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Manyworks have employedMachine Learning (ML) techniques in the detection

of Diabetic Retinopathy (DR), a disease that a�ects the human eye. However,

the accuracy of most DR detection methods still need improvement. Gray

Wolf Optimization-Extreme Learning Machine (GWO-ELM) is one of the most

popular ML algorithms, and can be considered as an accurate algorithm

in the process of classification, but has not been used in solving DR

detection. Therefore, this work aims to apply the GWO-ELM classifier and

employ one of the most popular features extractions, Histogram of Oriented

Gradients-Principal Component Analysis (HOG-PCA), to increase the accuracy

of DR detection system. Although the HOG-PCA has been tested in many

image processing domains including medical domains, it has not yet been

tested in DR. The GWO-ELM can prevent overfitting, solve multi and binary

classifications problems, and it performs like a kernel-based Support Vector

Machine with a Neural Network structure, whilst the HOG-PCA has the ability

to extract the most relevant features with low dimensionality. Therefore,

the combination of the GWO-ELM classifier and HOG-PCA features might

produce an e�ective technique for DR classification and features extraction.

The proposed GWO-ELM is evaluated based on two di�erent datasets, namely

APTOS-2019 and Indian Diabetic Retinopathy Image Dataset (IDRiD), in both

binary and multi-class classification. The experiment results have shown an

excellent performance of the proposed GWO-ELMmodel where it achieved an

accuracy of 96.21% for multi-class and 99.47% for binary using APTOS-2019

dataset as well as 96.15% for multi-class and 99.04% for binary using IDRiD

dataset. This demonstrates that the combination of the GWO-ELM and HOG-

PCA is an e�ective classifier for detecting DR andmight be applicable in solving

other image data types.
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Introduction

Diabetic Retinopathy (DR) is a condition of the eye that

can cause blindness and vision loss in individuals who have

diabetes. Regular examination of the eyes is essential for

early retinopathy detection in order to decrease the blindness

and vision loss caused by DR (1). The core objective of

the DR examination is to reveal whether further treatments

are required or not (2). Therefore, a robust and accurate

retinal examination system is desired to help the screeners

to classify the retinal images effectively as well as with

high confidence.

Nowadays, Artificial Intelligence (AI) andMachine Learning

(ML) techniques are playing significant roles in aiding medical

experts with early illness diagnosis (3–6). Therefore, recently,

research has been conducted using various AI and ML

techniques in order to automatically detect the DR using

images (7–9). One of the well-known feature extraction

techniques is Histogram of Oriented Gradients (HOG) and

has been widely utilized in many image processing fields,

including medical fields (10–12). Moreover, the Principal

Component Analysis (PCA) is considered one of the most

recognized dimensionality reduction techniques (13), where

it condenses most of the information in the database into

a small dimensions’ number. In addition, recently, the

Gray Wolf Optimization-Extreme Learning Machine (GWO-

ELM) has been considered one of the most popular ML

algorithms (14). Therefore, the major aims of this study are

as follows:

• Propose a new DR detection approach based on a GWO-

ELM classifier and Histogram of Oriented Gradients-

Principal Component Analysis (HOG-PCA) features using

image data.

• Test the proposed approach based on two different DR

image datasets [i.e., APTOS-2019 and Indian Diabetic

Retinopathy Image Dataset (IDRiD)] in both binary and

multi-class classifications.

• The NN, SVM, Random Forest (RF), and basic ELM

classifiers are also implemented in both binary and multi-

class classifications using APTOS-2019 and IDRiD datasets.

• Evaluate the performance of the proposed DR detection

approach based on several evaluation measures such as

accuracy, recall, precision, specificity, F-measure, G-mean,

and Matthews Correlation Coefficient (MCC).

• Compare the proposed DR approach against the most

recent studies that have used the same datasets in terms of

accuracy for the binary and multi-class classifications.

This research is organized as follows: Section 2 presents the

related work of this study. Section 3 provides a deep explanation

and description of the materials and proposedmethod. Section 4

discusses the experiments and their outcomes. Section 5 presents

the conclusion of this research as well as recommendations for

future research.

Related work

The authors in Sridhar et al. (15) have proposed an

automatic system for detecting DR by using Convolutional

Neural Network (CNN). The proposed system was tested based

on binary classification and used an image dataset that is

available on the Kaggle website. The experiments’ outcomes have

shown that the highest performance of their proposed CNN was

achieved with an accuracy of 86%. However, they have tested the

proposed system based on binary classification only and ignored

themulti-class classification. In addition, the accuracy rate is still

not encouraging and needs more enhancement.

Another attempt has been conducted in Gangwar and

Ravi (16). They proposed a hybrid architecture of inception-

ResNet-v2 and custom CNN layers for the detection of DR.

The proposed model was evaluated based on the multi-class

classification using APTOS-19 and Messidor-1 dataset. Results

showed that the highest accuracy achieved by the proposed

model is 72.33% on the Messidor-1 dataset and 82.18% on the

APTOS-19 dataset.

