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Impact of the self-directed
learning approach and attitude
on online learning
ine�ectiveness: The mediating
roles of internet cognitive
fatigue and flow state

Mingming Shao, Jon-Chao Hong and Li Zhao*

School of Education Science, Nanjing Normal University, Nanjing, China

Online learning has become an important learning approach in universities.

However, since many students may have been exposed to online learning for

the first time during this period of the COVID-19 pandemic, the quality factors

of online learning and psychological distress of students need to be considered

in the research on their learning. This paper discusses factors that influence

the learning e�ect of university students in the online learning environment. A

total of 377 university students participated in the survey. Structural equation

modeling was used to verify the research hypotheses. The results show

that the self-directed learning (SDL) approach and attitude can negatively

predict students’ Internet cognitive fatigue (ICF) and positively predict their

Flow, whereas perceived learning ine�ectiveness can be predicted by Internet

cognitive fatigue positively and by Flow state negatively. The results can be a

reference for online teachers to enhance students’ online SDL attitude, and to

discipline their SDL approach so as to promote online learning e�ectiveness.

KEYWORDS

online learning, self-directed learning approach, self-directed learning attitude,

internet cognitive fatigue, flow, learning ine�ectiveness

Introduction

Online learning has been widely adopted since 2020 (1). In order to achieve better

online learning effectiveness, the realization and maintenance of online learning quality

must be addressed (2). Moreover, psychological distress, such as attention and self-

directed learning, has a great influence on online learning (3). Self-directed learning

(SDL) involves the whole learning process from diagnosing learning needs, describing

learning objectives, to evaluating learning outcomes by the learners themselves (4).

Kim et al. (5) suggested that designing effective learner content to promote students’

interaction is the most important work in maintaining their motivation for online

learning (5). In these courses the quality of learner-content interaction may not be a

predominant factor; rather, individual self-directed learning is more important (6). Thus,
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to explore the learning effectiveness of online learning, this

study investigated learners’ self-directed learning related to their

achievement of the desired learning outcomes.

As Cinquin et al. (7) pointed out, it cannot be expected

that all students will find online tools beneficial, as students

differ in their learning preferences and styles (7). In particular,

some online courses may result in impairments of cognitive

function (attention, memory, etc.). On the other hand, when

navigating online learning environments, some learners may

experience a state of flow (8). While in a flow state, learners

concentrate on the activity being performed and lose awareness

of other environmental stimuli unrelated to their learning (9).

Some studies have indicated that students who experience

Internet cognitive fatigue may not enjoy online learning (10).

Flow experience has been found to effectively enhance online

learning, for example, learning English as a second language

(11). However, few studies have discussed how these two mental

states interact during online learning. Thus, the present study

also explored learners’ Internet cognitive fatigue and flow state

while they were involved in the online learning process.

Learning outcome is one of the measurements to assess how

effective a learning platform is. The perception of the learning

effectiveness of online learning is dependent upon whether

the desired outcomes are achieved (12). The “dark” aspect of

psychology indicates that young people are inclined to view bias

in the social world through the external manifestations of lower

grades (13). For example, adolescent students tend to make

negative evaluations of social norms (14). Thus, in this study,

learning performance was replaced by learning ineffectiveness so

as to better enable participants to make self-evaluations of their

own learning performance perceptions (15). Moreover, learning

effectiveness perceived in different contexts is important to

understand, as different learning interventions might influence

the effectiveness differently. Thus, this study established a

structural equation model to explore the influence of two

aspects of self-directed learning (approach and attitude) on the

different performance of attention (cognitive fatigue and flow

state), and the role of these four factors on the effect of online

learning performance. According to the research results, people

can train learners’ self-directed learning approach and give

targeted guidance to their self-directed learning attitudes, so as

to promote concentration and avoid cognitive fatigue, effectively

improving the online learning performance in the future.

