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The dynamic transmission of asymptomatic and symptomatic COVID-19

infections is di�cult to quantify because asymptomatic infections are not

readily recognized or self-identified. To address this issue, we collected data

on asymptomatic and symptomatic infections from four Chinese regions

(Beijing, Dalian, Xinjiang, and Guangzhou). These data were considered

reliable because the government had implemented large-scale multiple

testing during the outbreak in the four regions. We modified the classical

susceptible–exposure–infection–recovery model and combined it with

mathematical tools to quantitatively analyze the number of infections caused

by asymptomatic and symptomatic infections during dynamic transmission,

respectively. The results indicated that the ratios of the total number of

asymptomatic to symptomatic infections were 0.13:1, 0.48:1, 0.29:1, and

0.15:1, respectively, in the four regions. However, the ratio of the total number

of infections caused by asymptomatic and symptomatic infections were

4.64:1, 6.21:1, 1.49:1, and 1.76:1, respectively. Furthermore, the present study

describes the daily number of healthy people infected by symptomatic and

asymptomatic transmission and the dynamic transmission process. Although

there were fewer asymptomatic infections in the four aforementioned regions,

their infectivity was found to be significantly higher, implying a greater need for

timely screening and control of infections, particularly asymptomatic ones, to

contain the spread of COVID-19.

KEYWORDS

coronavirus disease 2019 (COVID-19), asymptomatic infections, symptomatic

infections, dynamic transmission, susceptibility–exposure–infection–recovery (SEIR)

Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic poses a major threat

to human health worldwide (1). Several studies have found that asymptomatic

infections exacerbate the prevalence of COVID-19 (2, 3). In this study, according to

The Novel Coronavirus Pneumonia Prevention and Control Plan (Seventh Edition),
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“asymptomatic infections” refers to persons infected with SARS-

CoV-2 but who have never experienced symptoms and persons

infected who had no symptoms at first but developed symptoms

later, both the groups are infectious, and SARS-CoV-2 can

harm their bodies (4). Previous studies have shown that

the load of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) in asymptomatic infections is similar to that

of symptomatic infections; however, the former demonstrated

longer viral ribonucleic acid (RNA) shedding times and weaker

immune responses (5, 6). To curb the spread of COVID-19,

prevention and control measures include vaccination, universal

mask-wearing, reduced social interaction, virus testing, and

social isolation (7, 8). Nevertheless, severe prevention and

controlmeasures have causedwidespread debate and discontent,

negatively affecting economies and social activities (9). Hence,

quantitative analysis of the impact of symptomatic and

asymptomatic infections on the pandemic is essential for

formulating reasonable epidemic prevention measures.

As asymptomatic infections are not easily detected because

of their insidious nature, a second pandemic may occur if

asymptomatic infections are not detected after symptomatic

cases have been controlled (10). Several previous studies of

transmission efficacy in asymptomatic infections were based

on follow-ups of infected individuals. Hoxha et al. (11) found

6,244 asymptomatic infections out of 8,343 patients who tested

positive (74.8%) in the analysis of an extensive testing in

Belgium. Bi et al. (12) found that 25 patients (6%) were

asymptomatic infections in a retrospective cohort study of 391

cases in Shenzhen. A cohort study of 628 SARS-CoV-2 positive

patients and 3,790 close contacts by Sayampanathan et al. (13)

showed that symptomatic infections led to 3.85 times more

infections in close contact than asymptomatic infections. TheUS

Centers for Disease Control and Prevention estimated that 35%

of SARS-CoV-2 infections were asymptomatic, and 40% of the

virus transmission occurred prior to the onset of symptoms (14).

The wide variation in results across studies presents a challenge

to understanding the transmission of this disease. Moreover, the

above follow-up studies tend to miss asymptomatic infections

and are laborious and time-consuming.

To study the rampant spread of COVID-19, various

analytical methods and artificial intelligencemodeling have been

used and effective results have been achieved. Mahmoudi et al.

