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Background: The prevalence of diabetes mellitus (DM) is increasing globally,

and this requires several approaches to screening. There are reports of

alternative indices for prediction of DM, besides fasting blood glucose (FBG)

level. This study, investigated the ability of combination of biochemical

and anthropometric parameters and orodental disease indicators (ODIs) to

generate models for DM prediction, using Akaike information criterion (AIC)

to substantiate health economics of diabetes screening.

Methods: Four hundred and thirty-three subjects were enrolled in the study

in Ndokwa communities, Delta State, Nigeria, and their glycaemic status

was determined, using the CardioChek analyser® and previous data from

the Prediabetes and Cardiovascular Complications Study were also used.

The cost of screening for diabetes (NGN 300 = $0.72) in a not-for-profit

organization/hospital was used as basis to calculate the health economics

of number of individuals with DM in 1,000 participants. Data on the

subjects’ anthropometric, biochemical and ODI parameters were used to

generate di�erent models, using R statistical software (version 4.0.0). The

di�erent models were evaluated for their AIC values. Lowest AIC was

considered as best model. Microsoft Excel software (version 2020) was used

in preliminary analysis.

Result: The cost of identifying <2 new subjects with hyperglycemia, in 1,000

people was ≥NGN 300,000 ($ 716). A total of 4,125 models were generated.

AIC modeling indicates FBG test as the best model (AIC = 4), and the least

being combination of random blood sugar + waist circumference + hip

circumference (AIC ≈ 34). Models containing ODI parameters had AIC values

>34, hence considered as not recommendable.

Conclusion: The cost of general screening for diabetes in rural communities

may appear high and burdensome in terms of health economics. However,

the use of prediction models involving AIC is of value in terms of

cost-benefit and cost-e�ectiveness to the healthcare consumers, which favors

health economics.
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Introduction

The number of diabetics has sharply increased globally over

the last three decades and, this makes the disease a significant

public health issue. The prevalence of DM seems dependent on

the level of socioeconomic development, with reports showing

the prevalence higher in low-to-mid income countries (LMICs)

than in high-income countries. There have been significant

epidemiological changes in occurrence of type 2 DM (T2DM)

over the years, especially its relative rarity in Africa some decades

ago (1) but it is now reported that 80% of T2DM reside in

developing communities (2). The prevalence of DM in Nigerian

rural areas is 0–2%, and 5–10% in the urban (3–6). This study is

mindful that the differences in prevalence may be attributed to

different diets and lifestyles as well as availability of healthcare

facilities, e.g., for screening and management in rural and urban

communities. Regardless, this calls for early and affordable

screening to mitigate complications associated with unmanaged

or poorly controlled DM such as cardiovascular diseases.

In developing countries, the cost-effectiveness of screening

for T2DM remains unknown (7), and health economic

evaluations that compare screening alternatives are needed (8).

Diabetes places additional burdens on patients and families of

affected individuals (9), leading to enormous socioeconomic

loss (10). Screening for DM is recommended to reduce the

burden of the disease (11) and early detection and treatment

seems a logical preventive approach for cost-saving among other

reasons (7). While it is reported that diabetes screening is cost-

effective (12), several factors define cost-effectiveness, hence, it

is suggested that screening high-risk individuals is worthwhile

(13). This study aims to inform decision makers about the

potential health economic value of non-invasive methods in

community diabetes screening.

Health information technology has the potential to improve

the performance of service delivery, increase health care quality,

save costs and engage patients as effective partners of their

health care. There are opinions on application of information

criterion to obtain optimal choice between models and among

the options, Akaike information criterion (AIC) has received

special attention (14). AIC is a measure of relative quality of

statistical models for a dataset, and, is applied to ascertain the

best model fit. A series of models are compared for AIC to

become useful, and the model with the lowest AIC is considered

the best. Estimation of effect of AIC, and its precision are

important aspects of modeling, and not the declaration of

significance. The AIC offers relative estimate of the information

lost, when a given model is used to represent the process that

generates the data. It takes into account the trade-off between

goodness of fit of a statistical model and the complexity of the

model (15).

Orodental disease indicators (ODIs) signal periodontitis and

the later may increase the risk for aggravating glycaemic control

in diabetic subjects. Periodontitis may also be implicated as

risk for diabetic complications (16), and this suggests the need

for consideration of ODIs as parameters to predict diabetes.