Theoretical background

Self-directed learning approach and
attitude

Tough (16) first proposed the concept of “self-directed

learning” (SDL) as a way of learning (16). Knowles (4)

defined it as an approach whereby learners diagnose their

own learning needs, clearly describe their learning objectives,

look for learning resources, choose and implement suitable

learning strategies, and evaluate their learning outcomes, all

without others’ help (4). Caffarella (17) described SDL as an

attitude toward autonomous learning (17). Taken together, SDL

comprises two orientations: attitude orientation and approach

orientation. In attitude orientation, SDL is considered to be a

personal trait of the learner. As well as having different attitude

orientations, learners also have different degrees of autonomy.

In the approach orientation, the emphasis is placed on learners’

learning activities such as their planning and implementation

of learning strategies in and after class (18). Moreover, attitudes

and actions (approaches) can generate context-related learning

effectiveness (19). University students’ SDL when taking online

courses, including the self-directed learning approach and self-

directed learning attitudes, was introduced into this study.

The trait activation theory (TAT) explicates how work

situations comprising shared challenge and hindrance stressors

can be relevant for the expression of online learning (20).

TAT highlights important interactions between person and

situation variables. In this context, self-directed learning in

online learning was proposed. Song and Hill (21) began to focus

on self-directed learning in an online learning environment,

and built a SDL model in an online context that combined

SDL with personal attributes and learning processes, indicating

the impact of environmental factors on SDL (21). Kim et

al. (22) took a closer look at the application of self-directed

learning in the field of online learning (22). They found that

SDL could help students who studied online to develop the

characteristics of a personalized system, and to improve their

ability to manage overall learning activities and monitor their

own performance, which could in turn help them to better adapt

to online learning. As the expectation of SDL is that individual

learners assume responsibility for their own online learning

depending on their unique needs and individual goals (23), the

roles that the two types of SDL play in online learning have not

been extensively discussed. Thus, this study explored university

students’ two types of SDL, SDL-approach and SDL-attitude,

while they learned online.

Internet cognitive fatigue and flow state

The inability to maintain attention is central to the concept

and operational definition of cognitive fatigue (24), which

has been defined as an executive failure during time spent

performing tasks. It involves neglectfulness, loss of memory,

distracted attention, as well as a lack of concentration (25). It

evokes mind wandering, which may also interfere with other

mental processes (26). Cognitive appraisal has been defined

as “an evaluative process that determines why and to what

extent a particular transaction or series of transactions between

the person and the environment is stressful” (27). In this
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study, Internet cognitive fatigue (ICF) that is the result of

using LINE is referred to as LINE cognitive fatigue (28). ICF

may affect students’ learning performance, such as by causing

distraction and reducing focus, creating a heavy mental load,

and causing problems with Internet usage that recurrently

influence learning performance (29). In contrast to cognitive

fatigue, Csikszentmihalyi (30) introduced the flow state. Flow

is defined as a state in which individuals are so deeply engaged

in the current activity that they do not pay attention to other

activities or the passage of time (30). This state was defined as

a holistic experience in which individuals perceive themselves

as being totally involved (31). When they are in a flow state,

they are absorbed in the activity they are performing, and the

focus of their awareness is targeted. Their minds become more

unwandered, and they perceive themselves as being able to

control their environment (32, 33).

Many of the studies on mental state while using the

Internet have used the flow concept to address online navigation

phenomena, but they have produced mixed evidence regarding

the efficacy of such online learning (34). Thus, this study

examined two types of mental state, namely ICF and Flow, in

order to clarify some of the reported ambiguities regarding the

conceptualization and operationalization of the effectiveness of

online learning.

Learning ine�ectiveness

In the research on online learning, some studies have

focused on the hurdles that impede the effective delivery of

online courses; for example, in massive and emergency online

platforms (35, 36), factors such as the unpreparedness of most

administrators, staff members, and students are hurdles (29).

Of particular note is students’ desire for learning effectiveness

(37). Existing research has shown that young adults try to

associate self-perception biases with behavioral outcomes and

look down on external attributes (38). Hong et al. (15) used

learning ineffectiveness to explore online learning effect (15).

Accordingly, the present study considered the role of online

learning ineffectiveness related to remote learning.