One of the most popular ML algorithms is Extreme

Learning Machine (ELM); ELM is a single hidden layer feed-

forward neural network that consists of three layers (i.e., input,

hidden, and output layers) (17, 18). The neurons of the input

layer are connected to the neurons of the hidden layer by

randomly generated input weights and biases. The neurons of

the hidden layer are connected to the neurons of the output

layer by output weights. The output weights are calculated

based on discovering the least-squares solution (19, 20). ELM

is preferred by researchers as it is superior to traditional Support

Vector Machine (SVM) and Back Propagation Neural Network

(BPNN) (21, 22) specifically in: (1) preventing overfitting,

(2) its implementation on multi and binary classifications,

and (3) its similar kernel-based capability SVM and working

with a Neural Network (NN) structure. These factors make

the ELM more efficient in accomplishing a better learning

performance. Therefore, some researchers have implemented

the ELM algorithm in DR detection. For example, the authors

in Asha and Karpagavalli (23) have proposed a DR detection

system. The system is based on combining several extracted

features such as standard deviation, mean, edge strength, and

centroid as well as using the ELM classifier. The system

was evaluated based on a binary classification by using the

DIARETDB1 dataset which contains 100 images in total. The

experiment results showed that the performance of the ELM

outperformed both Naive Bayes (NB) andMultilayer Perceptron

(MLP) with the highest achieved accuracy reaching up to 90%.

In addition, the authors in Zhang and An (24) have proposed

an automatic DR detection system. The proposed system uses
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two features extraction methods (i.e., lesion detection and

anatomical part recognition) and Kernel Extreme Learning

Machine (KELM) with an active learning technique for the

classification process. The evaluation of the proposed system

has been conducted based on binary classification using the

Messidor dataset. The results have shown that the highest

performance of the proposed system was achieved with an

accuracy of 88.60%.

Further, Punithavathi and Kumar (25) used four different

feature extraction techniques (i.e., mean, standard deviation,

entropy, and third momentum) and the ELM classifier in

order to detect DR. The proposed DR detection system was

tested based on a multi-class classification problem using the

DIARETDB0 dataset with four different classes. The outcomes

of the experiments have proved the superiority of the ELM

performance over both BPNN and SVM with the highest

achieved accuracy of 95.40%.

Additionally, Deepa et al. (26) proposed a DR detection

system that has three different phases. The first phase is to use

several micro-macro feature extraction algorithms. The second

phase is to apply the Principal Component Analysis (PCA) on

the extracted features in order to reduce the dimensionality.

Finally, the third phase is to implement the KELM on

the extracted features with low dimensions for classification

purposes. The proposed system was tested based on a dataset

with four classes, which has been collected by the department of

medical retina at Bharath hospital in Kottayam. The outcomes

of the experiments have demonstrated that the highest achieved

accuracy rate of the proposed system reached up to 93.20%.

Although (23–26) showed that the ELM and KELM

outperformed their comparatives, these studies have ignored

the fact that the random generated input weights and biases

of the ELM and KELM need to be optimized. In other words,

there is no guarantee that the trained ELM/KELM is the

best for carrying out the classification. This drawback can be

resolved by integrating the ELM/KELM with an optimisation

approach to achieve the optimal input weights and hidden

layer biases that guarantee the best ELM/KELM performance

(27). Therefore, one of the most popular improvements of the

ELM is the GrayWolf Optimization-Extreme LearningMachine

(GWO-ELM), where the GWO is integrated into ELM in order

to obtain the best input weights and biases (14). GWO was

established by studying the hunting behavior of gray wolves (28).

It has a simple concept with easy implementation, requiring

very few coding lines, allowing many to leverage from it. In

comparison to other evolutionary algorithms, GWO is highly

robust in regulating parameters with greater computational

efficacy (29, 30). The effectiveness of this integration (GWO-

ELM) has been proven in many domains including breast cancer

diagnosis (31), poison diagnosis (32), lung cancer classification

(33), identification of cardiovascular disease (34), electricity

load projections (35), bankruptcy predictions (36), and paraquat

poisoned patients diagnosis (37). However, to the best of our

knowledge, no research has used the GWO-ELM classifier in

the detection of DR. Therefore, this study aims to employ

the GWO-ELM classifier for detecting DR. Table 1 provides a

summary of the previous DR detection works using ML and

deep learning techniques.

Materials and proposed method

The general diagram of the proposed work using the GWO-

ELM method is demonstrated in Figure 1. The diagram consists

of various stages which will be used to create the DR detection

approach based on images. The first stage refers to the image

dataset that contains five categorizations (i.e., no DR, mild,

moderate, severe, and proliferative DR). While, in the second

stage, the pre-processing operation will be used in order to

prepare the images for the next stage, which is the features

extraction stage. In addition, in the third stage, the HOG-

PCA method will be utilized in order to extract the needed

features from images. Lastly, in the fourth stage, the HOG-

PCA extracted features will be fed into the GWO-ELM classifier

in order to detect DR based on images. These fourth stages

of the proposed DR detection approach will be deliberated as

sub-sections, respectively.

