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Sepsis after trauma increases the risk of mortality rate for patients in intensive

care unit (ICUs). Currently, it is di�cult to predict outcomes in individual

patients with sepsis due to the complexity of causative pathogens and the lack

of specific treatment. This study aimed to identify metabolomic biomarkers in

patients with multiple trauma and those with multiple trauma accompanied

with sepsis. Therefore, the metabolic profiles of healthy persons designated

as normal controls (NC), multiple trauma patients (MT), and multiple trauma

complicated with sepsis (MTS) (30 cases in each group) were analyzed

with ultra-high performance liquid chromatography coupled with quadrupole

time-of-flight mass spectrometry (UHPLC-Q-TOF/MS)-based untargeted

plasma metabolomics using collected plasma samples. The di�erential

metabolites were enriched in amino acid metabolism, lipid metabolism,

glycometabolism and nucleotidemetabolism. Then, nine potential biomarkers,

namely, acrylic acid, 5-amino-3-oxohexanoate, 3b-hydroxy-5-cholenoic acid,

cytidine, succinic acid semialdehyde, PE [P-18:1(9Z)/16:1(9Z)], sphinganine,

uracil, and uridine, were found to be correlated with clinical variables and

validated using receiver operating characteristic (ROC) curves. Finally, the

three potential biomarkers succinic acid semialdehyde, uracil and uridine were

validated and can be applied in the clinical diagnosis of multiple traumas

complicated with sepsis.

KEYWORDS
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Introduction

Trauma is one of the leading causes of morbidity and mortality among all age

populations worldwide (1, 2). Multiple trauma is common injury at two or more

anatomical sites caused by a single consistent injury factor. Besides the health status,

multiple trauma can trigger a complex cascade of posttraumatic events, including

massive secretion of proinflammatory cytokines, an imbalance between the early

systemic inflammatory response, later compensatory anti-inflammatory response, and
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evenmultiple organ failure, which are closely correlated with the

outcomes of victims (3). Sepsis is a major cause of mortality in

critically ill patients, especially patients with multiple trauma.

Sepsis is a life-threatening condition caused by the body’s

extreme response to infection. It causes nearly six million deaths

worldwide annually (4). Multiple trauma also causes sepsis. The

trauma-induced sepsis is the leading cause of a high mortality

rate in intensive care units (ICUs). Moreover, sepsis associated

with multiple organ dysfunction syndrome is the primary cause

of late posttraumatic mortality, accounting for up to 50% (5, 6).

Although various advanced technologies, such as bundled early

goal-directed therapy, have been used to sepsis, sepsis prognosis

is still poor (7, 8). Furthermore, the high mortality associated

with sepsis is partially due to the lack of an effective approach

to predict sepsis outcomes. It is difficult to diagnose multiple

trauma-induced sepsis because the hypermetabolic baseline and

the explosive inflammatory immune response mask the clinical

signs and symptoms of sepsis (9, 10). Therefore, it is necessary

to determine promising biomarkers for patients with multiple

trauma without sepsis to estimate the individual risk profile and

prevent sepsis development.

Previous diagnostic definitions and manifestations of sepsis,

including Glasgow or sequential organ failure assessment

(SOFA) scores, have been performed based on sepsis 3.0 due

to the substantial heterogeneity of clinical syndrome (11). The

laboratory testing of sepsis is currently based on the related

factors of acute immune response caused by host reactants in

serum. C-reactive protein and procalcitonin have been widely

used in clinics for infection diagnosis and sepsis progression

prediction (12). Metabolite lactate has been standardized for

indications of sepsis and septic shock. Furthermore, studies

have shown that the proinflammatory cytokines interleukin-

6 and tumor necrosis factor-alpha can be used as markers

to diagnose sepsis (13, 14). Although patient blood culture

is recommended for diagnosing the etiologic agent of sepsis,

sepsis cannot be detected in most patients due to the low

abundance of microorganisms in the bloodstream or because

the organisms cannot be proliferated in conventional culture

medium (15). However, these biomarkers are universal and non-

specific in sepsis. Besides, the difficulty of early sepsis diagnosis

and the limited knowledge of the molecular mechanism of

sepsis development limits the timely treatment of sepsis (16).

Therefore, specific biomarkers for sepsis diagnosis should be

detected to help differentiate between the various factors and

conditions associated with sepsis.

Omics technologies can identify biomarkers by detecting

biochemical changes associated with the gene expression at

the transcription and translation levels and metabolites in

the overall biological state (17). Metabolomics is widely used

to assess all metabolites contained in an organism. For

instance, genome, transcriptome or proteome changes can

be reflected in the metabolome as alterations of metabolite

concentration (18). As a result, metabolomics can identify

novel and potential metabolite markers and explore molecular

mechanisms in various diseases, including sepsis, through

blood detection. Metabolomics technology can also globally

evaluate the totality of endogenous metabolites in the body of

sepsis patients and reflect gene function and enzyme activity

(19). However, metabolomics can be used to quantitatively

distinguish patients with sepsis from healthy individuals by

analyzing several low molecular weight compounds, such as

amino acids, fatty acids, nucleotides and their derivatives,

which are important in diagnosis and pathogenesis (20).

However, clinical studies on sepsis metabonomics have not

identified any specific biomarkers for multiple injuries-

induced sepsis.

