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Background: Artificial intelligence (AI) has become widely used in a variety of

fields, including disease prediction, environmental monitoring, and pollutant

prediction. In recent years, there has also been an increase in the volume of

research into the application of AI to air pollution. This study aims to explore

the latest trends in the application of AI in the field of air pollution.

Methods: All literature on the application of AI to air pollution was searched

from the Web of Science database. CiteSpace 5.8.R1 was used to analyze

countries/regions, institutions, authors, keywords and references cited, and to

reveal hot spots and frontiers of AI in atmospheric pollution.

Results: Beginning in 1994, publications on AI in air pollution have increased

in number, with a surge in research since 2017. The leading country and

institution were China (N = 524) and the Chinese Academy of Sciences (N

= 58), followed by the United States (N = 455) and Tsinghua University (N

= 33), respectively. In addition, the United States (0.24) and the England

(0.27) showed a high degree of centrality. Most of the identified articles were

published in journals related to environmental science; the most cited journal

was Atmospheric Environment, which reached nearly 1,000 citations. There

were few collaborations among authors, institutions and countries. The hot

topics were machine learning, air pollution and deep learning. The majority

of the researchers concentrated on air pollutant concentration prediction,

particularly the combined use of AI and environmental science methods,

low-cost air quality sensors, indoor air quality, and thermal comfort.

Conclusion: Researches in the field of AI and air pollution are expanding

rapidly in recent years. The majority of scholars are from China and the

United States, and the Chinese Academy of Sciences is the dominant

research institution. The United States and the England contribute greatly

to the development of the cooperation network. Cooperation among

research institutions appears to be suboptimal, and strengthening cooperation

could greatly benefit this field of research. The prediction of air pollutant
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concentrations, particularly PM2.5, low-cost air quality sensors, and thermal

comfort are the current research hotspot.

KEYWORDS

air pollution, public health, artificial intelligence, CiteSpace, bibliometric analysis (BA)

Introduction

Air pollution is defined as all destructive effects from any

sources which contribute to the pollution of the atmosphere

and/or deterioration of the environment (1). It was initially

regarded as a threat to respiratory health, however as air

pollution research advanced, public health concerns were

broadened to includemany diseases (2–4), which caused amajor

threat to human public health. According to the World Health

Organization’s COP26 Special Report on Climate Change and

Health, over 90% of people breathe unhealthy levels of outdoor

air pollution, which is largely caused by the burning of fossil

fuels, which is also driving climate change. It is the first time that

air pollution has been listed as a cause of death in the report.

Therefore, the World Health Organization launched the “let us

breathe clean air” initiative in 2021 (5).

Artificial intelligence (AI) is a new technological science

that studies and develops theories, methods, technologies and

application systems for simulating, extending and expanding

human intelligence (6). One of its main goals is to enable

machines to perform complex tasks that would normally require

human intelligence. Advantages of AI, such as automatic data

extraction, efficiencies in terms of time and labor expenditures,

convenience, and long-term sustainability (7, 8), allow for

a wide range of applications, including disease prediction,

weather forecasting, expert system construction, environmental

monitoring, and pollutant prediction (9–14). In recent years,

research on the application of AI in air pollution has increased

(15). Hu et al. developed a random forest model, incorporating

aerosol optical depth data, meteorological fields, and land use

variables to estimate daily 24 h averaged ground-level fine

particulate matter (PM2.5) concentrations over the United States

(16). Li et al. developed a novel long short-term memory

neural network extended model to predict the air pollutant

concentration (17). Huang andKuo also developed a deep neural

network model to apply the PM2.5 forecasting system (18).