Image dataset

In this study, two different datasets will be used in order to

evaluate the proposedDR detection approach. The first dataset is

APTOS-2019 while the second dataset is IDRiD. The description

of both datasets APTOS-2019 and IDRiD are provided as follow:

• APTOS-2019 Dataset has been provided by an Indian

hospital, Aravind Eye Hospital. The APTOS-2019 dataset

is available online in Hospital (39). In this study, the

dataset consists of five main classes, which are no DR,

mild, moderate, severe, and proliferative DR, and each

class contains 190 images. Thus, 950 is the total number

of images in the whole dataset. In this study, 80% of the

dataset, which equals 760 images, were used for training

purposes, whilst 20% of the dataset, which equals 190

images, were used for testing purposes. In other words, 152

images from each class were used for training purposes

whilst the remaining 38 images were used for testing

purposes. The description of the APTOS-2019 dataset

which is used in this study is provided in Table 2.

• IDRiD is a DR image dataset that is available online at (40).

The IDRiD dataset consists of five main classes, which are

no DR, mild, moderate, severe, and proliferative DR. In

addition, the IDRiD dataset has a total number of images

equal to 516 and each class contains a different number

of images. In this study, 80% of the dataset that equals
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TABLE 1 Illustrates the previous works of DR detection using ML and deep learning techniques.

References Dataset Classification

mode

Classifier Results Disadvantages

Sridhar et al. (15) Kaggle dataset Binary classification CNN 86% Accuracy • The proposed system tested based on binary classification

only and ignored the multi-class classification.

• The accuracy rate is still not encouraging and needs

more enhancement.

Gangwar and Ravi.

(16)

APTOS-19 and

Messidor-1

Multi-class

classification

Hybrid CNN 72.33% Accuracy

on the Messidor-1

dataset and 82.18%

accuracy on the

APTOS-19 dataset.

• The evaluation of both systems considered only the multi-

class classification and ignored the binary classification.

• The accuracies of both systems are still not promising and

need more improvement.

Reddy et al. (38) Messidor Multi-class

classification

SVM 69.09% Accuracy

Asha and

Karpagavalli. (23)

DIARETDB1 Binary classification ELM 90% Accuracy • The proposed system tested based on binary classification

only and ignored the multi-class classification.

• The accuracy rates are still not encouraging and need more

enhancement.

• These studies have ignored the fact that the random

generated input weights and biases of the ELM and KELM

need to be optimized.

Zhang and An (24) Messidor Binary classification KELM 88.60% Accuracy

Punithavathi and

Kumar (25)

DIARETDB0 Multi-class

classification

ELM 95.40% Accuracy • The evaluation of both systems considered only the multi-

class classification and ignored the binary classification.

• The accuracy rates are still not encouraging and need more

enhancement.

• These studies have ignored the fact that the random

generated input weights and biases of the ELM and KELM

need to be optimized.

Deepa et al. (26) 4 classes dataset Multi-class

classification

KELM 93.20%

FIGURE 1

Block diagram of the proposed DR detection approach.
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TABLE 2 The description of the APTOS-2019 dataset.

Class Number Samples of the dataset Class label

of image

No DR 190 1

Mild 190 2

Moderate 190 3

Severe 190 4

Proliferative 190 5

DR (PDR)

TABLE 3 The description of the IDRiD dataset.

Class Number Samples of the dataset Class label

of image

No DR 168 1

Mild 25 2

Moderate 168 3

Severe 93 4

Proliferative 62 5

DR (PDR)

412 images were used for training purposes, whilst the

remaining 20% of the dataset which equals 104 images were

used for testing purposes. The description of the IDRiD

dataset which is used in this study is provided in Table 3.

Pre-processing

This section discusses the pre-processing of this study, which

consists of four steps. The first step is to read the RGB image

that will be as an array with three dimensions. The second step

is to convert the image from RGB to Grayscale, which will lead

to making it an array with two dimensions. The third step is to

adjust the intensity values in the grayscale image which leads

to an increase in the contrast of the output image. Finally, the

fourth step is to re-size the dimensionality of the image to (255

× 255) which will be as an input into the features extraction

approach. Figure 2 depicts an example of the pre-processing

steps which are used in this study.

Features extraction

In this work, the required features were calculated in

two steps. The first step is to use the output of the pre-

processing as an input into the Histogram of Oriented Gradients

(HOG) features extraction technique, which begins after the pre-

processing phase. HOG is considered as one of the most popular

features extraction techniques that has been widely utilized in

many image processing fields, including medical fields (10–12).

The output of the HOG features extraction approach is a vector

with the dimensionality of (1 × 32,400) per image, and (950 ×

32,400) and (516 × 32,400) for whole APTOS-2019 and IDRiD

dataset, respectively.