However, what constitutes the best parameter to predict diabetes

is contestable, as some reports indicate that anthropometric

indices can predict diabetes (17–19). This led to the evaluation

of AIC with other anthropometric parameters to ascertain the

indices that predict diabetes better. Application of AIC in

community-based screening in Nigeria is one way to improve

diabetes control, especially in rural communities, hence the

importance of this study.

Methods

The study was carried out in Ndokwa communities of

Nigeria, with the approval (protocol number: 2015/286) of

Human Research Ethics Committee (HREC) of Charles Sturt

University, Australia. The HREC of Novena University and

Ndokwa West Local Ministry of Health Department also

approved the research. Awareness and public lecture to the

community about the study preceded the data collection.

Information sheets were given to potential participants who gave

consent to take part in the study. Data collection occurred at

Catholic Hospital Abbi and Eku Baptist Government Hospital,

both in Delta State of Nigeria and participants were Ndokwa

residents of all sexes aged 18 years and above.

The World Health Organization (WHO) STEPS

questionnaire elicited information from the subjects on

presence or absence of pathological problems in their

mouth/teeth. The ODI questions sought information on

pain/discomfort, sleep interruption and feeling tensed due

to state of the teeth/mouth. Other ODI questions involved

description of the state of the gum/teeth and difficulties in

biting/chewing food.

Biochemical measurements such as fasting blood glucose

(FBG) and lipid profiles were carried out using CardioChek R©

analyser, according to manufacturer’s instructions. The criterion

for diagnosing DM was ≥7.0 mmol/L (≥126 mg/dL) for FBG

or >11.1 mmol/L (≥200 mg/dL) for random blood glucose

and prediabetes was defined as impaired fasting glucose (IFG)

level of 5.6 to <6.9 mmol/L (100 to <126 mg/dL) (20, 21).

Measurands for lipid profile were blood high density lipoprotein

cholesterol (HDL-C), total cholesterol (TC) and triglyceride

(TG) concentrations. Cut-off values were 1.0 mmol/L (≤40

mg/dL) indicating low HDL in men and 1.3 mmol/L (≤50

mg/dL), indicating low HDL in women, 5.2 mmol/L (≥200

mg/dL) for hypercholesterolemia and 1.7mmol/L (≥150mg/dL)

for hypertriglyceridemia as per classification of the International

Diabetes Federation (IDF) (22).

The waist and hip circumferences were measured, using the

ergonometric circumference measuring tape (Seca 203) and the

procedures of IDF (22) were used to calculate the waist-hip ratio

(WHR). Guidelines of WHO were followed to ensure accuracy

of measurements and the recommendations for cut-offs for WC

and WHR were observed (23). The cut-offs for this study were
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based on Europid values, and were: waist circumference >94 cm

(men) and >80 cm (women) and for WHR, the value for men

was ≥0.90 and ≥0.85 cm for women (22).

Statistical analysis followed three steps. First was modeling

to identify a cost-effective model that identifies more DM.

Various anthropometric, biochemical and ODI parameters were

used to generate different models, using R statistical software

(version 4.0.0). Only the prediabetes group was used in the

modeling as per understanding that prediabetic state precedes

frank DM. Data were collected from 433 subjects, and different

models numbering 4,125 were generated.

Second step was determination of the best model and the

top 400 out of 4,125 were selected and sorted, based on the

AIC value. This was carried out to select the best models for

prediction of prediabetes. Thirdly, to establish cost-effectiveness

of community DM screening, the incidence was determined

to identify the number of new individuals with DM and was

particularly used to estimate whether it was cost-effective to

spend Nigerian naira (NGN 300) to do universal screening

in general population—i.e., average of how much would be

leading to newly identified diabetics relative to the population

of Ndokwa communities (149,325). The indicated amount

above (NGN 300) is the cost of FBG test in a not-for-profit

hospital, as observed during this study, but costlier in private

health facilities.

Calculation of incidence was given by the formula:

Incidence rate =
Number of new cases of disease in a period

Sum of person− time at risk

Results

Table 1 is a simplified cost-effectiveness analysis of

community-based diabetes screening. The incidence of

prediabetes and UDM were 0.113 and 0.158%, respectively, or

0.159% hyperglycemia. The cost of identifying <2 persons with

prediabetes or diabetes by screening a population of 1,000 was

NGN 300,000. This serves as point of reference for not-for-profit

hospitals and organizations, considering mass screening.

