW 154.058 132.409 29.813 0.364

Damped 151.3 137.454 33.513 0.379

ETS 75.049 68.648 19.067 0.201

ARIMA 73.45 61.904 17.049 0.189

NNAR 95.206 105.765 41.987 0.487

LSTM 154.763 141.574 36.855 0.391

Hybrid EEMD-ETS 70.954 60.976 15.711 0.118

Frontiers in Public Health | www.frontiersin.org 12 July 2022 | Volume 10 | Article 922795

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Khan et al. Short-Term Prediction of COVID-19

FIGURE 5 | Actual and predicted 7 days daily confirmed cases and deaths for Italy from COVID-19.

FIGURE 6 | Actual and predicted 7 days daily confirmed cases and daily deaths in France from COVID-19.

FIGURE 7 | Actual and predicted 7 days daily confirmed cases and daily deaths from COVID-19 in Germany.
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FIGURE 8 | Actual and predicted 7 days daily confirmed cases and daily deaths from COVID-19 in the UK.

statistical metrics, i.e., RMSE, MAE, MAPE, and sMAPE,
that the prediction performance of our suggested model is
better than the other conventional and machine learning
methods. The ETS model again outperformed the classical
ARIMA model and holds the second position for Germany and
the UK.

The 7 days prediction was made by implementing our
proposed model. To save space, we are not reporting these values
here; a snapshot will better reflect the scope of our study. Tomake
the prediction clear and understandable, we presented the actual
and predicted values schematically through Figures 5–8 for each
country and each case. In all these cases, the actual and predicted
daily confirmed cases and daily deaths are denoted by solid red
and blue lines, respectively.

Yet, the actual and predicted values are far from each other but
the direction accuracy of our prediction is more than 90%, which
can be verified through Figures 5–8; such a tremendous direction
accuracy will help the governments for better policies to stop the
spread of the pandemic.

CONCLUSION

Prediction of the pandemics is always interesting, and there
are numerous areas of research for data practitioners. Accurate
prediction of pandemics is of great importance as it will help the
governments to implement their resources in a better manner to
stop the spread and save the precious lives of their citizens. The
main conclusion of this study is drawn together and presented
in this section. In most of the previous studies, the researchers
used a single mathematical or statistical model to predict the
accurate trajectory of the COVID-19 and, therefore, criticized
for its poor prediction performance. The key objective of this
research work is to propose a novel method to predict the
contagious COVID-19 daily confirmed cases and deaths in four
major European countries, i.e., Italy, France, Germany, and the
UK. A key strength of this research lies in the fact that we
proposed a hybrid method that is based on EEMD and univariate

time series ETS model. Thus, the suggested technique is very
appropriate for prediction with nonlinear and nonstationary
data. Our proposed model is not an ensemble model as we did
not utilize all the subcomponents after decomposing the COVID-
19 data into different IMFs and single monotone residual by
implementing the method of EEMD, we used only stationary
IMFs to build our model. After successfully implementing the
model, we used it for short-term forecasting of only 7 days.
A comparison is made with other conventional univariate time
series, NNAR and LSTM models. Based on the investigational
results of the four statistical metrics, i.e., RMSE, MAE, MAPE,
and sMAPE, the proposed model outperformed the other
models, indicating that it is a promising tool for COVID-19
prediction. Surprisingly, the univariate single ETS and ARIMA
model stands second in this competition and outperformed
the NNAR and LSTM model, while we were expecting that
the deep neural network LSTM model will perform better
than the traditional univariate time series models except the
suggested one.

In the future, we are looking to use our proposed algorithm
for other countries’ COVID-19 data by using different variables,
namely, daily recoveries, daily hospitalized patients, and spread
rate as well as to check its performance on other univariate
time series datasets, namely, stock returns, exchange rates, wind
speed, temperature, rainfall, earthquakes, tourist arrival, and
crude oil. In short, we are planning to test the accuracy of our
proposed model on any nonlinear and nonstationary univariate
time series data.

Our study has some drawbacks that require
additional investigation. First, as the data are very
limited, therefore, the performance of the model
will be checked by using it on a longer series and
long-term forecasting.

To end with, in this research article, we proposed a hybrid
EEMD-ETS model to predict the daily confirmed cases and daily
deaths from the current pandemic of COVID-19 using Italy,
France, Germany, and UK datasets.
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