Literature summary and research
significance

Although there has been some research on self-directed

learning and attention in academia (24), and on the relationship

between them (39), few scholars have explored the significance

of self-directed learning by dividing it into learning approach

and learning attitude. Some learners have mastered the method

of self-directed learning but are not willing to carry it out,

while others want to carry it out but do not know how to

learn scientifically and effectively. Both of these situations can

lead to the failure of self-directed learning, which can be linked

with two different forms of attention: cognitive fatigue and

concentration. It is also innovative to link these two conditions

to two different forms of attention: Internet cognitive fatigue

and flow state. It would be interesting to see whether these two

different conditions promote concentration or divergence.

In addition, since teenagers tend to have more positive self-

perceptions, and what they perceive may not be the same as

what they perform, the existing research resulting to promote

learning performance may not be suitable (38). Therefore, it

is also of great significance to explore whether the conversion

of the scale into learning ineffectiveness is different from the

positive learning performance results. At the same time, the

learning environment of online learning is different from that

of traditional learning environments. The situation of online

learning changes the self-directed learning and attention of

students, which also has an impact on learning effectiveness.

Research model and hypotheses

Hypotheses

While students are navigating online learning environments,

they may perceive challenges that link to opportunities for

action. When they are in a state of flow, they also engage in

and focus on the activity they are performing; they may focus

or lose concentration on any environmental change. This is

considered desirable insofar as it changes their mental state so

that they realize that the challenges they face are in balance

with their learning attitude and approaches (40). When students

are engaged in online learning, their self-directed learning

attitude may affect their ICF and flow states (8). However,

few researchers have discussed how the self-directed learning

approach and attitude affect the ICF and Flow in the particular

context of online learning; thus, the following hypotheses

were proposed:

H1 SDL-approach is negatively related to ICF.

H2 SDL-approach is positively related to Flow.

H3 SDL-attitude is negatively related to ICF.

H4 SDL-attitude is positively related to Flow

Online courses have increased the accessibility of learning,

but students’ ability to concentrate is an important factor in

measuring the quality of their online learning (41). Attention

guidance can facilitate students’ constructive use of instructional

materials when they engage in online learning conversations

(42). On the other hand, students often carry out online learning

in situations where they are easily distracted (43). Many students

have reported that they find it difficult to pay attention (44),

and previous researchers have aimed to identify when mind

wandering occurs. However, few have discussed how students’
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ICF and Flow affect their perceptions of learning ineffectiveness

in the particular context of online learning; thus the following

hypotheses were proposed:

H5 ICF is positively related to students’

learning ineffectiveness.

H6 Flow is negatively related to students’ learning

ineffectiveness in online learning.

Research model

The cognitive appraisal theory (CAT) categorizes personal

traits in terms of positive or negative valence, which can

trigger different psychological states (45). Moreover, according

to the environmental psychology theory (46), it is assumed

that the set of physical and tangible cues in an environment

affects users’ emotional states and behaviors. In the COVID-19

environment of online learning, the self-directed learning

approach and attitude serve as mental state antecedents, and

learning ineffectiveness is a mental state consequence. As a

result, the present study proposed a model to identify individual

traits that are subject to environmental factors which shape

an individual’s vulnerability to COVID-19 as stressor-related

online learning problem. Therefore, the research model was

conceptualized as shown in Figure 1.

Method

Participants and procedure

A survey with a questionnaire was administered to

university students with online learning experience in Jiangsu

province, China. The questionnaire was uploaded to an online

tool called Questionnaire Star (www.wjx.com). A web site, valid

for participants to access for one month, was generated and the

link was randomly sent to 50 university students in Jiangsu.

Participants were then invited to share the link with their

classmates. A total of 384 questionnaires were collected. After

deleting those questionnaires with unanswered items, the same

answer to all items, and less than 2-minute answering time, 377

valid questionnaires remained, giving an effective response rate

of 98%.

Instruments

The questionnaire was designed by adapting from previous

studies. Two professors majoring in psychology and three

in education checked and revised the accuracy of the item

statements, using the forward-backward translation approach

to obtain the face validity of the questionnaire. A 5-point

Likert scale was designed, with 1 for strongly disagree, and

5 for strongly agree. After data collection, the reliability

and validity of the questionnaire items and constructs were

tested. The questionnaire consists of three parts. The first

part is the introduction of the survey and the explanation

of the data collected only for the participants with online

learning experience. The second part is the investigation of

the basic information of the subjects. The third part is the

main part of the questionnaire, including the potential variables

of SDL-approach, SDL-attitude, Internet cognitive fatigue, and

Flow state.