(15) studied the relationship between the transmission rates

of COVID-19 in high-risk countries by principal component

analysis. Deif et al. (16) identified SARS-CoV-2 from viral

genome sequences using deep bidirectional recurrent neural

networks. Kumar et al. (17) achieved the prediction of COVID-

19 using a recurrent neural network and reinforcement learning

model. Due to the lack of adequate vaccines or effective

therapeutic drugs, mathematical models were used to analyze,

predict, and develop non-pharmacological interventions. Sarkar

et al. (18), that modeled and predicted the COVID-19 pandemic

in India. Khajanchi et al. (19) studied mathematical models and

intervention strategies for the COVID-19 outbreak. Khajanchi

and Sarkar (20) also predicted the daily and a cumulative

number of cases of the COVID-19 pandemic in India. Samui

et al. (21) used a dynamic model to study the spread of COVID-

19. In addition, some key factors influencing the COVID-

19 pandemic, such as media, were analyzed by the extended

susceptibility–exposure–infection–recovery (SEIR) model (22,

23). The basic reproductive number R0 is one of the most critical

parameters in the study of infectious diseases (24). For R0 < 1,

the transmission of the infectious disease is expected to stop;

for R0 = 1, an infected individual can infect one person on

average, that is, the spread of the disease is stable; for R0> 1, the

transmission of the infectious disease becomes epidemic. The

aforementioned challenges and findings prompted us to study

the dynamic transmission of asymptomatic infections.

In this study, we sought to modify the classical SEIR

epidemiological model and combine it with mathematical

tools to quantitatively analyze and compare the impact of

asymptomatic and symptomatic infections on the COVID-19

pandemic and their transmission dynamics.

Data and methods

Data sources

Detecting asymptomatic infections requires large-scale,

multiple, intensive reverse transcription-polymerase chain

reaction (RT-PCR) tests (25, 26). Since the initial COVID-19

outbreak in Wuhan, the government of China has strengthened

pandemic prevention and control measures. On January 28,

2020, China’s National Health and Wellness Commission

issued the Novel Coronavirus Pneumonia Diagnosis and

Treatment Protocol (Third Edition) (27). This included

data on asymptomatic infections in prevention and control

management, requiring health care institutions at all levels to

directly report if they detected asymptomatic infections within

2 h via the internet. After receiving reports of asymptomatic

infections, disease control agencies at county and district levels

were tasked to complete case investigations within 24 h and

promptly register and report close contacts.

From April 1, 2020, the National Health Commission

of China published data on asymptomatic infections and

referrals in the daily pandemic notification system (“referrals”

meant infectious persons who were asymptomatic at first, but

developed symptoms later). The Chinese government organized

and conducted multiple large-scale RT-PCR tests in the regions

of known infections. Thus, the publicly available numbers

of asymptomatic and symptomatic infections were reliable.

For example, Guangzhou experienced a COVID-19 outbreak

in May 2021, and 27,985,500 RT-PCR tests were performed

cumulatively in the region (28).
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After the Wuhan outbreak, during the period until July

2021, four other outbreaks occurred in China Beijing, Dalian,

Xinjiang, and Guangzhou. We modeled and quantitatively

analyzed these four outbreaks based on publicly available

data (including symptomatic and asymptomatic infections and

recovered individuals). We extracted daily outbreak data in

Beijing (June 11–July 10, 2020), Dalian (July 22–August 6,

2020), Xinjiang (July 17–August 18, 2020), and Guangzhou

(May 21–June 19, 2020) from the following publicly available

websites: http://wjw.beijing.gov.cn/wjwh/ztzl/xxgzbd/, https://

www.dl.gov.cn/col/col459/index.html, http://wjw.xinjiang.gov.

cn/, and http://wjw.gz.gov.cn/ztzl/xxfyyqfk/. The start date

was when the first case of infection was detected in the

area; the end date was when the last case of infection was

detected. The data included the total population of the region,

geographical location, daily number of existing symptomatic

and asymptomatic infections, and daily number of recovered

persons, as shown in Figures 1, 2. We obtained the ratios of

the total number of asymptomatic to symptomatic infections:

0.13:1, 0.48:1, 0.29:1, and 0.15:1 in Beijing, Dalian, Xinjiang,

and Guangzhou, respectively. All data of the patients were de-

identified; therefore, no written informed consent and ethical

approval were required.

Combining mathematical tools to
develop an extended SEIR model

The SEIR model assumes the same probability of exposure

for a population in a confined space, and the transmission

pattern of an infectious disease over time is assumed to occur in

the four states: susceptible, exposed, infectious, and recovered.

The parameters of the model control the rate of transition

of the population from susceptible, exposed, and infected to

recovered individuals. Infectious diseases and various epidemic

prevention measures interact dynamically, and the parameters

of the model are allowed to change over time and region. The

SEIR model is used to study the transmission speed, spatial

range, transmission route, and dynamicmechanism of infectious

diseases and provide guidance on the effective prevention and

control measures of infectious diseases (29, 30). We developed a

new SEIR model by modifying the basic and widely used SEIR

model and combining it with mathematical tools, as shown in

Figure 3.