Figure 1 indicates modeling of anthropometric as well as

biochemical variables and ODI scores in the prediction of

diabetes. Based on AIC, the best model remained FBG due to

it having the least AIC of 4, and the least was a combination of

RBS+WC+HC (AIC= 33).

Discussion

In a previous report from this research program, incidence

of prediabetes and undiagnosed DM (UDM) was calculated at

38.8 and 18.0%, respectively. Oguoma et al. (24) determined

the prevalence of prediabetes (4.9%) and diabetes (5.4%),

and this formed the basis of the calculated incidence rate.

The burden of diabetes including cost in Sub-Saharan Africa

(SSA), including Nigeria is expected to worsen owing to

rapid urbanization and aging population (25).This is evidenced

by the incidence of hyperglycemia (prediabetes: 0.113 and

diabetes: 0.046%) in this study (Table 1). The observation

shows that regardless of diabetes intervention through education

in Ndokwa communities, the incidence of the disease is

rising. This therefore calls for community screening, thus

first determination of a cost-effective approach to screening

for UDM.

Anthropometric indices such as WHR, WC, age and gender

as well lipid profile that includes blood TC and HDL levels

are employed in predicting diabetes (26). A study in the USA

showed WC to be a better predictor than WHR for DM (27).

On the other hand, it has been suggested that WHR is an

excellent predictor for the development of T2DM (28). The

predictive abilities ofWC,WHR, and BMIwere demonstrated in

ameta-analysis, and are reported to have similar association with

incident diabetes (29). A prospective study in Iran also showed

WC andWHR to be predictors of incident diabetes (26). Patients

with T2DM frequently exhibit an atherogenic lipid profile

(high triglyceride and low HDL-C), which increases risk of

cardiovascular disease (CVD) compared with normoglycaemia

subjects (30). Stern et al. (31) developed two models to predict

diabetes incidence. The first was a clinical model that included

TABLE 1 Simplified cost-e�ectiveness analysis.

Considerations Glycaemic status

Prediabetes (%) Diabetes (%)

Previous prevalence of hyperglycemia

Oguoma et al. (24) 4.9 5.4

Prevalence rate relative to 433 people screened 38.8 18.0

Incidence rate relative to Ndokwa population 0.113 0.046

Health economics cost of diabetes screening NGN 300 ($ 0.72) in not-for-profit hospitals.

Health economics cost of screening every 1,000 ≥NGN 300,000 ($ 716) will be spent to identify <2 people persons with prediabetes or UDM

UDM, Undiagnosed diabetes mellitus, N= 433.
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FIGURE 1

Modeling of anthropometric as well as biochemical variables and ODI scores of the overall study population. FBS (FBG), Fasting blood glucose;

TC, Total cholesterol; HDL, High density lipoprotein; RBS, Random blood sugar; WC, Waist circumference; HC, Hip circumference; WHR,

Waist-to-hip ratio. The y-axis of this figure represents the AIC value, while x-axis represents the parameters.

age, gender, ethnicity, FBG, systolic blood pressure, blood

HDL-C level, body mass index and family history of diabetes.

The second model included 2-h blood glucose, diastolic blood

pressure, blood total and low-density lipoprotein cholesterol,

and triglyceride levels. Though not all parameters indicated in

the model were used in present study, the models of Stern and

colleagues further validate the discourse.

Based on the cost (N 300) of screening for diabetes in not-

for-profit hospitals, it would cost N 300,000 to screen 1,000

people to identify <2 individuals with UDM. In view of the

socioeconomic cost of DM, consideration needs to be made on

the worthiness of spending such an amount to diagnose<2 cases

of UDM. Adoption of health economic evaluation in the form

of cost-effectiveness informs on priority setting in healthcare

(7, 32, 33). A study on cost-effectiveness of screening, which was

not aimed to detect diabetes, but those at high risk to develop

the disease suggested that such screening in the long term,

followed by an adequate programme to promote and support

lifestyle changes is cost-effective (34). However, health economic

evaluations in terms of assessing cost-effectiveness constitute

a vital aspect of deciding whether an intervention is worth

implementing. Although people show poor attitude toward

voluntary screening, it is necessary to give diabetes screening

a priority since studies show that delayed diagnosis may lead

to an epidemic (35), and subsequently huge socioeconomic loss

(36). Such effect will be profound in SSA, including Nigeria,

where the risk of diabetes complications is great and costly

(37, 38), and this leads to high health economic burden.