SDL measurement

Self-directed learning can help to understand an individual’s

attitude toward online learning and provide further insight

into how an individual can use learning methods in an online

environment (23). This study adopted the scale of Sun (47),

which divides self-directed learning into two aspects: approach

and attitude. In the original scale, there were five items for self-

directed learning approach and five for self-directed learning

attitudes (47). The descriptions of these 10 items were adapted

according to the circumstances of this study.

SDL-approach measurement

Self-directed learning is the foundation of all learning,

whether formal or informal, and the effectiveness of learning

is related to individual motivation. All people are capable of

self-directed learning, but their development level varies due to

individual methods (48). Accordingly, five items were adapted

related to how we should achieve self-regulation in learning.

Exemplary items include: I can make my own study plan

effectively, and When I encounter problems with the use of the

online learning system, I will find the best solution by myself.

SDL-attitude measurement

Crook (49) explained that autonomous learners are active

and take the initiative in learning, rather than passively waiting

to be taught (49). As people take more responsibility for their

own lives and benefit from self-discipline in the learning process,

self-directed learning attitude refers to whether they have a

strong willingness to learn independently. Accordingly, five

items were adapted in this study, for example: When a new

concept or thing comes along, I like to explore it myself, and

When I come across something I don’t understand, I like to try

to find a solution on my own.

Internet cognitive fatigue measurement

This measure referred to the scale of Schwid (50), where

cognitive fatigue is thought to be a cognitive decline on tests
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FIGURE 1

Research model.

that require sustained attention. Hong et al. (10) and Hwang et

al. (28) mentioned the cognitive decline related to interaction

with internet information (10, 28). There were seven items

in the original questionnaire pool to explore participants’

perceptions of cognitive fatigue. Since the participants of

the original questionnaire were those with a steady job, the

project description was revised in this study and two questions

unsuitable for student participants were deleted. Accordingly,

five items were adapted. Examples include: When I study online,

I am distracted by the interaction of different avatars, and

I cannot quickly grasp what others are saying, and When

studying online, if the teacher talks too much at one time, I

can’t understand.

Flow measurement

When people are in a state of flow, they become absorbed

in the activity they are performing, the focus of their awareness

becomes narrower, they are less conscious of themselves, and

they feel that they have control of their environment (31). Based

on the understanding of flow state in existing studies, eight items

were self-compiled for this study; examples are: When studying

online, I can concentrate on class for a long time, and When I

study online, I won’t listen and think about other things.

Perceived ine�ectiveness of online learning
measurement

Online learning ineffectiveness was introduced by Hong et

al. (15). Considering the “dark” psychology of young adults,

Hong et al. (15) used ineffectiveness rather than effectiveness

when designing items for students’ online learning performance

(15). There were nine items in the original questionnaire,

but one item with low reliability was deleted in this study.

Accordingly, eight items were adapted; examples are: Since

learning online, the quality of my homework has deteriorated,

and Since online study began, my ability to observe and find

problems has become weaker.

Results

First-order CFA was first applied to determine the reliability

of the tool and to delete unreasonable questionnaire items. The

reliability and validity of variables were tested to determine

the credibility of the research instrument. Finally, structural

equation modeling (SEM) was used to verify the hypothetical

structural model. In this study, SPSS 24.0 was used for

descriptive statistics and reliability and validity analysis, and

AMOS 24.0 was used for CFA and path analysis of the

structural model.

Participant information

Of the respondents, 29.2% were males and 70.8% were

females, 40.3% were freshmen, 38.7% were sophomores, and

21.0% were juniors (no seniors were recruited because most

university senior students were in internships and were not

participating in school courses at the time). As for their online

learning time, about 13.5% spent 1–2 h per week, 51.2% spent

2–4 h per week, 24.4% spent 4–6 h, and only 10.9% students

had more than 6 h per week of online learning. Regarding

the number of online courses, 17.0% had 1–3 courses, 76.7%

had 4–6, 5.6% had 7–9, and only 0.8% had more than 10

online courses.