Whilst the second stage is to reduce the dimensionality

of HOG features using Principal Component Analysis (PCA).

PCA is considered one of the most recognized dimensionality

reduction techniques (13), where it condenses most of the

information in the database into a small dimensions’ number.

The aim of that is to reduce the high dimensionality of the HOG

features from (950 × 32,400) to (950 × 949) for whole APTOS-

2019 dataset and from (516 × 32,400) to (516 × 515) for whole

IDRiD dataset. This enables the issue of limited resources (i.e.,

requiring a large memory space) to be overcome. Literature has

addressed the issue that the requiredmemory space is affected by

the dimensionality of the features (i.e., number of features). In

other words, the higher dimensionality requires a large memory

space (41–43). The final output of the features extraction is the

HOG-PCA features with (950 × 949) dimensionality for whole

APTOS-2019 dataset and (516 × 515) for whole IDRiD dataset,

both of which will be used as inputs into the classification step.

Figure 3 demonstrates the steps of the features extraction in

more detail. Further, Table 4 demonstrates the dimensionality

of the features extraction steps for a single image and whole

dataset images.

Classification

This section provides a deep explanation of both GWO and

GWO-ELM approaches separately. The explanation of the GWO

approach is delivered in Section 2.4.1, while the explanation of

the GWO-ELM approach is presented in Section 2.4.2.
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FIGURE 2

The pre-processing steps.

FIGURE 3

Steps of the features extraction.

Gray wolf optimization

In recent years, GWO has emerged as a prominent new

nature-based metaheuristic algorithm and population-oriented

metaheuristic (30). GWO is based on the natural behaviors of

the gray wolf (28). The algorithm fundamentally simulates the

wolf ’s social behavior and hunting mechanisms. In GWO, the

wolves (search agents) are classified as alpha (α), beta (β), delta

(δ), and omega (ω). α is the fittest wolf or the best solution. β

and δ each denote the second and third best wolves. Meanwhile,

ω denotes the other wolves in the population. Finding the prey

(process of optimization) is spearheaded by δ, β , and α whilst

the wolves (ω) are the followers. When surrounding the prey,

wolves inform about their positions based on δ, β , or α using the

following equations (28):

D = |C · Xp(it)− X(it)| (1)

and

X(it + 1) = Xp(it)− A · D (2)

Where, it denotes the present iteration number. Xp (it) denotes

the present position of the prey. X (it) denotes the wolf ’s present

position. D denotes the distance between the prey and wolf.

Below are the mathematical formulas for coefficient vectors (A

and C):

A = 2a · r1 − a (3)

and

C = 2 · r2 (4)

Where r1 and r2 are the two vectors that are randomly generated

between 1 and 0. “a” denotes linear decrement from 2 to 0 as

the iterations number increase. The simulation of the wolves’

hunting behaviors results in the saving of the first three top

values as α, β, and δ. Below is the formula for updating the

position of the gray wolf population:











Dα = |C1 · Xα − X|

Dβ = |C2 · Xβ − X|

Dδ = |C3 · Xδ − X|

(5)











X1 = Xα(it)− A1 · Dα

X2 = Xβ (it)− A2 · Dβ

X3 = Xδ(it)− A3 · Dδ

(6)

and

X(t + 1) =
X1 + X2 + X3

3
(7)

Where Xα , Xβ , and Xδ denote the positions of α, β , and δ,

respectively. X denotes the current wolf position. C1, C2, and C3

are vectors that are randomly generated based on Equation (4).

Equation (5) is used to calculate the estimated distances among

the current wolf and α, β , and δ, whilst Equations (6) and (7)

are used to determine the current wolf ’s final position. A1, A2,
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TABLE 4 Elaborate the features extraction step dimensionality for

single image and whole dataset images.

APTOS-2019 Dataset

Features

Extraction

Dimensionality

of a single

image

Dimensionality

of the whole

dataset

First Step: HOG

Features

(1 x 32400) (950 x 23400)

Second Step:

HOG-PCA Features

(1 x 949) (950 x 949)

IDRiD Dataset

Features

extraction

Dimensionality

of a single

image

Dimensionality

of the whole

dataset

First Step: HOG

Features

(1 x 32400) (516 x 32400)

Second Step:

HOG-PCA Features

(1 x 515) (516 x 515)

and A3 are vectors that randomly generated using Equation (3).

it represents the iterations number.

This updating mechanism facilitates the omega wolves

in reaching new stochastic places (presumed to be nearer

to the prey) in the circle delineated by the leading wolves’

positions. GWO is distinguished by its strategy in managing

the explorations and exploitations in the search process. With

a decrease from 2 to 0 during the iterations, the algorithm

progressively moves on from underlining the process of

exploration to the process of exploitation (30). Figure 4 shows

the GWO algorithm flowchart. Below are the general processing

steps of the GWO algorithm (28):

(a) Parameters of the gray wolf, such as population size or

the number of search agents (NSA), are initialized. For

the following steps, the search agent term refers to a wolf,

position of each wolf (search agent), maximum number of

iteration (itmax), and upper and lower bound of search.