The model classified infections into two categories:

asymptomatic infections and symptomatic infections.

According to the literature, we set upper and lower bounds

for each parameter of the model (31–33). Then, historical

real epidemic data of the outbreak region were automatically

fitted with the new SEIR model. Moreover, the optimal set of

parameters for the model was automatically determined by

combining the standard variance function and the optimal

FIGURE 1

Outbreaks in Beijing, Dalian, Xinjiang, and Guangzhou.

loss function. Finally, quantitative analysis of symptomatic and

asymptomatic infections was performed using the model with

the new parameters, the experimental flow is shown in Figure 4.

To model the dynamic transmission of COVID-19,

we divided the population in the outbreak regions into

different categories:

• S: Healthy and never-infected people who lack immunity

and are susceptible to infection.

• E: Contact infection, transmission of infection, and possible

conversion to undetected symptomatic or completely

asymptomatic infections.

• E1: Contact infection, transmission of infection, and

possible conversion to undetected symptomatic infections.

• E2: Contact infection, transmission of infection,

and possible conversion to undetected

asymptomatic infections.

• I: Infected persons with symptoms who can transmit the

virus to S and turn S into E1 or E2 or I or A.

• A: Infected persons who are asymptomatic but can transmit

the virus to S and turn S into E1 or E2 or I or A.

• R: People who recover from symptomatic and

asymptomatic infections who recover their immunity

and do not reconvert to E1 or E2 or I or A.

• N: The total number of people in a region held constant,

excluding newborns, immigrants, and deaths.

In the modified SEIR model, each category is

dynamically transformed, as shown in Figure 3B.

The dynamic transformation relationship forms

an ordinary differential equation in each category.

The equations of the new model are as follows,
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A B

C D

FIGURE 2

Outbreaks in the four regions include asymptomatic infections and symptomatic infections, and recovered individuals. (A) Beijing, (B) Dalian, (C)

Xinjiang, (D) Guangzhou.

and the parameters of the model are described in

Table 1.

dS

dt
= −

C1βSPiE

N
−
C2βS (1−Pi)E

N
(1)

dE

dt
=

C1βSPiE

N
+
C2βS (1−Pi)E

N
−α1PiE−α1(1− Pi)E (2)

dI

dt
= α1PiE−γ1I (3)

dA

dt
= α2 (1−Pi)E−γ2A (4)

dR

dt
= γ1I+γ2A (5)

N = S+ E+ I + A+ R (6)

Note that Equation (1) represents the rate of continuous removal

from the susceptible persons (S). During the pandemic, people

who converted to E1 or E2 were continuously removed from

S; thus, the rate of both was <0. Similarly, Equations (2), (3),

and (4) can also be understood. In Equation (5), the rate of

recovery for symptomatic and asymptomatic infections per day

is indicated. To understand these equations, the literature can

also be consulted (34).

The parameters in Table 1 (C1, C2, β , Pi, α1,

α2, γ1, γ2, decays) have different values in the different

outbreak regions, depending on the detection rates, social

A

B

FIGURE 3

Modifications to the classic SEIR model. (A) The structure of the

classic SEIR model. (B) The structure of this modified SEIR

model.
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FIGURE 4

Experimental flow.

distance conditions, vaccination rates, types of treatment, and

other control measures.

Training and fitting on historical data to
obtain optimal parameter set

Manually adjusting the parameters of the model to fit real

historical datasets is a rather tedious task and can lead to

difficulties in obtaining an optimal fit. In this study, the upper

and lower limits of the parameters were set according to the

references. Subsequently, mathematical tools and the extended

SEIR model were used to fit the datasets while obtaining an

optimal set of parameters. The process is described below.

First, we set the parameter range. Because the virus was

still mutating, different regions had different epidemiological

characteristics; moreover, the pandemic developed dynamically.

As a result of a number of factors, including varying population

sizes, densities, and the use of epidemic prevention measures,

multiple factors influenced the progression of the pandemic.