Item analysis

The original questionnaire had 31 items in total,

including SDL-approach, SDL-attitude, ICF, Flow, and

learning ineffectiveness. When a sample is used in first-order
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TABLE 1 Dimension reliability and validity analysis.

Variable Measure item M SD FL CR AVE Cronbach’s

Alpha

Self-directed learning approach SDL-approach 1 3.45 0.791 0.774 0.8176 0.5991 0.819

SDL-approach 2 3.62 0.752 0.770

SDL-approach 3 3.62 0.807 0.778

Self-directed learning attitude SDL-attitude 1 3.69 0.875 0.787 0.8888 0.6669 0.889

SDL-attitude 2 3.86 0.911 0.781

SDL-attitude 3 3.64 0.839 0.852

SDL-attitude 5 3.69 0.822 0.844

Internet Cognitive Fatigue ICF1 2.67 0.983 0.858 0.8871 0.6628 0.893

ICF2 2.40 0.873 0.800

ICF3 2.32 0.841 0.796

ICF5 2.80 1.056 0.801

Flow Flow 4 3.90 0.769 0.793 0.8871 0.6629 0.897

Flow 5 3.98 0.711 0.795

Flow 6 3.89 0.733 0.857

Flow 7 4.03 0.710 0.810

Learning ineffectiveness LI1 2.62 1.043 0.729 0.9495 0.7593 0.950

LI2 2.57 1.047 0.887

LI3 2.56 1.080 0.942

LI4 2.54 1.118 0.896

LI5 2.54 1.108 0.922

LI6 2.62 1.066 0.835

M, Mean; SD, Standard Deviation; FL, Factor Loading; CR, Composite Reliability; AVE, Average Variance Extracted.

confirmatory factor analysis (CFA), if the factor loading is

less than 0.5, the items should be deleted (51). Moreover,

the highest residual values of items in each construct should

be deleted until the threshold value met the first-order CFA

requirements (51). The value of GFI was 0.919; NFI was

0.943; CFI was 0.972; RMSEA was 0.049; and χ2/df was 1.907.

Accordingly, the following questionnaire items were retained:

self-directed learning approach (3 items), self-directed learning

attitude (4 items), ICF (4 items), Flow (4 items) and learning

ineffectiveness (6 items), giving a total of 21 items.

Construct reliability and validity analysis

SPSS 24.0 was used to analyze the reliability and validity of

the questionnaire. Cronbach’s alpha was adopted for the internal

consistency analysis. Table 1 shows that the Cronbach’s alpha of

all constructs was higher than 0.8. The composite reliability (CR)

is for measuring the external consistency of constructs. In this

study, CR values ranged from 0.82 to 0.95, indicating acceptable

validity (51).

According to Fornell and Larcker’s (52) study of convergent

validity, the higher the convergent validity, the higher the factor

loading (FL) (52). According to the previous research, a FL above

0.7 is considered a good value. The AVE (Average Variance

Extracted) value should exceed 0.5, indicating that the construct

has the effect of convergence. Table 1 shows that all values of FL

and AVE are above 0.5, indicating that the questionnaire had a

high degree of validity.

When performing construct discriminant validity analysis

(as shown in Table 2), we must first obtain the square root of

AVE for each dimension, and it should exceed the absolute

value of the Pearson correlation coefficient between the two

dimensions (53). In the current study, the analysis showed

that the square root of AVE value of all variables exceeded

the absolute value of the correlation coefficient between

variables, thus indicating that the measurement model had good

discriminative validity (53).

Hypothesis testing and path analysis

In this study, the absolute fit index and relative fit index were

used to evaluate the degree of fit of the model. The value of GFI

is 0.906 which is more than 0.9 and < 1.0 (54). NFI and CFI

should both be > 0.9 (44). The value of NFI is 0.932 and CFI is

0.961. RMSEA should be < 0.1 (44), and here it is 0.057. From

the perspective of the model indexes as Table 3 shows, the χ2/df,
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TABLE 2 Dimension discriminant validity analysis.