(b) Set the iteration counter it= 0.

(c) Initialize the coefficient vectors “A, and C” using

Equations (3 and 4) while the initialization of “a”, which is

the linear decrements from 2 to 0 as the iterations number

increase, uses a= 2-it∗((2)/ itmax).

(d) Calculate the fitness for all search agents and set the first

three best search agents as Xα , Xβ , and Xδ where Xα

denotes the first best search agent whilst Xβ denotes the

second best search agent, and Xδ denotes the third best

search agent.

FIGURE 4

Flowchart of the GWO algorithm.

(e) Increase the iteration counter it= it+ 1.

(f) Update “A, and C” using Equations (3 and 4) while “a”

using a=2-it∗((2)/ itmax).

(g) Update the position of all current search agents using

Equations (5 and 6).

(h) Recalculate the fitness for all search agents.

(i) If any better search agent is found, then update the best

agents Xα , Xβ , Xδ .

(j) Repeat steps from “e” if the stopping criteria are

not satisfied.

(k) The best-calculated optimum (best search agent) will be

returned as Xα .

GWO-ELM

The GWO-ELM follows the GWO concept in Mirjalili et

al. (28). It adjusts the input weight values and the biases of

the hidden nodes by updating the GWO parameters toward

achieving greater accuracy. The GWO-ELM steps are presented

belowwhile the flowchart is illustrated in Figure 5. Table 5 shows

the ELM-GWO parameter settings.
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FIGURE 5

GWO-ELM algorithm flowchart.

Let N be the number of training samples and (Xj, tj) refer to

a single sample of the training samples.,

Where:

Xj is the input extracted from HOG-PCA features where Xj

= [xj1, xj2, . . . , xjn]
T ∈ Rn,

tj is the expected output (true value) where tj = [tj1, tj2, . . . ,

tjm]
T ∈ Rm.

Step 1: Random initialization of the gray wolf population

(position of all search agents) within the range of [-1,

1] for the values of the input weights, and [0, 1] for

the hidden nodes’ bias. Ascertaining the initial GWO

parameters entails: 1) the population size or number

of search agents (NSA), 2) the maximum number of

iterations (itmax), and 3) the iteration counter it = 0.

Each wolf (search agent) in the population is reshaped

using the following form:

SAi =

{

w11, w12, . . . w1n, w21, w22, . . .

w2n, wL1, wL2, . . . wLn, b1, . . . bL

}

Where:

wij = value of input-weights which connect between

the ith hidden node and jth input node, wij∈ [−1, 1].

bi = ith hidden node’s bias, bi ∈ [0, 1].

n= number of the input-nodes.

L= number of the hidden nodes.

L × (1+n) denotes the dimension of the search

agent, which therefore requires optimization of

its parameters.

Step 2: Initialization of the coefficient vectors ‘A, and C’ using

Equations (3 and 4) while the initialization of the ‘a’

which is the linear decrements from 2 to 0 as the
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TABLE 5 The parameters settings for the ELM and GWO.

ELM GWO

Parameter Value Parameter Value

AS assemble of the

biases and input

weights

Population (wolves

or search agents)

Consists of the

position of all

search agents

ρ Output-weights

matrix

Position Start stochastically

generated within

the range of [-1, 1]

for the

input-weights and

[0, 1] for the biases

Input-weights (w) −1 to 1 Population size or

number of search

agents (NSA)

50

Bias values (b) 0 to 1 r1 and r2 Stochastically

generated with the

range of [0, 1]

Input-nodes

number (n)

Input attributes Number of

iterations itmax

100

Hidden-nodes

number (L)

[100–300]; with a

25 increment step

C1 , C2 , and C3 Randomly

generated vectors

based on Equation

(4)

Output neurones

number (m)

Number of classes A1 , A2 , and A3 Randomly

generated vectors

using Equation (3)

Activation function Sigmoid Xα Best position of all

search agents.

iterations number increase, using a= 2-it∗((2)/ itmax).

Step 3: Division of the dataset into training and testing sets

Set the hidden layer nodes as m, and choose a

suitable activation function g(x) for ELM;

f (X) =

√

∑N
j=1 ||

∑L
i=1 ρig(wixj + bi)− tj||

2
2

N
(8)

Where:

ρ = output weight matrix;

tj = true value; and

N = number of training samples.

Where:

ρ = H†T (9)

H =









g(w1.X1 + b1) · · · g(wL.X1 + bL)
... . . .

...

g(w1.XN + b1) · · · g(wL.XN + bL)









N×L

(10)

ρ =









ρ1
T

...

ρL
T









L×m

and T =









t1
T

...

tN
T









N× m

H in Equation (10) is the hidden layer outputmatrix

of the ELM network; inH, the ith column is indicated to

the ith hidden layer neuron on the input neurons.While

the H† is the Moore–Penrose generalized inverse of H.