Therefore, the model parameters were different in different

regions. The values of some initial parameters were based on

references (31–35), the upper and lower limits of “β” and

“decays” were set to 0.1–0.8 and 0-∞, respectively. The E to I

transfer rate was the reciprocal of the incubation period, which

was reported to have a mean value of 5.2 d, the “α1” and “α2”

were the reciprocal of 5.2 d, hence, the upper and lower limits

were set to 0.16–0.3. The recovery time for infections was 14 d,

“γ1” and “γ2” were the reciprocal of the recovery time (14 d)

for symptomatic and asymptomatic infections, thus, the upper

and lower limits were set to 0.06–0.1. Because the asymptomatic

infections were not easily detected, the transmission to healthy

individuals was higher than that of symptomatic infections (36).

In the study by Yang et al. (37), the number of close contacts

during the latency period was set to three for symptomatic

infections and 15 for asymptomatic infections, therefore, the

upper and lower limits of “c1” and “c2” were set to 0–0.6

and 0.9–4, respectively (2, 12, 38). Furthermore, the upper and

lower limits of the total number of people were set to 1e3–1e7,

depending on the size of the infection outbreak area. Here, “close

contact” was defined as unprotected, close contact within 1m.

The upper and lower limits of the parameter set are shown in

Table 2.

Second, when programmingwithMATLABR2018b (https://

ww2.mathworks.cn/en/), the standard variance loss function

was used to describe the deviation between the data obtained

from the model and the real data of the pandemic, as shown in

Equation (7).

Loss (t) =

t=end
∑

t=start

(I(fit)t−I(real)t)
2
+(A(fit)t−A(real)t)

2 (7)

After obtaining the minimum deviation, to obtain a parameter

set that fits well with the real scenario data, we combined the

MATLAB function “fmincon” which automatically finds and

determines the optimal value in a set of parameters with upper

and lower limits, as shown in Equation (8).

Para = fmincon (@seir.loss,para, [ ],[ ],[ ], lb, ub) (8)

Therefore, the optimal fit of the model was obtained, as well

as the optimal parameters to match the pandemic transmission

characteristics of the region.

Experimental environments

All experiments were performed on a personal computer

with Windows 7 Home Edition 64-bit operating system, and

the analysis software was MATLAB R2018b (https://ww2.
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mathworks.cn/en/) and SPSS version 26 (IBM Corp., Chicago,

IL, USA).

Results

We used real scene data of COVID-19 outbreaks from four

regions (Beijing, Dalian, Xinjiang, and Guangzhou) in China

and ran the data on the new model. The following results

were obtained.

Fitting results of the four outbreaks

Fitting the new model to outbreak data (both symptomatic

and asymptomatic infections) in Beijing, Dalian, Xinjiang, and

Guangzhou yielded the results shown in Figure 5.

TABLE 1 Description of the model’s parameters.

Parameters Implication

C1 C1 is the average daily number of contacts for each

person in E1.

C2 C2 is the average daily number of contacts for each

person in E2.

β The infection rate of symptomatic and asymptomatic

infections. If on average, an infected person is exposed

to N persons, and the probability of infection after

exposure is P (0–1), β = N*P.

Pi The conversion ratio from E to E1.

α1 Conversion parameters from E1 to I [Countdown of the

incubation period (5.2 days) for symptomatic

infections].

α2 Conversion parameters from E2 to A [Countdown of

the incubation period (5.2 days) for asymptomatic

infections].

γ1 The proportion of recovered persons among

symptomatic infected persons [Countdown of recovery

time (14 days) for symptomatic infections].

γ2 The proportion of recovered persons among

asymptomatic infected persons [Countdown of

recovery time (14 days) for asymptomatic infections].

Decays Decay constants for transmission parameters.

t Days.

In Figure 5, the red and blue dots represented the real

asymptomatic and symptomatic infections, respectively, and

the red and blue curves represented the fitted curves of the

new model for asymptomatic and symptomatic infections,

respectively. Here, two methods, “F-test” and “Goodness of

Fit” were used to analyze the differences between the real and

fitted datasets.

First, using SPSS version 26, the difference between the

real and fitted datasets was obtained by F-test, as shown in

Table 3, with all F<0.2, and all sig>0.6, proving that there was

no significant difference between the real and fitted datasets; the

new model had good fitting ability in all four regions.

Second, we evaluated the “Goodness of Fit” of the model

using the coefficient of determination R², which was expressed

by the following equation (ŷi represented the predicted value of

each point and y the average value of each point).

R2=

∑n
i=1

(

ŷi−y
)2

∑n
i=1

(

yi−y
)2

(9)

The closer each observation was to the trend line, the better

the fit was implied. The results were shown in Figure 6 and

Table 4. The R² values for both symptomatic and asymptomatic

infections in all four regions were close to 1, indicating a good fit

of the model to the actual data (R² values >0.8 usually indicated

a good fit).