This study used untargeted metabolomics based on

ultrahigh-performance liquid chromatography coupled with

quadrupole time-of-flight mass spectrometry (UHPLC-Q-

TOF/MS) to screen several metabolites in plasma samples

of multiple trauma complicated with sepsis (MTS). A

computational bioinformatics analysis was then used to

obtain numerous significantly different metabolites. The

metabolites were further analyzed based on the clinical data and

characteristics of patients to obtain a set of potential metabolites

that can be used in the clinical diagnosis and detection of MTS.

Materials and methods

Patients

This study was carried out in line with the Declaration

of Helsinki and approved by the Ethics Committee of the

General Hospital of Ningxia Medical University (No. 2020-

34). All patients provided written informed consent. For ICU

patients and those with serious multiple traumas, consents

were provided by their legal guardians. Plasma samples were

obtained from 30 patients with multiple trauma (MT) and 30

patients with multiple trauma complicated with sepsis (MTS)

who were admitted in the outpatient room of the emergency

department between 2016 and 2019. In addition, 30 samples

were obtained from healthy normal individuals (NC, aged from

30 to 50) from the Healthy Examination Center of the General

Hospital of Ningxia Medical University. All healthy volunteers

were fully informed of the study details and agreed to participate

in the investigation, and also provided written informed consent.

Patients with MT or MTS were enrolled according to Sepsis-3

definition., complete basic information of patients was obtained.

Plasma samples were collected within 1 h of hospitalization

and before antibiotic treatment (21). Sequential Organ Failure

Assessment (SOFA) score and Glasgow score were calculated

to assess sepsis severity, and the scores were confirmed by two

pathologists. Serum biochemical information of patients was

obtained from the hospital database.
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FIGURE 1

Schematic workflow for the experimental approach using untargeted metabolomics. The plasma were collected from NC, MT and MTS groups

for metabolomics profiling using untargeted metabolomics. Quantitative information is extracted from MS data and identification based on

database, and the metabolic pathways of di�erential metabolites were enriched and the potential biomarkers were further obtained,

subsequently, the availability was predicted and the correlations between potential biomarkers and clinical characteristics were analyzed.

Preparation of plasma samples and
extraction of metabolites

Plasma samples were collected from NC, MT, and MTS

groups (30 patients for each group). The plasma samples

were stored at −80◦C and thawed at 4◦C before LC-MS/MS

analysis. Briefly, 200 µL of the extraction solution composed of

acetonitrile/methanol (1:1, v/v) and isotopically labeled internal

standard was added to 50 µL of each plasma sample, and mixed

by vortexing for 30 s. It was sonicated for 10min, and incubated

for 1 h at −40◦C. After centrifugation at 4◦C and 12,000 g for

15min, the supernatant was collected into a fresh glass vial for

subsequent analysis. To ensure credibility of analysis, a bulk

quality control (QC) sample was prepared by mixing equal

volume aliquots and used for monitoring LC/MS response and

calibrating data.

LC-MS/MS analysis

Untargeted metabolite profile of plasma samples

was performed using an ultra-high-performance liquid

chromatography (UHPLC) system (Vanquish, Thermo

Fisher Scientific) coupled to a Q Exactive HFX mass

spectrometer (Orbitrap MS, Thermo). Flow phase solution

A: acetonitrile/water (60:40, v/v); flow phase solution B:

acetonitrile/water (90:10, v/v), two flow phase solutions contain

10 mmol/L ammonium formate and 0.1% methanoic acid at

final concentration. Then, a series of gradient solution B and

solution A were eluted as follows: 95% solution B for 0.5min,

70% solution B for 5min, 50% solution B for 8min, 40%

solution B for 9min, 70% solution A for 9min and 95% solution

A for 12min. A mass spectrometer (Q Exactive HFX) was

used to acquire MS/MS spectra data under the control of the

acquisition software (Xcalibur, version 4.1, Thermo). Full scan

MS spectra were continuously analyzed using the software. The

parameters of electrospray used as the ionization (ESI) source

conditions were as follows: sheath gas flow rate of 50 Arb, Aux

gas flow rate of 10 Arb, capillary temperature of 320◦C, full

MS resolution of 60,000, MS/MS resolution of 7,500, collision

energy of 10/30/60 in NCE mode, and spray voltage of 3.5 kV

(positive model, ESI+) or−3.2 kV (negative model, ESI-) (22).

Validation of candidate metabolites

To validate the applicability of the candidate metabolites, the

ultrahigh-performance liquid chromatography–tandem mass

spectrometer (UHPLC-MS/MS) was employed to quantitatively

measure the candidate metabolites in the plasma of another

20 cases (10 cases in MT and MTs groups, respectively). The

chromatographic separation was accomplished on an Agilent

1,290 Infinity II series UHPLC System (Agilent Technologies,

California, USA), equipped with a Waters ACQUITY UPLC
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TABLE 1 The basic information and clinical characteristics of multiple trauma with sepsis and multiple trauma without sepsis.