The activation function g is infinitely distinguishable

when the desired number of hidden neurons is L ≤ N.

Step 4: Train the ELM and evaluate the fitness value of

each search agent according to the accuracy of

the classification.

Step 5: Based on the fitness values of each search agent, set the

first three best search agents as Xα , Xβ , and Xδ , where

Xα denotes the first best search agent whilst Xβ denotes

the second best search agent, and Xδ denotes the third

best search agent.

Step 6: Increase the iteration counter it= it+ 1.

Step 7: Update ‘A, and C’ using Equations (3 and 4) while ‘a’

using a= 2-it∗((2)/ itmax).

Step 8: Update the position of all current search agents using

Equations (5–7).

Step 9: Recalculate the fitness for all search agents using

Equation (8).

Step 10: If any better search agent is found, then update the best

agents Xα , Xβ , Xδ .

Step 11: Repeat steps from step 6 if the stopping criteria are not

satisfied, or else save the optimal weights and thresholds

between input layers and hidden layers (Xα).

Step 12: The results of GWO are utilized as input-weights and

hidden-layer biases of the ELM, calculating the hidden

layer output matrix (H) via the activation function g(x);

Step 13: Calculate the output-weights (ρ) according to Equation

(9) and save the forecasting ELMmodel for testing.

Experiments and results

The proposed GWO-ELM approach was utilized in both

binary and multi-class classification experiments with a hidden

neurons number in a range of [100–300] and increment steps

of 25. In the multi-class classification experiments, we have used

both APTOS-2019 and IDRiD datasets in order to classify five
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TABLE 6 The highest experiment outcomes of the binary and multi-class classifications for GWO-ELM approach using APTOS-2019 and IDRiD

datasets.

APTOS-2019 dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 96.21 90.53 90.53 97.63 88.16 90.53 90.53

2 99.47 99.34 100.00 97.44 98.38 99.67 99.67

IDRiD dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 96.15 90.38 90.38 97.60 87.98 90.38 90.38

2 99.04 100.00 98.59 100.00 97.82 99.29 99.29

FIGURE 6

The confusion matrix of the highest multi-class classification

outcome for the GWO-ELM approach using the APTOS-2019

dataset.

different classes, namely no DR, mild, moderate, severe, and

proliferative DR. In the binary classification experiments, we

have used both APTOS-2019 and IDRiD datasets in order to

classify two different classes (i.e., no DR and DR). The class

of DR was obtained by combining mild, moderate, severe, and

proliferative DR classes. Hence, the total number of both binary

and multi-class classification experiments for the GWO-ELM

approach is 36, and each experiment has 100 iterations. All the

experiments have been applied based on using 80% of the dataset

as a training dataset and the remaining 20% as a testing dataset.

In addition, it is worth mentioning that all the experiments have

been implemented in MATLAB R2019a programming language

over a PC Core i7 of 3.20 GHz with 16 GB RAM and SSD 1TB

(Windows 10).

In this study, numerous evaluation measurements were

utilized to evaluate the proposed approach GWO-ELM. The

evaluation measurements rely on the ground truth, which

entails the application of the model to expect the answer

on the evaluation dataset followed by a comparison between

the predicted target and the actual answer. The evaluation

FIGURE 7

The confusion matrix of the highest binary classification

outcome for the GWO-ELM approach using the APTOS-2019

dataset.

FIGURE 8

The confusion matrix of the highest multi-class classification

outcome for the GWO-ELM approach using the IDRiD dataset.

measurements have been used in order to evaluate the

proposed GWO-ELM approach regarding True Positive (TP),

True Negative (TN), False Positive (FP), False Negative
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FIGURE 9

The confusion matrix of the highest binary classification

outcome for the GWO-ELM approach using the IDRiD dataset.

FIGURE 10

The ROC of the highest binary classification outcome for the

GWO-ELM approach using the APTOS-2019 dataset.

(FN), recall, accuracy, specificity, G-mean, precision, F-

measure, and MCC. Equations (11–17) (44–46) depict these

evaluation measurements.

accuracy =
TP + TN

TP + TN + FN + FP
(11)

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

F −Measure =
(2 × precision × recall)

(precision + recall)
(14)

FIGURE 11

The ROC of the highest binary classification outcome for the

GWO-ELM approach using the IDRiD dataset.

G−Mean =
2
√

recall× precision (15)

Specificity =
TN

TN + FP
(16)

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(17)

Table 6 shows the highest outcomes of the binary andmulti-class

classification experiments that have been conducted using the

proposed GWO-ELM approach based on both datasets APTOS-

2019 and IDRiD. Table 6 presents the evaluation outcomes of

the GWO-ELM in terms of recall, accuracy, specificity, G-mean,

precision, F-measure, and MCC. The highest achieved multi-

class classification accuracies of the GWO-ELM approach were

96.21% and 96.15% using APTOS-2019 and IDRiD datasets,

respectively. Whilst the highest achieved binary classification

accuracies of the GWO-ELM approach were 99.47% using the

APTOS-2019 dataset and 99.04% using the IDRiD dataset. In

addition, Figures 6–10 show the confusion matrices for the

highest outcomes of the binary and multi-class classification

using the GWO-ELM approach based on both datasets APTOS-

2019 and IDRiD. Further, Figures 10, 11 present the ROC of the

best binary classification outcome for the GWO-ELM approach

using the APTOS-2019 and IDRiD datasets.