Power of dynamic transmission of
symptomatic and asymptomatic
infections

In this model, c1 and β interact with each other and yield an

overall dynamic transmitted power. The dynamic transmission

power parameters of symptomatic and asymptomatic infections

were expressed by Equations (10) and (11), respectively.

“Syinfect” represented the dynamic transmission power

parameters of symptomatic infections, and “Asyinfect”

represented the dynamic transmission power parameters of

asymptomatic infection.

Syinfect (t) = c1×β×e−decays×t
×Pi (10)

Asyinfect (t) = c2×β×e−decays×t
×(1− Pi) (11)

Figure 6 showed the dynamic transmission power curves

for asymptomatic and symptomatic infections. Their initial

TABLE 2 Upper and lower limit interval settings for model parameters.

Name c1 c2 Pi β α1 α2 γ1 γ2 N0 Decays

Lower 0 0.9 0.2 0.1 0.16 0.16 0.06 0.06 1e3 0

Upper 0.6 4 0.8 0.8 0.3 0.3 0.1 0.1 1e7 ∞
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A B

C D

FIGURE 5

Fitting of four outbreaks of symptomatic and asymptomatic infections. (A) Beijing, (B) Dalian, (C) Guangzhou, (D) Xinjiang.

dynamic transmission power parameters in Beijing, Dalian,

Xinjiang and Guangzhou were 1.15:0.25, 1.30:0.20, 0.48:0.32,

and 0.55:0.31, respectively. It was shown that the initial dynamic

transmission power parameters were lasrger for asymptomatic

infections than for symptomatic infections. Furthermore,

larger initial transmission power parameters predicted stronger

subsequent outbreaks. Under effective control measures, the

dynamic transmission power parameter would keep decreasing,

and when the dynamic transmission power parameter equaled

zero, it indicated the end of the outbreak.

The mathematical integrals of the dynamic transmission

power parameter curves for asymptomatic and asymptomatic

infections were represented by Equations (12) and (13),

respectively. “Sy” represented the integration under the curve

of dynamic transmission power parameters for symptomatic

infections, and “Asy” represented the integration under

the curve of dynamic transmission power parameters for

asymptomatic infections.

Sy (t) =

∫ end

start
I (t) dt (12)

Asy (t) =

∫ end

start
I (t) dt (13)

The area under the curve represented the total transmission

power. The results for the total transmission power of

asymptomatic and symptomatic infections in the entire
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https://doi.org/10.3389/fpubh.2022.925492
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Pei et al. 10.3389/fpubh.2022.925492

TABLE 3 Analysis of the “F-test” in symptomatic and asymptomatic

infections.

No Subject SS DF MS F SIG

1 BJ-F-ASyma 0.384 1.000 0.384 0.002 0.969

2 BJ-F-Syma 121.166 1.000 121.166 0.013 0.910

3 DL-F-Asyma 1.511 1.000 1.511 0.020 0.890

4 DL-F-Syma 12.139 1.000 12.139 0.012 0.914

5 XJ-F-Asyma 10.712 1.000 10.712 0.010 0.921

6 XJ-F-Syma 346.763 1.000 346.763 0.004 0.953

7 GZ-F-Asyma 2.977 1.000 2.977 0.190 0.665

8 GZ-F-Syma 11.515 1.000 11.515 0.009 0.927

BJ-F-ASyma, The “F-Test” for asymptomatic infections in Beijing; BJ-F-Syma, The “F-

Test” for symptomatic infections in Beijing; DL-F-ASyma, The “F-Test” for asymptomatic

infections in Dalian; DL-F-Syma, The “F-Test” for symptomatic infections in Dalian;

XJ-F-ASyma, The “F-Test” for asymptomatic infections in Xinjiang; XJ-F-Syma, The

“F-Test” for symptomatic infections in Xinjiang; GZ-F-ASyma, The “F-Test” for

asymptomatic infections in Guangzhou; GZ-F-Syma, The “F-Test” for symptomatic

infections in Guangzhou; SS, Sum of Squares; DF, Degrees of Freedom;MS,Mean Square;

F, F-Value; and SIG, Significance.

outbreak were as follows: Beijing, 9.05:1.95; Dalian, 7.37:1.15;

Xinjiang, 4.97:3.34; and Guangzhou, 6.69:3.78. For example,

the ratio of the area under the blue curve to the area

under the red curve in Figure 7A is 9.05:1.95. This indicated

that the asymptomatic infections were more infectious than the

symptomatic infections in above four outbreaks.