Characteristics Variables

All patients

(n= 60)

Multiple trauma

(MT, n= 30)

Multiple trauma

with sepsis

(MTS, n= 30)

P value

(MT vs. MTS)

Male gender, n (%) 45 (75%) 22 (73%) 23 (77%) 1.0000

Age, years 40 (31 to 52) 35 (26 to 46) 44.5 (35.75 to 59.75) 0.0071**

Length of stay in the ICU, days 0 (0 to 1) 0 (0 to 0) 0 (0 to 4.25) 0.5729

SOFA score, points 0 (0 to 2) 0 (0 to 2) 2 (1 to 6) 0.0061**

Length of stay in hospital, days 16 (9.5 to 29.5) 23.5 (10.75 to 38.75) 21 (11 to 34) 0.1150

Glasgow score, points 15 (11 to 15) 15 (15 to 15) 12 (7.75 to 15) 0.0007**

Leukocyte count,×109/L 14.74 (12 to 20.85) 14.74 (11.14 to 18.02) 15.47 (11.99 to 21.95) 0.4362

Neutrophil count,×109/L 12.91 (9.58 to 17.95) 12.91 (9.675 to 14.19) 13.41 (9.497 to 19.42) 0.2077

Platelets,×109/L 183 (149 to 256) 183 (142.5 to 257) 189.5 (154.5 to 256.3) 0.4280

Total bilirubin, µmol/L 12.7 (9.1 to 23.3) 15.5 (9.45 to 22.95) 10.55 (8.65 to 24.83) 0.7753

Creatinine, mg/dL 62.6 (54.6 to 75.9) 64.9 (56.2 to 79.05) 62.5 (52.78 to 68.23) 0.2844

Oxygenation index, mmHg 268.6 (209.7 to 385) 271.2 (219.7 to 385.7) 257 (181.3 to 389.6) 0.3334

Data are expressed as medians and 25th to 75th percentiles or with frequencies and percentages. P value is statistically significant when <0.01 and those values are marked with an ** . ICU,

intensive care unit; SOFA, sequential organ failure assessment.

BEH Amide column (100× 2.1mm, 1.7µm,Waters, USA). The

mobile phase A was 1% formic acid with 20mM ammonium

formate in water, and phase B was 1% formic acid with 20mM

ammonium formate in acetonitrile. The column temperature

and autosampler temperature were maintained at 35 and 4◦C,

respectively. Themultiple reactionmonitoring parameters of the

target analytes are controlled by flowing injection of the standard

solution of a single analyte.

Data preprocessing and annotation

The raw data of peak were converted to mzXML format

and detected by R package based on XCMS (version 3.2).

A data matrix consisting of retention time (RT), Mass-to-

charge ratio (m/z) values, and peak intensity was established

by preprocessing. After discarding the data of QC samples,

monoisotopic peaks were subjected to subsequent statistical

analyses. Metabolites were identified and annotated using

HMDB, METLIN, and MoNA databases, developed by Biotree

Technology Co. Ltd. (Shanghai, China) (23). A schematic

workflow of the study is shown in Figure 1.

Statistical analysis

All statistical analyses were carried out usingMetaboAnalyst

2.0 (http://www.metaboanalyst.ca). Principal component

analysis (PCA, 95% confidence interval) was performed to

visualize the distribution of sample groups and unsupervised

multivariate statistical analysis. Orthogonal projections to latent

structures-discriminate analysis (OPLS-DA) were performed as

a supervised method to visualize group separation and identify

significantly changed metabolites. In cross-validation and

permutation tests, the OPLS-DA models were used according

to multiple correlation coefficients (R2) and cross-validated R2

(Q2) value by 7-fold cross validation and 200 permutations. The

principal component was obtained based on the importance

of the projection (VIP) value determined using OPLS-DA

analysis. Metabolites with VIP>1 and P < 0.05 (ANOVA)

were considered significant differential metabolites among the

groups. Pathway enrichment analysis was performed using

KEGG (http://www.genome.jp/kegg/) and HMDB (http://

www.hmdb.ca) databases (24, 25). Correlation analysis of

metabolites and receiver operating characteristic (ROC) curves

were drawn using GraphPad Prism 6.0. P < 0.05 was considered

statistically significant.

Results

Patient demographics and clinical
characteristics

This study enrolled 30 multiple trauma patients (MT) and

30 multiple trauma with sepsis (MTS) patients. The clinical

characteristics of the patients are shown in Table 1. Forty-five

patients (75%), including 22 MT patients and 23 MTS patients,

were males. This showed that gender in MT and MTS groups

has no difference (P = 1.0000). The median ages of the MT

and MTS groups were 35 years (25th to 75th percentile, 26
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FIGURE 2

Metabolic profiles of plasma samples of NC, MT and MTS. (A) PCA score plots of the samples derived from the metabolite profiles in the ESI+

model, QC: quality control. (B) PCA score plots of the samples derived from the metabolite profiles in the ESI- model. (C) OPLS-DA score scatter

plots of plasma samples of MTS vs. MT derived from the metabolite profiles in the ESI+ model. (D) OPLS-DA score scatter plots of plasma

samples of MT vs. NC derived from the metabolite profiles in the ESI+ model. (E) OPLS-DA score scatter plots of plasma samples of MTS vs. NC

derived from the metabolite profiles in the ESI+ model. (F) Permutation test of the OPLS-DA model for MTS vs. MT in the ESI+ model. N = 30 in

each group. (A–F) were drawn by R version 4.0.2.

to 46 years) and 44.5 years (25th to 75th percentile, 35.75 to

59.75 years), respectively. This showed the patient’s age in MT

and MTS groups has a significant difference (P = 0.0071).