Bibliometrics is a discipline that uses mathematics, statistics,

and other measurement methods to study the distribution

structure, quantitative relationships, change patterns, and

quantitative management of literature and intelligence. It

then investigates specific structures, characteristics, and laws

of science and technology, using the literature system and

bibliometric characteristics as the object of study. Researchers

have begun to use computers for bibliometric work as computers

have become more popular. Modern methods and tools, such

as computers, are used for data processing and analysis by

establishing a systematic and standardized system of data

sources and access to primary data. For example, Citation

Space (known as “CiteSpace”) is a Java-based information

visualization software developed in 2004 by Professor Chaomei

Chen of Drexel University’s School of Information Science and

Technology (USA). It allows the visualization of the structure,

patterns and distribution of scientific knowledge. CiteSpace

software not only analyzes co-citations in the literature,

thus mining the citation space for knowledge clustering and

distribution, but also provides the ability to analyze co-

occurrence between other knowledge units, allowing for a

better presentation and understanding of the progression of

scientific knowledge (19). Article co-citation is said to constitute

the co-citation relationship when two (or more) articles are

simultaneously cited by one or more subsequent articles. When

compared to other clusters, an object’s silhouette value indicates

how similar to its own cluster it is. Modularity and silhouette

have values that range from −1 to 1, with values closer to 1

being deemed desirable. An indicator of a node’s relevance in

a network is called centrality. In their collaborative networks,

any research with centrality ratings higher than 0.1 is regarded as

influential. Citation bursts, which reveal brief periods of intense

scholarly activity, are depicted as red rings. Researchers can

identify important hotspots in a field based on these findings.

This study aims to explore the current status of the

application of AI in the field of air pollution research using

bibliometrics and visual analysis of CiteSpace software (20–

22), including the distribution of countries or regions where

the research was conducted, authors, and journals, as well as

the research hotspots and trends. These analyses then lay the

foundation for subsequent relevant research.

Materials and methods

Data collection

The data were obtained from the Web of Science (WOS)

Core Collection database. Two researchers conducted the

search independently on October 13, 2021. The search period

was from inception of the database (1980) to October 12,

2021. The main search terms were “air pollution”, “air

contamination”, “atmosphere pollutants”, “deep learning”,
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“machine learning”, and “artificial intelligence” (see the full

search strategy in Supplementary material 1). There were no

limitations on language, publication year, or record type. Due

to the characteristics of CiteSpace, when collecting data, it is not

necessary to exclude literature that appears irrelevant, because

this may decrease the sensitivity (or accuracy) of searches,

resulting in a lost opportunity to discover new associations (23).

The categories and impact factor of the journals can be identified

by the Journal Citation Reports of the Web of Science database.

Two reviewers independently performed literature retrieval and

compared results to ensure accuracy and consistency.

Data analysis

Microsoft Excel 2019 (Redmond WA, USA) was used

to conduct data aggregation and analysis. CiteSpace 5.8.R1

software (Drexel University, Philadelphia, PA, USA) was used

to analyze the publication characteristics, including record

type, publication year, discipline, authors and co-cited authors,

countries and institutions, journals, co-cited journals and co-

cited references, co-occurrence of keywords and burst keywords.

They were identified and described by frequencies. The data

was saved in the “Download_ XXX” format and imported

into CiteSpace due to the specific data format requirements

of that program. The timespan was set as “1990–2021” and

slice length was set as 1. The pre-processing of the data

mainly removes duplicate documents from the data, and then

slices the documents according to time. When words with

the same meaning are found in the clustering network, we

will add them to the alias list and the alias will be in

effect. In addition, the relevant data can also be exported

for de-duplication using the Microsoft Excel 2019 (Redmond

WA, USA).

Results

A total of 1,835 records were retrieved in this study,

including four publication types. Journal articles were the most

frequent type (1,386, 75.5%), followed by proceedings (344,

18.7%), reviews (99, 5.4%), and editorials (6, 0.4%). The first

publications appeared in 1994, and since then publications

have gradually increased, with a surge starting in 2017

(Figure 1).

Distribution of countries/regions and
institutions

The records came from 93 countries/regions and

466 institutions. The countries with the highest number

of publications were China (N = 524), followed by the

United States (N = 455) (Table 1). In addition, the United States

(0.24) and the England (0.27) showed a high degree of

centrality (Supplementary material 2). The institution with

the highest number of publications was the Chinese Academy

of Sciences (N = 58), and China accounted for eight of

the top 10 research institutions (Table 2). Among the top 10

institutions, only TsinghuaUniversity shows a centrality of>0.1,

indicating that it is considered important in its collaborative

network.

Distribution of authors and co-cited
authors

In total, all records encompassed 610 authors. The top 10

authors and co-cited authors are shown in Table 3. Liu Y was the

most prolific author with 15 articles, followed by Guo YM with

13. Six authors had fewer than 10 publications. The highest co-

cited authors were Breiman L (N = 284), Hochreiter S (N = 155)

and Liu Y (N = 152).