Construct 1 2 3 4 5

1. SDL-approach 0.774

2. SDL-attitude 0.388 0.817

3. ICF 0.469 0.422 0.814

4. Flow 0.527 0.435 0.405 0.814

5. Learning ineffectiveness 0.193 0.186 0.307 0.303 0.871

The diagonal elements (bold) are the square roots of AVE and the off-diagonal elements

are values of the inter-construct correlations.

TABLE 3 Model fitting analysis.

Fitting index Threshold Values Results

Chi-square/df <3 2.234 Supported

RMSEA <0.08 0.057 Supported

Goodness-of-fit index (GFI) >0.8 0.906 Supported

Adjusted fitness index (AGFI) >0.8 0.882 Supported

Normed fitness index (NFI) >0.9 0.932 Supported

Non-normalized fitness index (NNTI/TFI) >0.9 0.955 Supported

Comparative fitness index (CFI) >0.9 0.961 Supported

Incremental fitness index (IFI) >0.9 0.961 Supported

Relative fitness index (RFI) >0.9 0.922 Supported

RMSEA, GFI, CFI, NFI, and IFI all fell within the acceptable

ranges, illustrating that the model of this study fits the data well.

The hypotheses of the research model were tested by path

analysis of the relationship among variables. Table 4 shows that

the significance of the five hypotheses proposed in this study

was verified. There are significant states among the hypotheses.

All of the p-values are < 0.001. The SDL-Approach and SDL-

Attitude have a direct negative association with ICF (β =−0.592,

t = −7.704∗∗∗; β = −0.366, t = −6.305∗∗∗), while the SDL and

SDLA have a direct positive association with Flow (β = 0.514,

t = 8.806∗∗∗; β = 0.264, t = 6.308∗∗∗). Moreover, ICF has a

direct positive association with LI (β = 0.202, t = 3.728∗∗∗), and

Flow has a direct negative association with LI (β = −0.273, t =

−3.732∗∗∗).

The determination coefficient R2 quantifies the variance

ratio interpreted by the statistical model. It is an important

statistic for summarizing biological benefits. When R2 values are

< 0.6, we consider that 0.3–0.6 is medium, and< 0.3 is low (55).

In addition, the model effect size (f 2) was proposed by Cohen

(56) to enable researchers to move from simply recognizing

statistical significance to providing a more general quantifiable

description of the size of the effect (57). f 2 values > 0.8 can

be considered large. When f 2 is between 0.2 and 0.8, it can be

considered medium, and when it is < 0.2, it can be considered

small. In this study, the explanatory power of SDL and SDLA on

ICF is 31% (R2 = 0.31, f 2 = 0.449), and Flow is 38% (R2 = 0.38,

f 2 = 0.613). The explanatory variance of CF and Flow on LI is

13.0% (R2 = 0.13, f 2 = 0.149). The six variables in this study are

therefore shown to have good predictive power (44). However,

in order to improve the degree of fit of the model, adjustments

to the model were made, as shown in Figure 2.

Discussion

In the existing studies, taking COVID-19 as source of

stress, there were many studies on the theoretical literature

describing how COVID-19 may affect online learning, for

example, similarities and differences between online learning

and face-to-face learning (58–60). However, the empirical

literature related to the two types of self-directed learning

that affect individual mental state and learning effectiveness is

limited. Thus, the present study explored the correlates between

SDL-approach, SDL-attitude, Internet cognitive fatigue, flow

experience, and perceived online learning ineffectiveness. After

statistical analysis with item suitability, construct reliability and

validity, structural equation modeling was applied to test the

hypotheses. The results of this study are discussed as follows.

According to the TAT, individual traits are latent potentials

residing in the individual attitude and approach; what triggers

mental state is critical for understanding how the two types

of SDL affect Internet cognitive fatigue and flow experience

in this study. Self-directed learning can be defined as the

mode of learning in which students who establish their own

study goals and strategies are accountable for outcomes. It is

essential to learn by oneself under the threat of COVID-19 (61).

According to environmental psychology theory, environmental

change may activate or deactivate individual mental activities,

and self-directed learning should be prioritized with online

learning (61).