Although theMTS patients stayed in the ICU formore days than

the MT patients, the median and P values were not different

between the two groups. The MTS patients were more severe

and had a significantly higher SOFA score (MTS: median; 2

points and 25th to 75th percentile; 1–6 points) than the MT

group (MT: median; 0 points and 25th−75th percentile; 0–2

points) (P = 0.0061). The MTS patients also had a significantly

lower Glasgow score (MTS: median; 12 points and 25th−75th

percentile; 7.75–15 points) than the MT patients (MT: median;

15 points and 25th−75th percentile; 15–15 points) (P= 0.0007).

The results indicated that the SOFA score and the Glasgow

score could be quickly distinguish patients with MT and MTS

in clinical. Furthermore, the median length of hospital stay [21

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.923170
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Feng et al. 10.3389/fpubh.2022.923170

FIGURE 3

The distribution of di�erential plasma metabolites among NC, MT and MTS. (A) The number of di�erential plasma metabolites among NC, MT

and MTS in the ESI+ model. (B) The number of di�erential plasma metabolites among NC, MT and MTS in the ESI- model. (C) Volcano plot of

the MTS vs. MT groups in ESI+ model. (D) Volcano plot of the MT vs. NC groups in ESI+ model. (E) Volcano plot of the MTS vs. NC groups in the

ESI+ model. (F) Volcano plot of the MTS vs. MT groups in ESI- model. (G) Volcano plot of the MT vs. NC groups in the ESI- model. (H) Volcano

plot of the MTS vs. NC groups in the ESI- model. Each point in the volcano plot represents a significantly di�erent metabolite, red represents

upregulated metabolites, blue represents downregulated metabolites, and gray dots indicate non significant di�erences. (C–H) were drawn by R

version 4.0.2.

(15–17, 19, 21–40) vs. 23.5 (10.75–38.75), P= 0.1150], leukocyte

count [15.47 (11.99–21.95) vs. 14.74 (11.14–18.02), P = 0.4362],

neutrophil count [13.41 (9.497–19.42) vs. 12.91 (9.675–14.19),

P = 0.2077], platelets [189.5 (154.5–256.3) vs. 183 (142.5–257),

P = 0.4280], total bilirubin [10.55 (8.65–24.83) vs. 15.5 (9.45–

22.95), P = 0.7753], creatinine [62.5 (52.78–68.23) vs. 64.9

(56.2–79.05), P = 0.2844], and oxygenation index [257 (181.3–

389.6) vs. 271.2 (219.7–385.7), P= 0.3334] were not significantly

different between the MTS and MT groups. Therefore, these

results suggested that the age, SOFA score and Glasgow score

may be related to the incidence of MTS.

Assessment of metabolic profiles

This study used untargeted metabolomics to assess the

relationship between plasma metabolome and MTS. The

UHPLC/MS profile of plasma samples for MTS, MT and NC

in positive (ESI+) and negative (ESI-) modes are shown in

Figure 2. A total of 5,168 peaks and 1,434 metabolites were

identified and quantified in the ESI+ model, while 4,078

peaks and 847 metabolites were identified and quantified

in the ESI- model. These compounds were annotated

based on internal libraries and reference standards. The
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FIGURE 4

The hierarchical clustering heat map of metabolites from plasma of NC, MT and MTS groups in the ESI+ mode (A) and in the ESI- mode (B). (A,B)

were drawn by R version 4.0.2.
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FIGURE 5

Metabolic pathways among NC, MT and MTS groups. Bubble diagram of the metabolic pathways of MTS vs. MT (A), MT vs. NC (B), and MTS vs.

NC (C) in the ESI+ model. Bubble diagram of the metabolic pathways of MTS vs. MT (D), MT vs. NC (E) and MTS vs. NC (F) in the ESI- model. The

–ln(p) values from the pathway enrichment analysis are indicated on the horizontal axis, and impact values are indicated on the vertical axis. The

colors and sizes of the shapes represent the e�ects of the pairwise comparison, and the larger red shapes indicate a greater e�ect on the

pathway. (G) Schematic overview of the metabolites with plasma levels significantly altered in multiple trauma complicated with sepsis.

Metabolites with increased levels are in red and those with decreased levels are in blue; Solid lines denote direct reactions; dotted lines denote

indirect reactions; arrowhead indicates direction of the reaction; double arrowhead indicates direction of the reversible reactions. (A–F) were

drawn by R version 4.0.2.

PCA score plot showed the NC, MT and MTS groups had

different metabolic profiles. The ESI+ and ESI- models

are shown in Figures 2A,B, respectively. The pairwise

comparisons in the ESI+ and ESI– models is shown in

Supplementary Figure 1. The orthogonal projections to latent

structures discriminant analysis (OPLS-DA) were used to

further assess the tendency of metabolite classification among

the three groups. The OPLS-DA score plots of the MT vs.