To prioritize mass diabetes screening in Nigeria, factors that

contribute to the disease such as lack of: knowledge, resources,

basic infrastructure and adequate training of health workers

as well as poverty need addressing. These factors are possibly

responsible for failure to detect DM (39), thus such impediments

increase the risk of misdiagnosis and/or delayed diagnosis. This

study is also mindful that reliance on traditional, rather than on

allopathic medicine is also a major obstacle that is prevalent in

SSA (40).

This study observed that FBG remains the best predictor of

diabetes, as it showed the least AIC value, which was 4. Given a

set of models, the preferred model is the one with the minimum

AIC value (41). Such a finding is in line with reports by Cai, Xia

(42) who showed that insulin secretion/insulin resistance index

was useful as a predictor of development of T2DM. This means

that the less insulin secreted to regulate blood glucose level,

the more likely it is for blood glucose level to predict diabetes

and, vice versa. Indeed, FBG and 2-h plasma glucose are strong

predictors of T2DM (43–45), confirming findings of this study.

Blood glucose screening is an important tool to detect

diabetes in subjects at risk of developing diabetes or who

are asymptomatic. It is debated whether FBG screening is

sufficient or oral glucose tolerance test is required to identify

asymptomatic diabetes (46). In this study, FBG selectively

combined with some parameters to produce models with low

AIC (Figure 1). FBG requires an invasive procedure to collect

the blood, and it is time consuming as well as expensive

especially in LMIC and the test is not informative of long-term

glycaemic control. It is suggested that primary prevention entails

identification of high-risk subjects in their normoglycaemic
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state to prevent transition of prediabetes to overt diabetes (47).

A concern therefore is that rural dwellers with diabetes are

diagnosed late, and by the time diagnosis is made, some of the

complications have advanced into irreversible stages (48). In

view of the foregoing, it is pertinent to employ model(s) that

augment FBG in diabetes screening, since it is not clear if FBG

can adequately detect asymptomatic DM.

As identified in this study, a combination of the measured

anthropometric and biochemical indices holds promise of

detecting DM, especially in asymptomatics since most of the

discussed parameters constitute risk factors for diabetes. In

rural communities where the infrastructure for blood screening

for diabetes lacks and/or where invasive procedures are used,

WHR and WC can be used to estimate diabetes risk. The

generated models in the study include most of the metabolic

syndrome (MetS) parameters as defined by Alberti, Eckel (49).

This observation supports the report that people with signs of

MetS have increased risk of diabetes (50) and CVD (51). Models

involving ODIs had high AIC values, indicating low chance of

predicting DM, possibly because the ODIs had not exacerbated

to periodontal disease to allow prediction of DM. The interest in

this study is a cost-effective screening procedure, with favorable

health economic outcomes that can be considered an alternative

to FBG, which is expensive and invasive. This will save direct

and indirect costs involved in diagnosing diabetes, especially as

it concerns community screening. Therefore, anthropometric

parameters are perhaps better options to blood lipid profile in

predicting diabetes.

Conclusion

It is established that despite efforts to improve control,

DM is not only assuming pandemic proportions globally, and

poised to affect developing countries more than developed.

Data on health economics of diabetes screening is critical,

to provide information on feasible intervention through cost-

effective opportunistic screening. Information on the health

economic evaluation of managing diabetes and its complications

is important for intervention and prevention measures, and

it is crucial to consider for policy in early screening and

diagnosis of the disease. This report highlights that ODIs have

a low probability of predicting DM and thus needs to be

used with caution. Anthropometric parameters appear more

promising in predicting diabetes, whether in combination with

FBG or independently, hence an option to consider for cost-

effective diabetes screening. This is imperative in primary

healthcare services, especially in rural communities, where

facilities for FBG screening may be lacking. Further, this

will benefit communities that are considering employing non-

invasive screening alternatives for early diagnosis of DM. In

the light of health economics, developing further screening

programmes for early detection of DM, plus conducting a

thorough economic analysis is required for future studies.
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