Liu Y is not only the author with the most published articles,

but also the author with the top three citations. He is the

Chair of the Gangarosa Department of Environmental Health

at the Rollins School of Public Health, Emory University, and

a visiting professor at the School of Environment, Tsinghua

University. His main research interests include the application

of satellite remote sensing in air pollution exposure assessment;

the potential impact of climate change on population health;

Geographic Information System and spatial statistics. Guo YM,

the second most published researcher, Li SS, the third most

published researcher, and Chen GB, the eighth most published

researcher, are part of a research team. They are from the

Department of Epidemiology and Preventive Medicine, School

of Public Health and PreventiveMedicine atMonash University,

where they conduct research on environmental epidemiology,

global environmental change, air pollution and health, exposure

assessment, remote sensing modeling, and infectious disease

modeling.

Distribution of journals and co-cited
journals

The citing journals that published focused on veterinary

science, animal science, science, ecology, earth science,

and marine biology (see Supplementary material 3). The

cited articles focused on systems, computers, environments,

toxicology, and nutrition. Of the top 10 co-cited journals, three

of these contained articles that have been cited more than 500

times. Atmospheric Environment had the highest number of

citations (n= 958), followed by Science of the Total Environment

(n= 742) (Table 4).
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FIGURE 1

The distribution of the articles by year (N = 1,386). The search ended October 12, 2021.

TABLE 1 The top 10 countries/regions publishing research on

artificial intelligence and air pollution.

Rank Countries/regions Count Centrality

1 China 524 0.08

2 The United States 455 0.24

3 England 136 0.27

4 India 136 0.09

5 South Korea 109 0.04

6 Italy 89 0.14

7 Germany 78 0.05

8 China Taiwan 73 0.06

9 Spain 71 0.12

10 Australia 68 0.19

Distribution of keywords

The most frequent keywords were machine learning (N

= 462), air pollution (N = 410), and model (N = 224)

(Supplementary material 4). CiteSpace intelligently classified the

research topics into 15 clusters (Figure 2). The modularity (Q)

was 0.6023, which was higher than 0.3, indicating that the

cluster results were significant. The cluster 0 is the largest

cluster (concentration) and cluster 16 is the smallest one

(spatial assessment). In recent years, researchers have focused

on research about concentration, thermal comfort, air pollution

and theoretical prediction (Supplementary material 5). There

were eight keywords with the strongest citation bursts, which

TABLE 2 The top 10 institutions publishing research on artificial

intelligence and air pollution.

Rank Institutions Count Centrality

1 Chinese Academy of Sciences

(China)

58 0.06

2 Tsinghua University (China) 33 0.12

3 Wuhan University (China) 31 0.01

4 Peking University (China) 29 0.04

5 Nanjing University of Information

Science and Technology (China)

27 0.02

6 Zhejiang University (China) 27 0.04

7 Sun Yat Sen University (China) 25 0.04

8 Emory University (USA) 24 0.02

9 University of Chinese Academy of

Sciences (China)

23 0.01

10 National Aeronautics and Space

Administration (USA)

22 0.07

identifies hot topics (Figure 3). There were no hot topics

identified in 2020 or 2021.

Distribution of references

Among the top 10 co-cited references, one article was

co-cited more than 90 times. And only one article was co-

cited <50 times (Table 5). The map of reference clustering
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(Figure 4) showed that the collaborative networkmodularity was

0.9388 and the weighted mean silhouette score 0.974, which

are both considered very high (17, 18). Similar to the map

of keywords clustering (Figure 2, research on concentrations

PM2.5, was also the focus for reference clustering (Figure 4).

Figure 5 shows the top 25 references with the strongest citation

bursts. The first reference with citation bursts appeared in

2014, and the last reference with citation bursts appeared

in 2019.

TABLE 3 The top 10 authors and co-cited authors publishing research

on artificial intelligence and air pollution.

Rank Authors Number Co-cited Co-cited

authors number

1 Liu Y 15 Breiman L 284

2 Guo YM 13 Hochreiter S 155

3 Li SS 11 Liu Y 152

4 Li LF 10 Li X 124

5 Ma J 9 Zhang Y 123

6 Kloog I 9 Di Q 121

7 Fu HB 8 Van Donkelaar A 116

8 Chen GB 8 Hu XF 112

9 Lyapustin A 8 World Health Organization 108

10 Choi Y 7 Lecun Y 107

Discussion

Summary of main results

This study explored research trends on the application of

AI in the field of air pollution by using bibliometric analysis

and data visualization software. The number of studies on

the application of AI in the field of air pollution has risen

sharply since 2017. Research institutions in China and the

United States were the most active in this field, and most studies

were published in journals related to environmental science.