Number of people infected by
symptomatic or asymptomatic infections

According to the model, the number of people infected

by asymptomatic and symptomatic infections per day was

expressed in Equations (14) and (15), respectively. “NoaSya”

represented the number of healthy people infected by

asymptomatic infections per day, and “Nosyb” represented the

number of healthy people infected by symptomatic infections

per day. Table 5 showed the results.

NoaSyaN (t) =
c2×β×e−decays×t×(1− Pi)× S× E

N
(14)

Nosyb (t) =
c1×β×e−decays×t × Pi × S× E

N
(15)

The curves of Equations (14) and (15) were mathematically

integrated separately to obtain the area under the curve,

as shown in Figure 8. The ratios of the total number of

asymptomatic infections to the total number of asymptomatic

infections obtained as 4.64:1, 6.21:1, 1.49:1, and 1.76:1 in

Beijing, Dalian, Xinjiang, and Guangzhou, respectively. Thus,

the following two points could be summarized.

(1) Quantitative analysis by the transmission dynamics

equations of the model showed the transmission process

of asymptomatic and symptomatic infections in healthy

persons, respectively. Further, the analysis of the model

was more convenient than following up infections in a

large population.

(2) The number of asymptomatic infections was lower than the

number of symptomatic infections; however, asymptomatic

infections spread the disease to a larger number of people.

Discussion

This study elucidated the ratio of healthy persons infected by

asymptomatic and symptomatic infections in a pandemic, and

quantified their dynamic transmission processes respectively.

Owing to the strict control of the pandemic in China, the

proportion of asymptomatic infections was smaller than that

of symptomatic infections in the four outbreaks studied.

Nevertheless, quantitative comparative analyses confirmed

that transmission from asymptomatic infections to healthy

individuals was greater than that from symptomatic infections.

We searched PubMed for relevant articles in English, published

since the database inception before July 25, 2021, using the

search terms (“asymptomatic” [Title/Abstract] AND (“COVID-

19” [Title/Abstract] OR “SARS-CoV-2” [Title/Abstract]) AND

(“transmit∗” [Title/Abstract] OR “infect” [Title/ Abstract]) AND

(“ratio” [Title/Abstract] OR “proportion” [Title/Abstract])). We

identified 144 articles and found six articles that discussed

the risk of asymptomatic and symptomatic infections during

the COVID-19 pandemic (39–43). Moreover, our study

clearly analyzed the dynamic transmission characteristics

of asymptomatic and symptomatic COVID-19 infections.

Furthermore, this is amulticenter study. Thus, it was proven that

the proposed model can be used in different outbreak regions by

training and fitting.

Furthermore, there are several findings. First, Figure 7

showed a rapid reduction in dynamic transmission parameters

for both symptomatic and asymptomatic infections in the

same region, confirming that the epidemic control measures

were effective at that time. Second, Figure 2 showed that

the proportion of asymptomatic infections was only a small

proportion of the overall number of infected individuals.

However, Figure 6 showed that the initial transmission dynamic

power parameter of asymptomatic infections was larger than

that of symptomatic infections. Furthermore, Figure 8 showed

that the overall number and ratio of asymptomatic infections

transmitted to the healthy persons were greater than those of

symptomatic infections throughout the above four outbreaks.

Third, by running the results of the same model on the

four outbreaks, we found that the dynamic transmission

power parameters of symptomatic and asymptomatic

infections differed in different geographical regions, as did

the number and proportion of infections in the healthy

populations. This explained why previous literature
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FIGURE 6

Analyzing of fitting for symptomatic and asymptomatic infections in four outbreaks. (A) R² of symptomatic infections in Beijing, (B) R² of

asymptomatic infections in Beijing, (C) R² of symptomatic infections in Dalian, (D) R² of asymptomatic infections in Dalian, (E) R² of symptomatic

infections in Xinjiang, (F) R² of asymptomatic infections in Xinjiang, (G) R² of symptomatic infections in Guangzhou, (H) R² of asymptomatic

infections in Guangzhou.

had different ratios of asymptomatic to symptomatic

infections in different regions (13–16). Specifically, they

were caused by the transmission of different viruses in

different populations under different prevention and control

measures (32).