Moreover, when students are in a state of flow, they

are engaged in and focused on performing the activity, and

they may focus or lose concentration as a result of any

environmental change (30). ICF may affect students’ online

learning performance, such as by causing distraction and

reduced focus, heavy mental load, and problems with Internet

usage that recurrently influence their learning performance

(29). Because online learning, which includes either watching

video lectures or attending real-time video class meetings, is

relatively unrestricted in terms of time and space, individuals can

proactively steer the learning environment and accommodate

SDL (61). Moreover, as the expectation of SDL is that

individuals will assume responsibility for their own online

learning depending on their unique needs and individual

goals (23), SDL attitude and approach can balance the

challenge of online learning and result in a change in

mental state (40). How two types of SDL affect two types of

mental state in online learning was explored in this study.

The results revealed that the SDL approach is negatively
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TABLE 4 Path coe�cient analysis.

Hypothesis Causal

factors

Standardized

coefficient (β)

S.E. t p Result

H1 SDL-

approach→

ICF

−.592 .082077 −7.194704 p < 0.001 supported

H2 SDL-

approach→

Flow

.514 .058 8.806 p < 0.001 supported

H3 SDL-

attitude→

ICF

−.366 .058 −6.305 p < 0.001 supported

H4 SDL-attitude

→ Flow

.264 .042 6.308 p < 0.001 supported

H5 ICF→ LI .202 .054 3.728 p < 0.001 supported

H6 Flow→ LI −.273 .073 −3.732 p < 0.001 supported

FIGURE 2

The verification of the research model. **p < 0.01.

related to ICF but positively related to Flow, whereas SDL

attitude is negatively related to ICF but positively related

to Flow.

In line with TAT, shared challenge stressors may overwhelm

groups to achieve desired work outcomes. On the other

hand, taking COVID-19 as a hindrance stressor will

inhibit psychometric responses to self-evaluation. Mental

states can facilitate or inhibit students’ constructive use of

instructional materials when they engage in online learning

conversations (42, 43). Some studies have reported that

paying attention is more difficult when mind wandering

occurs (44). However, to explore how students’ ICF and

Flow affect their perceptions of learning ineffectiveness in the

particular context of online learning, the present study found

that ICF was positively related to learning ineffectiveness,

suggesting that the higher the learner’s ICF, the lower their

learning performance would be. Thus, H5 is true. Flow

is the opposite of ICF, so the higher a learner’s level of

concentration, the higher their learning performance is; H6 is

thus also proved.

Conclusion

According to cognitive appraisal theory, environmental

psychology theory, and trait activation theory, this study

puts forward that the four factors of self-directed learning

approach and self-directed learning attitude, ICF, and Flow

will directly or indirectly affect the quality of university

students’ online learning. Through path analysis for the

model, it was found that the self-directed learning approach

and self-directed learning attitude can predict two types
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of mental state: negatively to ICF and positively to Flow.

Moreover, ICF can negatively predict and Flow can positively

predict learning ineffectiveness. Therefore, the influence

of psychological distress on online learning should be

taken seriously.

Implications

The results show that self-directed learning can predict

mental state, and has a direct or indirect impact on the

ineffectiveness of online learning, confirming that the

four factors have a significant influence on learning

ineffectiveness. That is similar to the findings of other

studies. When conducting online learning for university

students, more attention should be paid to the cultivation

of students’ SDL awareness, carrying out relevant lectures,

strengthening the training of their SDL approaches and

paying attention to guiding their attitude toward SDL in

online learning.

Limitations

There are some limitations of the study that should be

noted. First, the snowball sampling method was used to

connect with a limited population of university students in

one area. Future studies should involve a greater number

of participants from a variety of different areas. Second,

this study adopts the cross-sectional survey results of a

node at a certain time. In the future, more longitudinal

data at different time points should be collected, which

will increase the objectivity and stability of the conclusions

and increase the rigor of the study. Last but not least, the

present study focused on cognitive appraisal evaluation

under the stress of COVID-19 and explored the correlates

between individual trait and mental state of online learning

reflected in learning effectiveness, without considering

the comparison of types of online learning and online

learning effectiveness. Future studies may compare different

online approaches to examine participants’ cognitive and

effective issues.
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