The research frontier was concentration prediction, especially

about PM2.5.

Countries and institutions producing
research on artificial intelligence

There may be several reasons for the dominance of Chinese

researchers in the field of AI and air pollution. Firstly, on July

8, 2017, China’s State Council issued the “New Generation of

Artificial Intelligence Development Plan,” which sets out the

guiding ideology, strategic targets, key tasks and safeguards

for the development of China’s new generation of AI in 2030.

This Plan highlights “intelligent environmental protection”—

namely the establishment of an intelligent monitoring big

data platform covering the atmosphere, water, and soil. As

well, this plan recommends the development of an intelligent

TABLE 4 The top 10 co-cited journals publishing research on artificial intelligence and air pollution.

Rank Co-cited journals Count Centrality Year IF2020 Category

1 Atmospheric Environment 958 0.04 2002 4.798 Meteorology and atmospheric sciences

Environmental sciences

2 Science of the Total Environment 742 0.04 2008 7.963 Environmental sciences

3 Environmental Pollution 558 0.03 2008 8.071 Environmental sciences

4 Environmental Science and Technology 460 0.06 1994 9.028 Engineering environmental

Environmental sciences

5 Environment International 446 0.05 2008 9.621 Environmental sciences

6 Atmospheric Chemistry and Physics 387 0.03 2014 6.133 Meteorology and atmospheric sciences

Environmental sciences

7 Environmental Health Perspectives 370 0.04 2003 9.031 Public, environmental, and occupational

health

Toxicology

Environmental sciences

8 Nature 353 0.03 2001 49.962 Multidisciplinary sciences

9 Environmental Research 345 0.01 2014 6.498 Public, environmental, and occupational

health

Environmental sciences

10 Machine Learning 339 0.08 2003 2.940 Computer science, artificial intelligence

IF, Impact factor.
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FIGURE 2

Map of the occurrence of keywords. The nodes in the map represent keywords. The lines between the nodes represent co-occurrence

relationships. The larger the node area, the higher the frequency. Each cluster was generated based on the number of keywords under one

research domain, not the frequency of keywords.

FIGURE 3

The top eight keywords with the strongest citation bursts. Keywords with a high frequency of citations are represented by red bars, and those

with a low frequency by green bars.

environmental monitoring network and service platform for

comprehensive coordination and information sharing. This

document also suggests a number of measures, including the

development of intelligent prediction models and early warning

programs for resource and energy consumption, as well as

environmental pollutant emissions. The marked increase in

AI-related publications from China since 2017 may reflect

the publication of this Plan (24). Secondly, there have been

significant advances in science and technology in recent years in

China. The China Internet Development Report (2021) released

by the Internet Society of China reports that the money invested

of the AI industry reached 48.0 billion dollars in 2020, an

increase of 15% per year since 2020, a rate slightly higher

than the global average growth rate (25). Thirdly, Zhu and Liu

predicted that China would overtake the United States as the

largest publication producer in 2020 or 2021, if all document
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TABLE 5 The Top 10 co-cited references on artificial intelligence and air pollution.

Rank Title Journal Year First author First author’s

affiliation

Centrality Count

1 Estimating PM2.5 concentrations in the

conterminous United States using the

random forest approach

Environmental Science

and Technology

2017 Hu XF University of Nevada Reno

(USA)

0.01 91

2 Long short-term memory neural network for

air pollutant concentration predictions:

Method development and evaluation

Environmental Pollution 2017 Li X Chinese Academy of Sciences

(China)

0.03 77

3 A deep CNN-LSTMModel for particulate

matter (PM2.5) forecasting in smart cities

Sensors 2018 Huang CJ Jiangxi University of Science

and Technology (China)

0.05 63

4 Assessing PM2.5 exposures with high

spatiotemporal resolution across the

continental United States

Environmental Science

and Technology

2016 Di Q Harvard T.H. Chan School of

Public Heath (USA)