Fourth, the results of the data analysis in Figures 7, 8

suggested that the severity of pandemic transmission could be

assessed by observing the dynamic transmission parameters

of daily asymptomatic infections and asymptomatic infections,

and could also be used to assess the effectiveness of control

measures. A similar conclusion was reached in a previous

study (44).

The results showed that a comparative analysis of the

transmission dynamics of symptomatic and asymptomatic

infections could provide a reference for highlighting

certain measures in the combination of various preventive

measures to reduce economic losses. With widespread

awareness of COVID-19 and increased vigilance, subjects with

symptomatic infection could more likely self-identify and

receive treatment, even with mild symptoms. Therefore,
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the proportion of transmission from asymptomatic

infections is likely to continue increasing. Thus, among

various epidemic control measures, RT-PCR testing

should be enhanced in the outbreak affected region, and

TABLE 4 Analysis of the “Goodness of Fit” in symptomatic and

asymptomatic infections.

No Region FitASyma FitSymb

1 BJ 93.36% 97.15%

2 DL 86.93% 97.79%

3 XJ 91.54% 98.15%

4 GZ 80.11% 99.37%

BJ, Beijing; DL, Dalian; XJ, Xinjiang; and GZ, Guangzhou; FitASyma , R² of asymptomatic

infections; FitSymb , R² of symptomatic infections.

isolation treatment for asymptomatic infections should

be emphasized.

This study has some limitations. First, there was a time

lag between individual-based exposure, symptom onset, and

testing confirmation. Furthermore, in China, owing to strict

epidemic control measures, patients treated in isolation had

to be observed for a period after actual recovery before being

declared cured, thereby possibly causing deviations. The data

used in our model included the above time lag, therefore, there

may be a small deviation in the results, which could explain why

the R2 was 80.11% after fitting the asymptomatic infections in

Guangzhou, although an R2 >80% means a good fit. Second,

as all patients who tested positive using RT-PCR in China

were offered free isolation treatment, this study assumed that

patients confirmed by testing were not capable of transmitting

the virus during treatment; Third, the upper and lower bounds

A
B

C D

FIGURE 7

Dynamic transmission power parameters of symptomatic and asymptomatic infections. (A) Beijing, (B) Dalian, (C) Xinjiang, (D) Guangzhou.
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TABLE 5 The number of daily infections caused by asymptomatic and symptomatic infections.