MTS groups (Figure 2C), NC vs. MT groups (Figure 2D),

and NC vs. MTS groups (Figure 2E) in the ESI+ model
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FIGURE 6

Scatter and trend plot of 16 potential biomarkers in the ESI+ and ESI- models. The scatter and trend plot of acrylic acid (A),

3b-hydroxy-5-cholenoic acid (B), 5-amino-3-oxohexanoate (C), cytidine (D), D-ribose (E), L-glutamic acid (F), PE [P-18:1(9Z)/16:1(9Z)] (G), PE

[P-18:1(9Z)/20:3(5Z,8Z,11Z)] (H), PE [P-18:1(11Z)/18:2(9Z,12Z)] (I), PE [P-18:1(11Z)/18:3(6Z,9Z,12Z)] (J), sorbitol (K), sphinganine (L), succinic

acid semialdehyde (M), succinic acid (N), uracil (O), and uridine (P), and the ordinate was the relative intensity of metabolite. (Q,R) Receiver

operator curve (ROC) analysis of the random forest model combining 12 biomarkers (P < 0.05) to diagnose MTS in the validation data. *P < 0.05,

**P < 0.01.

suggested that the metabolites were reliable based on the

differences between the groups. The OPLS-DA score plots

of the MT vs. MTS groups (Supplementary Figure 2A), NC

vs. MT groups (Supplementary Figure 2B), and NC vs. MTS

groups (Supplementary Figure 2C) in the ESI- model also

showed that the metabolites were reliable based on differences
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between the groups. Additionally, a random permutations

test comparison between MT and MTS groups (ESI+) was

performed to verify the validity and robustness of the OPLS-DA

model. The negative corresponding Q2 value was used for the

validation of the metabolic profiles (Figure 2F). Similarly, the

comparison between the MT and MTS groups in the ESI- was

valid (Supplementary Figure 2D).

Di�erential metabolites obtained from
the plasma of MTS patients

This study used a pairwise comparison to screen the

differential metabolites. The significantly differential metabolites

were identified based on the criteria of variable importance

of the projection (VIP) values >1.0 and P values < 0.05.

A total of 1,457 metabolites were downregulated, and 578

were upregulated in the MT vs. NC, 1,479 metabolites were

downregulated, and 544 were upregulated in the MTS vs.

NC group, and 367 metabolites were downregulated, and

248 were upregulated in the MTS vs. NC group in the

ESI+ model (Figure 3A). The volcano plots are shown in

Figures 3C–E. A total of 1,155 metabolites were downregulated,

and 453 were upregulated in the MT vs. NC group, 929

metabolites were downregulated, and 430 were upregulated in

the MTS vs. NC group, and 240 metabolites were downregulated

and 665 were upregulated in the MTS vs. NC group in

the ESI- model (Figure 3B). The volcano plots are shown

in Figures 3F–H.

Detection and identification of
di�erential metabolites

One-way ANOVA was used to compare all data in NC,

MT and MTS groups based on the criteria of VIP values >1.0.

The critical P value was set to 0.05 for significantly differential

metabolites. A total of 156 significant plasma metabolites (67

in the ESI+ model and 89 in the ESI- model) were obtained

(Supplementary Table 1). This study also conducted tentative

identification of these metabolites and their corresponding

concentration fold change analyses. Positive and negative fold

changes represented upregulation and downregulation within

comparative groups, respectively. A greater fold change of

metabolites between pairwise comparisons and metabolites may

be a better biomarker. The profiles of hierarchical clustering

analysis were then visualized to assess the global overview of all

the significantly differential metabolites in the ESI+ (Figure 4A)

and ESI- models (Figure 4B).

Pathway analysis of di�erential
metabolites

The enrichment analysis was conducted using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

database to investigate the metabolites related to the metabolic

pathways and physiological changes in the plasma of MTS

patients. In the ESI+model, glycerophospholipid, sphingolipid,

tryptophan, pyrimidine, and phenylalanine metabolism

pathways were affected in the MT vs. MTS group (Figure 5A);

glycerophospholipid, glycine, serine, threonine, tryptophan,

sulfur, sphingolipid, and histidine metabolism pathways were

affected in the MT vs. NC group (Figure 5B); and pyrimidine,

pantothenate and CoA biosynthesis, beta-alanine, sphingolipid,

propanoate, and phenylalanine metabolism pathways were

affected in the MTS vs. NC group (Figure 5C). In the ESI-

model, alanine, aspartate, glutamate, butanoate, pyrimidine,

arginine, proline, histidine, and alpha-linolenic acid metabolism

pathways were affected in the MT vs. MTS group (Figure 5D);

fatty acid biosynthesis, glycine, serine, threonine, pyrimidine,

pantothenate and CoA biosynthesis, beta-alanine, arginine,

proline, ascorbate, aldarate, D-glutamine and D-glutamate

metabolism pathways were affected in the MT vs. NC group

(Figure 5E); and pyrimidine, alanine, aspartate, glutamate,

pantothenate and CoA biosynthesis, beta-alanine, citrate cycle

(TCA cycle), butanoate, D-glutamine and D-glutamate, glycine,

serine, and threonine metabolism pathways were affected in the

MTS vs. NC group (Figure 5F). In general, these differentially

altered metabolites were enriched in amino acid metabolism,

lipid metabolism, glycometabolism, and nucleotide metabolism

as shown in Figure 5G.