Further, additional experiments have been implemented

utilizing feedforward NN and basic ELM as classifiers andHOG-

PCA features to perform binary and multi-class classification of

the DR. Both classifiers NN and basic ELM were implemented

in binary and multi-class classifications when varying the

number of the hidden nodes in the range of [100–300] and

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.925901
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Albadr et al. 10.3389/fpubh.2022.925901

TABLE 7 The highest experiment outcomes of the binary and multi-class classifications for ELM approach using APTOS-2019 and IDRiD datasets.

APTOS-2019 dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 80.21 50.53 50.53 87.63 38.16 50.53 50.53

2 92.63 93.42 93.42 77.27 78.60 95.30 95.32

IDRiD dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 74.62 36.54 36.54 84.13 20.67 36.54 36.54

2 72.12 85.71 75.95 60.00 32.75 80.54 80.68

TABLE 8 The highest experiments outcomes of the classification and detection for NN approach using APTOS-2019 and IDRiD datasets.

APTOS-2019 dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 78.53 46.32 46.32 86.58 32.89 46.32 46.32

2 90.53 98.68 90.36 91.67 68.13 94.34 94.43

IDRiD dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 72.31 30.77 30.77 82.69 13.46 30.77 30.77

2 71.15 97.14 70.83 75.00 26.04 81.93 82.95

increment steps of 25. Tables 7, 8 provide the highest binary

and multi-class classification experiments outcomes of the

NN and ELM classifiers using both APTOS-2019 and IDRiD

datasets. The best performance of the basic ELM in multi-class

classification has been obtained with an accuracy of 80.21%

and 74.62% for APTOS-2019 and IDRiD datasets, respectively.

While the highest performance of the basic ELM in binary

classification has acquired an accuracy of 92.63% using APTOS-

2019 dataset and 72.12% using IDRiD dataset. Furthermore,

the best achieved multi-class classification accuracies of the

NN approach were 78.53% and 72.31% using APTOS-2019

and IDRiD datasets, respectively. The highest achieved binary

classification accuracies of the NN approach were 90.53% using

the APTOS-2019 dataset and 71.15% using the IDRiD dataset.

Moreover, further experiments have been conducted

utilizing SVM (linear kernel), SVM (precomputed kernel), and

RF as classifiers and HOG-PCA features to perform binary

and multi-class classifications of the DR. Table 9 provides

the outcomes of the binary and multi-class classification

experiments for the SVM (linear kernel), SVM (precomputed

kernel), and RF classifiers using both APTOS-2019 and

IDRiD datasets. In multi-class classification and when using

APTOS-2019 dataset, the best performance of the SVM

(linear) was achieved with an accuracy of 79.58% while

the highest performance of the SVM (precomputed kernel)

and RF classifiers was equal with an accuracy of 79.37%.

Moreover, in binary classification and when using APTOS-2019

dataset, the best performance of the SVM (linear) and SVM

(precomputed kernel) was equal and achieved an accuracy

of 88.95% while the highest performance of RF classifier

was achieved with an accuracy of 91.58%. Additionally, in

multi-class classification and using IDRiD dataset, the best

performance of the SVM (linear), SVM (precomputed kernel),

and RF classifiers was achieved with an accuracy of 73.85, 73.08,

and 74.23%, respectively. In binary classification and using

IDRiD dataset, the highest performance of the SVM (linear),

SVM (precomputed kernel), and RF classifiers was achieved

with an accuracy of 68.27, 67.31, and 69.23%, respectively.

The outcomes for binary and multi-class classification are

shown in Tables 6–9. The performance of the GWO-ELM

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.925901
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Albadr et al. 10.3389/fpubh.2022.925901

TABLE 9 The experiments outcomes of the binary and multi-class classification for SVM (linear kernel), SVM (precomputed kernel), and RF

approaches using APTOS-2019 and IDRiD datasets.