No. Region Date NoaSya Nosyb No. Region Date NoaSya Nosyb

1 BJ 2020/6/11 1 0 56 XJ 2020/7/26 78 52

2 BJ 2020/6/12 3 1 57 XJ 2020/7/27 81 54

3 BJ 2020/6/13 6 1 58 XJ 2020/7/28 81 55

4 BJ 2020/6/14 12 3 59 XJ 2020/7/29 80 54

5 BJ 2020/6/15 19 4 60 XJ 2020/7/30 77 52

6 BJ 2020/6/16 30 6 61 XJ 2020/7/31 72 48

7 BJ 2020/6/17 39 9 62 XJ 2020/8/1 66 45

8 BJ 2020/6/18 48 10 63 XJ 2020/8/2 60 40

9 BJ 2020/6/19 55 12 64 XJ 2020/8/3 53 36

10 BJ 2020/6/20 60 13 65 XJ 2020/8/4 46 31

11 BJ 2020/6/21 61 13 66 XJ 2020/8/5 40 27

12 BJ 2020/6/22 59 13 67 XJ 2020/8/6 34 23

13 BJ 2020/6/23 55 12 68 XJ 2020/8/7 29 19

14 BJ 2020/6/24 49 10 69 XJ 2020/8/8 24 16

15 BJ 2020/6/25 42 9 70 XJ 2020/8/9 20 13

16 BJ 2020/6/26 36 8 71 XJ 2020/8/10 16 11

17 BJ 2020/6/27 29 6 72 XJ 2020/8/11 13 9

18 BJ 2020/6/28 24 5 73 XJ 2020/8/12 11 2

19 BJ 2020/6/29 19 4 74 XJ 2020/8/13 9 6

20 BJ 2020/6/30 14 3 75 XJ 2020/8/14 7 5

21 BJ 2020/7/1 11 2 76 XJ 2020/8/15 5 4

22 BJ 2020/7/2 8 2 77 XJ 2020/8/16 4 3

23 BJ 2020/7/3 6 1 78 XJ 2020/8/17 3 2

24 BJ 2020/7/4 5 1 79 XJ 2020/8/18 3 2

25 BJ 2020/7/5 3 1 80 GZ 2021/5/21 1 0

26 BJ 2020/7/6 2 1 81 GZ 2021/5/22 1 1

27 BJ 2020/7/7 2 0 82 GZ 2021/5/23 1 1

28 BJ 2020/7/8 1 1 83 GZ 2021/5/24 2 1

29 BJ 2020/7/9 1 0 84 GZ 2021/5/25 3 2

30 BJ 2020/7/10 1 0 85 GZ 2021/5/26 4 2

31 DL 2020/7/22 1 0 86 GZ 2021/5/27 5 3

32 DL 2020/7/23 3 1 87 GZ 2021/5/28 6 3

33 DL 2020/7/24 7 1 88 GZ 2021/5/29 6 4

34 DL 2020/7/25 12 2 89 GZ 2021/5/30 7 4

35 DL 2020/7/26 18 3 90 GZ 2021/5/31 8 4

36 DL 2020/7/27 23 4 91 GZ 2021/6/1 8 5

37 DL 2020/7/28 26 4 92 GZ 2021/6/2 9 5

38 DL 2020/7/29 27 4 93 GZ 2021/6/3 8 5

39 DL 2020/7/30 26 4 94 GZ 2021/6/4 8 5

40 DL 2020/7/31 24 4 95 GZ 2021/6/5 8 4

41 DL 2020/8/1 21 3 96 GZ 2021/6/6 7 4

42 DL 2020/8/2 17 3 97 GZ 2021/6/7 7 4

43 DL 2020/8/3 13 2 98 GZ 2021/6/8 6 3

44 DL 2020/8/4 10 2 99 GZ 2021/6/9 5 3

45 DL 2020/8/5 8 1 100 GZ 2021/6/10 5 2

46 DL 2020/8/6 6 1 101 GZ 2021/6/11 4 2

47 XJ 2020/7/17 8 5 102 GZ 2021/6/12 3 2

48 XJ 2020/7/18 13 9 103 GZ 2021/6/13 3 2

49 XJ 2020/7/19 19 13 104 GZ 2021/6/14 2 1

50 XJ 2020/7/20 27 18 105 GZ 2021/6/15 2 1

51 XJ 2020/7/21 36 24 106 GZ 2021/6/16 2 1

52 XJ 2020/7/22 46 31 107 GZ 2021/6/17 1 1

53 XJ 2020/7/23 56 38 108 GZ 2021/6/18 1 1

54 XJ 2020/7/24 65 44 109 GZ 2021/6/19 1 0

55 XJ 2020/7/25 72 49 . . . . . . . . . . . . . . .

BJ, Beijing; DL, Dalian; XJ, Xinjiang; and GZ, Guangzhou.
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A B

C D

FIGURE 8

Quantitative analysis of persons infected by symptomatic and asymptomatic infections. (A) Beijing, (B) Dalian, (C) Xinjiang, (D) Guangzhou.

for the model parameters were set using data from other

references. We may not have considered extreme cases, such

as some “super spreader” incidents of COVID-19 (45). Fourth,

the amount of data was limited, which might have affected

the accuracy of the results. Despite the new model having

some limitations, the epidemiological data and experimental

results were within acceptable limits under the assumption of

common sense.

Conclusion

This multicenter, retrospective study demonstrated the

dynamic process of symptomatic and asymptomatic infection

transmission to healthy individuals. Although there were

fewer asymptomatic infections than symptomatic ones in

the four outbreaks studied, a greater number and proportion

of infections in the healthy population were caused by
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asymptomatic infections. These findings suggest that isolation

and treatment of symptomatic infections are not sufficient

under the conditions of inadequate vaccines, continuous virus

mutation, and lack of widespread use of therapies that could

eliminate current infectiousness. There is thus a great need to

reduce the risk of transmission of asymptomatic infections.

On the one hand, in COVID-19 pandemic regions, there

is a need for proactive, large-scale, and multiple testing of

close contacts of COVID-19 patients to help in mitigating the

disease spread and exposure of populations and to rapidly

identify and treat asymptomatic infections. On the other

hand, healthy people should continue social distancing,

wearing masks, and vaccination to avoid infection. The

proposed model elucidated the impact of symptomatic and

asymptomatic infections on epidemics. The model can also be

used to observe the progress of the epidemic and assess the

effectiveness of interventions, which could help governments

worldwide develop reasonable measures to fight the

COVID-19 pandemic.
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