Screening of potential biomarkers

This study used 16 of the 156 differential metabolites

to discriminate MT and MTS. The 16 metabolites were

selected based on an increasing or decreasing trend from

NC, MT to MTS, and significant differences in pairwise

comparison to better distinguish the potential of MT patients

to develop MTS (Figures 6A–P). Notably, acrylic acid, 3b-

hydroxy-5-cholenoic acid, 5-amino-3-oxohexanoate, cytidine,

D-ribose, L-glutamic acid, PE [P-18:1(9Z)/16:1(9Z)], PE [P-

18:1(9Z)/20:3(5Z,8Z,11Z)], PE [P-18:1(11Z)/18:2(9Z,12Z)], PE

[P-18:1(11Z)/18:3(6Z,9Z,12Z)], sorbitol, sphinganine, succinic

acid semialdehyde, succinic acid, uracil, uridine, sphinganine,

and succinic acid semialdehyde (MTS) had clear criteria for the

progression of MT to MTS. Furthermore, receiver operating

characteristic (ROC) curves were used to predict the class of

subjects in the validation with a random forest (RF) model

based on the data of the MT and MTS groups to evaluate the

diagnostic potential of these metabolic biomarkers for MTS
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TABLE 2 Correlations between metabolites and clinical variables.

Metabolite Clinical Variable

Age SOFA score Glasgow score

r P value r P value r P value

5-Amino-3-oxohexanoate 0.03742 0.7882 −0.2903 0.0315* 0.3252 0.0154*

PE [P-18:1(11Z)/18:2(9Z,12Z)] −0.1111 0.4237 −0.07689 0.5769 0.2093 0.1251

PE [P-18:1(11Z)/18:3(6Z,9Z,12Z)] −0.1174 0.398 −0.1494 0.2763 0.198 0.1473

PE [P-18:1(9Z)/16:1(9Z)] −0.04119 0.7674 −0.1109 0.4203 0.337 0.0119*

PE [P-18:1(9Z)/20:3(5Z,8Z,11Z)] −0.1571 0.2567 −0.1816 0.1844 0.185 0.1764

Sphinganine 0.08383 0.5467 0.2177 0.1103 −0.3101 0.0212*

3b-Hydroxy-5-cholenoic acid −0.04752 0.7329 −0.3202 0.0172* 0.329 0.0142*

Acrylic acid 0.07945 0.568 0.2844 0.0353* −0.09063 0.5105

Cytidine −0.1624 0.2408 −0.3447 0.01* 0.2979 0.0272*

D-Ribose 0.1142 0.411 0.2382 0.0799 −0.1915 0.1612

L-Glutamic acid 0.22 0.1099 0.1458 0.2881 −0.1835 0.1799

Sorbitol 0.2203 0.1094 −0.1351 0.3255 0.01953 0.8875

Succinic acid −0.2013 0.1444 −0.2231 0.1015 0.2217 0.1038

Succinic acid semialdehyde −0.2483 0.0702 −0.3452 0.0099** 0.3682 0.0057**

Uracil −0.08372 0.5473 −0.3425 0.0105* 0.3881 0.0034**

Uridine −0.3173 0.0194* −0.4536 0.0005** 0.396 0.0028**

The P < 0.05 were considered significant and marked with *, and P < 0.01 were marked with **. SOFA, sequential organ failure assessment.

patients. The area under the curves (AUC) of 5-amino-3-

oxohexanoate, PE [P-18:1(9Z)/16:1(9Z)], sphinganine, cytidine,

3b-hydroxy-5-cholenoic acid, acrylic acid, D-ribose, sorbitol,

succinic acid, succinic acid semialdehyde, uracil, and uridine are

shown in Figures 6Q,R. Notably, the RF model based on the 12

biomarkers with significant differences showed good diagnostic

performance in MTS patients.

Correlations between metabolites and
clinical variables

This study used Spearman’s correlation between the above

16 statistically significant metabolites and clinical variables

(age, SOFA score, and Glasgow score) to determine the

clinical availability of potential biomarkers further. The P-

value and correlations (r) are shown in Table 2. The 5-

amino-3-oxohexanoate, 3b-hydroxy-5-cholenoic acid, cytidine,

succinic acid semialdehyde, uracil and uridine were negatively

correlated with the SOFA score. In contrast, acrylic acid was

positively correlated with the SOFA score. The 5-amino-3-

oxohexanoate, PE [P-18:1(9Z)/16:1(9Z)], cytidine, 3b-hydroxy-

5-cholenoic acid, succinic acid semialdehyde, uracil, and uridine

were positively correlated with the Glasgow score, while

sphinganine was negatively correlated with the Glasgow score.

Moreover, uridine was negatively correlated with age. Therefore,

the 9 noteworthy candidate biomarkers that are correlated with

clinical variables may be suitable for the clinical diagnosis

of MTS.

Identification of MTS biomarkers by
UPHLC-MS/MS targeted quantitative
analysis

To validate the 9 candidate metabolites (acrylic acid,

5-amino-3-oxohexanoate, 3b-hydroxy-5-cholenoic acid,

cytidine, succinic acid semialdehyde, PE [P-18:1(9Z)/16:1(9Z)],

sphinganine, uracil, and uridine) could accurately distinguish

MTS from MT, another batch of 20 cases contains MT and

MTS groups (10 cases in each group) was examined by

UHPLC-MS/MS quantitative analysis. The results showed that

succinic acid semialdehyde, uracil, and uridine had significant

differences (Figure 7). Therefore, these results suggest that

the three metabolites could be used as potential diagnostic

biomarkers in MTS patients.