0.05 62

5 A machine learning method to estimate

PM2.5 concentrations across China with

remote sensing, meteorological and land use

information

Science of the Total

Environment

2018 Chen GB Monash University

(Australia)

0.00 61

6 Deep learning Nature 2015 LeCun Y Facebook AI Research (USA) 0.02 54

7 Estimates and 25-year trends of the global

burden of disease attributable to ambient air

pollution: an analysis of data from the Global

Burden of Diseases Study 2015

Lancet 2017 Cohen AJ Health Effects Institute (USA) 0.00 54

8 XGBoost: A scalable tree boosting system KDD16: Proceedings of

the 22nd Acm Sigkdd

International Conference

on Knowledge Discovery

and Data Mining

2016 Chen TQ University of Washington

(USA)

0.00 53

9 Spatiotemporal prediction of continuous

daily PM2.5 concentrations across China

using a spatially explicit machine learning

algorithm

Atmospheric

Environment

2017 Zhan Y Zhejiang University (China) 0.01 51

10 Artificial neural networks forecasting of

PM2.5 pollution using air mass trajectory

based geographic model and wavelet

transformation

Atmospheric

Environment

2015 Feng X Peking University (China) 0.02 49

types were considered (26). Given this, it is likely that the

increased number of publications in China will have an impact

on publications in a variety of fields.

Although China has a high volume of publications, it has a

relatively low centrality of 0.08 compared to the United States

(0.24) and the England (0.27). Centrality is an index which

measures the importance of a node in a network and is

mainly used to measure the value of the bridge function of

the node in the entire network structure. Generally, nodes

>0.1 are considered relatively important (27). This indicates

that, despite the high volume of publications from Chinese

research institutions, there are few contacts among them, and

their connectivity in the overall connectivity is low. In addition,

there does not appear to be close cooperation among Chinese

research institutions in this field. More extensive cooperation

within China and among countries and research institutions

would greatly benefit the field of AI in air pollution.

Research authors and journals

This study shows that most of the co-cited journals

have an environmental science focus: the highest cited

journal is Atmospheric Environment which reaches nearly

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2022.933665
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Guo et al. 10.3389/fpubh.2022.933665

FIGURE 4

Map of references clustering. The nodes in the map represent references. The lines between the nodes represent co-occurrence relationships.

The larger the node area, the higher the frequency.

1,000 citations. Machine Learning is the only one of the

top ten journals which has a singular focus on Computer

Science Artificial Intelligence, and the lead researchers mainly

belong to the fields of public health and environmental

science. This suggests there is a great deal of room for

more inter-sectoral research, with input from a broader range

of scientists.

Research keywords

The keywords reflect the themes and core content of the

research. Themost common keywords could be divided into two

categories: artificial intelligence (including machine learning,

neural network and deep learning) and air pollution (containing

air pollution, air quality, exposure and particular matter). The

main research theme was prediction of the concentration of air

pollution and model analysis through AI technology. Fifteen

clusters were obtained with the mapping of keywords. The

nodes on the map of timeline viewer of keywords represent

one cluster of research and the denser the nodes are the

more researchers pay attention to the cluster. Thermal comfort,

which relates to indoor air pollution, is the earliest application

and the focus of current research. Thermal comfort refers

to the state that most people are satisfied with the objective

thermal environment both psychologically and physiologically.

Indoor air quality needs to be combined with thermal comfort,

where temperature, humidity, and pollutant concentrations are

considered in unison and indoor air quality and thermal comfort

are inseparable. Initially, traditional mathematical methods

were used to give precise definitions of the otherwise vague

boundaries between the various levels of thermal sensation.

As research progressed, machine learning methods (particularly

artificial neural network) were proposed to build algorithmic

models for evaluation (28). Artificial neural networks, which

are programmed similarly to the human brain, can process

large amounts of data. As data is collected, it is processed

by various layers in the program, much like neurons in the

human brain, and several types of artificial neural networks

are available. AI techniques are now also being used to

predict indoor thermal comfort. Moreover, the research on the

concentration of air pollutants is also a research hotspot. The

future research should be focus on the concentration prediction

of air pollution.
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FIGURE 5

The top 25 references with the strongest citation bursts. Articles with a high frequency of citations are represented by red bars, and those with a

low frequency by green bars.

Research references

The co-citation can reflect the researchers’ attention (22).