APTOS-2019 dataset with 5 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 79.58 48.95 48.95 87.24 36.18 48.95 48.95

SVM (Precomputed Kernel) 79.37 48.42 48.42 87.11 35.53 48.42 48.42

RF 79.37 48.42 48.42 87.11 35.53 48.42 48.42

APTOS-2019 dataset with 2 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 88.95 100.00 87.86 100.00 62.69 93.54 93.73

SVM (Precomputed Kernel) 88.95 100.00 87.86 100.00 62.69 93.54 93.73

RF 91.58 100.00 90.48 100.00 72.37 95.00 95.12

IDRiD dataset with 5 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 73.85 34.62 34.62 83.65 18.27 34.62 34.62

SVM (Precomputed Kernel) 73.08 32.69 32.69 83.17 15.87 32.69 32.69

RF 74.23 35.58 35.58 83.89 19.47 35.58 35.58

IDRiD dataset with 2 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 68.27 98.57 68.32 66.67 12.48 80.70 82.06

SVM (Precomputed Kernel) 67.31 84.29 71.95 50.00 19.11 77.63 77.87

RF 69.23 100.00 68.63 100.00 20.09 81.40 82.84

approach outperformed the NN, ELM, SVM (linear kernel),

SVM (precomputed kernel), and RF in all experiments. This

discovery confirms that generating the appropriate weights and

biases for the ELM’s single hidden layer decreases classification

errors. In other words, avoiding inappropriate weights and

biases prevents the ELM algorithm from becoming stuck in

the local maxima of the weights and biases. Consequently,

the performances of the proposed GWO-ELM approach in

the multi-class and binary classification were impressive and

achieved an accuracy of 96.21, 99.47, 96.15, and 99.04% using

APTOS-2019 and IDRiD datasets, respectively. This research

confirms that the combination of the GWO-ELM classifier with

HOG-PCA features is an effective approach for detecting the

DR using retinal images which could help physicians in easily

screening for DR.

Furthermore, the proposed GWO-ELM technique is

compared with some recent works (47–65) in terms of accuracy

based on binary and multi-class classifications using APTOS-

2019 and IDRiD datasets. Table 10 exhibits the comparison

accuracy results of the proposed GWO-ELM and some other

previous works.

Based on all the results in Table 10, it is clear that the

performance of the GWO-ELM outperformed all the other

previous works in binary and multi-class classifications using

both datasets APTOS-2019 and IDRiD. This suggests that the

proposed GWO-ELM is a reliable technique for the detection of

DR when using image data. Although the proposed method has

shown a good performance, there are some limitations which are

provided as follows:

• The image datasets which have been used in this study for

the training and testing purposes are small.

• The evaluations of this study did not consider the execution

time measurement of the proposed GWO-ELM approach.
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TABLE 10 The comparison of accuracy between the proposed GWO-ELM and other previous works.

Accuracy results based on APTOS-2019 dataset with 5 classes Accuracy results based on APTOS-2019 dataset with 2 classes

Method Accuracy Method Accuracy

DNN (50) 81.70 DNN (50) 97.41

Hybrid model (56) 86.34 DNN (51) 98.00

DNN (51) 82.54 Hybrid CNN-SVD and ELM (57) 99.32

-SVM (52) 77.90 Ensemble (trimmed mean) (61) 98.60

MLP (55) 83.09 ResNet34 (47) 96.35

CNN512 (48) 89.00 CNN (62) 91.00

Tuned XGBoot (59) 94.20 RA-EfficientNet (64) 98.36

Proposed GWO-ELM 96.21 Proposed GWO-ELM 99.47

Accuracy results based on IDRiD dataset with 5 classes Accuracy results based on IDRiD dataset with 2 classes

Method Accuracy Method Accuracy

MLP (53) 92.01 MLP (53) 98.87

ResNet50+ J48 (54) 92.46 CNN (58) 90.29

XG-Boost (49) 88.20 Coarse Network (63) 80.00

Lesion(Semi+ Adv) (65) 91.34 HE-CNN (60) 96.76

Proposed GWO-ELM 96.15 Proposed GWO-ELM 99.04

• The current study has considered only the off-line aspect

for detecting DR.

Conclusion

In this study, we have proposed a DR detection approach

based on HOG-PCA features and GWO-ELM classifier.

The GWO-ELM classifier underwent evaluations using the

APTOS-2019 and IDRiD datasets. The outcomes indicated the

superiority of the GWO-ELM over the existing methods [i.e.,

NN, ELM, SVM (linear kernel), SVM (precomputed kernel),

and RF] (see Tables 6–10) in all experiments. In addition,

the performance of the GWO-ELM classifier has been proven

to outperform some recent studies (see Table 10) in both

binary and multi-class classifications. The maximum multi-

class classification performance of the GWO-ELM classifier was

achieved with an accuracy reaching up to 96.21%. Further,

the maximum binary classification performance of the GWO-

ELM classifier was achieved with an accuracy of 99.47%. This

demonstrates that the combination of the GWO-ELM and

HOG-PCA is an effective classifier for detecting DR and might

be applicable in solving other image data type. However, the

current research has taken into account only the off-line aspect

for detecting DR. Therefore, the future plan of the current

research is to establish an approach to detect DR, which can

handle the online execution for both classification and feature

extraction in order to meet the real-time aspects. The proposed

DR detection approach will be tested under adversarial attacks.

Additionally, other optimization methods for ELM will be

further explored in order to generate the most suitable weights

and biases for the ELM which leads to minimizing classification

process errors.
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