Discussion

Multiple trauma complicated with sepsis is one of the causes

of high mortality in the ICU. Therefore, timely monitoring

of sepsis progression in posttraumatic patients is crucial in

MT treatment (26). Studies have shown that MT is the

major risk factor for sepsis development. Moreover, early
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sepsis diagnosis can prevent septic progression. However, the

physiological mechanisms of sepsis are unknown. Furthermore,

it is difficult to identify early biomarkers of sepsis. This study

aimed to identify biomarkers of sepsis for early diagnosis

using metabolomics analysis techniques. Metabolomics is a

promising area of research because metabolome changes are

more dynamic than the genome, and proteome changes quickly.

Besides, metabolite changes can directly reflect the changes

in many small molecules, such as nucleotides, amino acids,

and lipids (27, 41). Although various studies have used

metabolomics to screen biomarkers of trauma complicated

with sepsis, these metabolites can only be used as diagnostic

indicators and not for early diagnosis since these potential

biomarkers are compared with normal people and MT patients

(28, 42). Moreover, the identified diagnostic biomarkers were

not specific for MTS. Although there are some advances in

the metabolomics of sepsis, some factors still limit the clinical

application of metabolomics. These biomarker candidates have

failed validation in confirmation studies. Therefore, besides

healthy controls, the design strategy of biomarker screening

should also include controls with non-related diseases (29, 30,

32, 33). This study used plasma samples of healthy persons

(NC), multiple trauma (MT), and multiple traumas complicated

with sepsis (MTS) patients for metabolomics analysis. This study

used UHPLC-MS for metabolomics detection. Previously, one-

dimensional (1-D) proton (H) nuclear magnetic resonance (1H-

NMR)was applied inmetabolomics of sepsis, a recent study used

1H-NMR-based metabolomics to analyze and screen potential

biomarkers for early diagnosis of metabolite concentrations

between serum septic patients and healthy controls. The study

showed that glucose, glycine, 3-hydroxybutyrate, creatinine

and glycoprotein acetyl levels are higher in sepsis patients

than in healthy controls. In contrast, citrate and histidine

levels are lower in sepsis patients than in healthy controls

(28). Although nuclear magnetic resonance (1H-NMR) and

mass spectrometry (MS) combined with multivariate analysis

can be used for sepsis metabolomics analysis, but MS has a

greater sensitivity than NMR and presented a wider application

prospect (31). Additionally, MS can accurately determine and

quantify molecules and provide structural information of the

detected compounds (43). Therefore, this study obtained several

differential metabolites using UHPLC-MS technology, verifying

its sensitivity and practicability.

Male sex, SOFA score and Glasgow score were the

observably independent risk factors for the development of

posttraumatic sepsis. A similar study showed that the age

of patients and days of stay in the ICU are significantly

different between sepsis (n = 9) and no sepsis (n = 12)

groups (32). Furthermore, a study assessed 29,829 patients

in Germany and showed that various factors, including male

sex, preexisting medical condition, Glasgow Coma Scale score,

Injury Severity Score, number of transfused red blood cell

units, and number of operative procedures, are independent

risk factors for the traumatic sepsis development. Additionally,

the MTS patients have a longer stay in ICU, higher rates

of organ failure and hospital mortality than the non-sepsis

patients (33). Analogously, a systematic review involving 56,164

patients found that demographic factors, such as old age

and male sex, are associated with an increased risk of sepsis

(44). Herein, only age, SOFA score and Glasgow score were

significantly different between the two groups, possibly due

to the small sample size. Studies have reported that the

incidence of sepsis is increased in elderly adults and age is

an independent predictor of sepsis mortality (34). SOFA score

has been widely used in septic evaluation, showing a moderate

prognostic stratification ability (45). The Glasgow coma scale

has been incorporated into the new sepsis recommendation

(Sepsis 3.0). It can also be used to evaluate the mental state

of patients with sepsis since sepsis can induce central nervous

system infection and diffuse brain dysfunction (46). Therefore,

these studies support our results of clinical characteristics to

some extent.

Sepsis researches focus on exploring an ideal biomarker.

Researchers have been exploring an ideal biomarker that can

quickly and sensitively distinguish the presence and progression

of sepsis. The early clinical diagnosis of sepsis depends on

the presence of microbiologic cultures in blood. However,

positive results are detected in only 30% of patients with

sepsis or septic shock. As a result, studies have focused on

the effects of metabolites produced by sepsis on individuals.

Several biomarkers, such as procalcitonin, C-reactive protein,

interleukin (IL)-6, and other inflammatory factors, have been

proposed for sepsis detection (47). However, the clinical use

of the existing biomarkers is limited. Although advances

have been made in biomarkers for sepsis diagnosis, no single

biomarker can meet the needs of specificity and sensitivity

to distinguish sepsis from other inflammatory processes.