According to the citation analysis, seven articles predicted the

concentration of PM2.5 (16–18, 29–32), one study introduced

deep learning (33), one analyzed the global burden resulting

from environmental air pollution (34), one described a kind of

machine learning, namely Tree boosting (35). These authors of

high-cited researches mainly come from the United States and

China, similar to the countries publishing the most researches in

this field.

Deep learning is based on machine learning algorithms,

using multiple layers to progressively extract higher-level

features from the raw input (36). Learning can be supervised,

semi-supervised or unsupervised (37–40). As the map of

references clustering showed, the application of deep learning

(particularly artificial neural network) in air pollution has

attracted much attention (17, 18). It is also the frontier for

researchers to develop models for predicting air pollution

[including nitrogen dioxide concentration (41), sulfur dioxide

concentration (42), ozone density (43), carbon monoxide

concentration (44), and so on (45)]. In the past, research

hotspots included the study of air pollution in city streets

(46–48), epidemiological studies of the temporal and spatial

distribution of air pollution (49–51), and low-cost sensors

for air quality monitoring (52–54). Since 2020, there has

been publication of a large volume of literature on the

impact of lockdowns due to Coronavirus Disease 2019

(55–60).

Of the 25 references with the strongest citation bursts, eleven

articles focused on using AI methods to predict air pollutant

concentrations (31–33, 52, 61–67). In five articles, technologies

commonly used in environmental science (e.g., satellite-based

aerosol optical depth, satellite remote sensing) were combined

with AI models to predict air pollutant concentrations (68–

72). Four articles investigated the use of low-cost sensors in

air quality monitoring (52, 73–75). One article reviewed deep

learning in neural networks (38), another examined the status

of air pollution in China (76), and yet another computationally

analyzed the major outdoor air pollutants and their sources

(77). Srivastava and Salakhutdinov showed one specific artificial

intelligence technology (78). Li et al. analyzed the distribution

of phthalate esters in water and surface sediments of the

Pearl River Estuary (79). It further confirms the research

hotspot of predicting air pollutant concentrations. Furthermore,

low-cost air quality sensors, particularly mobile air quality

sensors, can assist people in recognizing the practical needs

of air quality monitoring. Unfortunately, there is a lack of

advanced technology to provide an accurate measurement

of current conditions. Using big data analysis, advanced
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algorithms and artificial intelligence techniques, air quality

sensors can now provide accurate outdoor air quality analysis

and real-time results (80, 81). Lim et al. showed that mobile

sampling in conjunction with multiple low-cost air quality

monitors could be applied to characterize urban street-level

air quality with high spatial resolution, and that machine

learning models could further improve model performance

(82). Air quality is dynamic and data accuracy can be ensured

through calibration, continuous monitoring and air quality

data analysis, which is essential to produce valuable and

actionable results and recommendations for health decisions

in real time.

Limitations

There are several limitations to this study. Firstly, although

we used the WOS for our bibliometric analysis, there are

other public and commercially available bibliometric databases,

such as Scopus. Due to its long history of construction and

the fact that it was the only bibliographic database available

before Scopus, the WOS database is currently quite well-

known on a global scale. Furthermore, the Scopus database

covers fewer articles published before 1996, which has some

limitations. And only the WOS database was taken into

consideration as the data source for this study because the

research institution where this research team is based has

only purchased access to it. Secondly, the keywords used in

the search strategy (e.g., particular matter, sulfur dioxide, and

nitrogen dioxide, etc.) related to specific contaminants in the

air, which may not lead to the identification of studies in all

aspects of air pollution. Thirdly, some top-ranked keywords

were uninformative in isolation (e.g., model, pollution, and

exposure) and thus could not be analyzed. Therefore, future

studies could employ broader search strategies to further explore

this literature.

Conclusion

Researches in the field of AI and air pollution are

expanding rapidly in recent years. The majority of scholars

are from China and the United States. But the United States

and the England contribute greatly to the development

of the cooperation network. The Chinese Academy of

Sciences is the dominant research institution. Cooperation

among research institutions appears to be suboptimal,

and strengthening cooperation could greatly benefit

this field of research. The prediction of air pollutant

concentrations, particularly combined use of AI and

environmental science method, low-cost air quality sensors,

indoor air quality, and thermal comfort are the current

research hotspot.
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