Therefore, omics techniques, especially metabolomics,

have been used to identify new biomarkers for sepsis

progression. Although some studies use transcriptome or

proteomics to screen sepsis biomarkers, metabolomics based

on UHPLC-MS can also assess the effects of transcription

and translation levels in vivo. Moreover, non-targeted

metabolomics can systematically and comprehensively

evaluate the unknown mechanism (35, 36). Therefore,

metabolomics may play a critical role in the identification

of sepsis biomarkers. Besides, the combined analysis of

metabolomics and transcriptome or proteomics may be an

important direction for the discovery of sepsis biomarkers

in the future. Human serum, plasma and urine samples can

be used to study the metabolome of sepsis to find promising

biomarkers. Although various studies have used LC/MS

techniques for sepsis metabolomics, the differential metabolites

obtained in each study are different, possibly due to the

resolution of the mass spectrometer used and the cause

of sepsis.
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FIGURE 7

Candidate biomarkers were identified by UHPLC-MS/MS quantitative analysis in another batch of 20 cases (n = 10 in MT and MTS groups,

respectively). (A) Succinic acid semialdehyde. (B) Uracil. (C) Uridine. **P < 0.01.

Herein, 1,520 differential metabolites were detected between

MT and MTS from the plasma of patients. The metabolites

were enriched in amino acid metabolism, glycometabolism,

lipid metabolism, nucleotide metabolism and other metabolic

pathways. Some amino acids were lower in MTS patients

than in the MT or NC groups, indicating that protein

metabolism is a consumption process of amino acid in sepsis.

The heterogeneity of the etiology of sepsis may lead to

the different differential metabolites or potential biomarkers

obtained via metabolomics in the early sepsis diagnosis.

However, further studies are needed to assess the confirmation

and regulatory mechanisms of these potential biomarkers in

the clinical diagnosis of sepsis. The lower levels of glucose

and organic acids, such as succinic acid, glutaric acid and

pyruvic acid suggested that the citrate cycle (TCA cycle)

and glycolysis/gluconeogenesis metabolism were disturbed in

the MTS group. The intermediate products of the TCA

cycle were significantly changed in the sepsis group than in

the NC and MT groups, indicating that energy metabolism

was disturbed in the sepsis group, thus decreasing energy

production. An omic technologies review showed that sepsis

affected the intermediate metabolite levels of the TCA cycle

and is associated with mitochondrial beta-oxidation dysfunction

of fatty acid metabolism (37). Furthermore, the inhibition of

the TCA cycle requires energy supply through the anaerobic

respiration pathway of glycolysis, leading to the conversion of

pyruvate to alanine. The TCA cycle of mitochondria is the

main pathway for the conversion of glutamine to CO2 and

pyruvate (38). Mannose levels were higher in the plasma of

the MTS and MT groups than the mannose levels in the NC

group, and the alteration was enriched in mannose metabolism

(15). Moreover, numerous lipids and lipid-like molecules were

significantly affected in the MTS group compared with the

MT or NC group. These differential metabolites were enriched

in metabolic pathways of glycerophospholipid, sphingolipid,

alpha-linolenic acid, arachidonic acid, linoleic acid, fatty acid,

and fatty acid biosynthesis. A similar study showed that

glycerophospholipids and sphingolipids are altered in sepsis

patients (39). Lipids are involved in the initiation and regression

of septic inflammation (40). Herein, unsaturated fatty acids,

such as linoleic acid, alpha-linolenic acid and arachidonic acid,

were significantly affected in the MTS group compared with

the MT and NC groups. The double bonds of polyunsaturated

fatty acids are attacked by oxidative stress in lipids. Moreover,

peroxides and aldehydes generate chain reactions involved

in lipid peroxidation-related signaling pathways associated

with deleterious consequences (48). Molecules with anti-

inflammatory properties have been found in omega-3 fatty acids

eicosapentaenoic acid, docosahexaenoic acid, and arachidonic

acid (49). A study also showed that oxidative stress and lipid

metabolism promote sepsis development (50). Furthermore,

other pathways, including urea cycle metabolism, glutathione

metabolism, and primary bile acid biosynthesis, were also

affected in the MTS group. These pathways play important

roles in sepsis (51, 52). Therefore, this study provides evidence

for the relationship between glucose or lipid metabolism and

sepsis. Herein, the age of patients was significantly correlated

with uridine, possibly due to the decreased expression of uridine

phosphorylases in the aged, destroying uridine homeostasis

(53). Glasgow coma scale was used to evaluate coma status in

patients with sepsis. The results showed the Glasgow score was

significantly correlated with some metabolites, including some

central nervous system-related metabolites. Cytidine, uracil,

uridine and sphingosine are associated with sepsis (15, 54–

56). In this study, the 9 candidate metabolites was finally

examined to quantitative analysis and the results suggested
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that succinic acid semialdehyde, uracil, and uridine could

be used as potential diagnostic biomarkers in MTS patients.

Although these published studies support the reliability of the

metabonomic results, the usefulness and reprocibility of these

novel biomarkers should be further confirmed depend on larger

sample size in clinical.

In conclusion, this study identified three metabolic

markers for MTS diagnosis after various analyses through

untargeted plasma metabolomics. Meanwhile, these

biomarkers may be used to screen MTS and assess the

state of heterogeneous sepsis patients. However, this study

has some limitations. (a) This study had a small sample

size; However, the study randomly screened and enrolled

eligible patients into the cohort to reduce errors. (b) This

study did not confirm whether these metabolic variates

are related to the early sepsis stage. (c) The biomarkers

were not specific to all sepsis patients due to the genetic

polymorphisms and host differences. Therefore, larger cohort

study studies are needed to verify the results and improve

the understanding of the pathophysiology of trauma-induced

sepsis, providing a basis for managing traumatized patients

in the ICU, including early diagnosis, targeted therapy and

follow-up investigation.
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