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From the beginning of the COVID-19 pandemic, it has claimed over 6 million

lives, and globally the pandemic rages with detrimental consequences, with

the emergence of newmore infectious and possibly virulent variants. A clinical

obstacle in this battle has been to determine when an infected individual

has reached a non-infectious state. Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) can be transmitted under diverse circumstances,

and various rules and regulations, along with di�erent testing methods, have

been applied in an attempt to confine the transmission. However, that has

proven to be a di�cult task. In this review, we take together recently published

data on infectivity and transmission of SARS-CoV-2 and have combined it with

the clinical experience that physicians in Iceland have accumulated from the

pandemic. In addition, we suggest guidelines for determining when patients

with COVID-19 reach a non-infectious state based on a combination of clinical

experience, scientific data, and proficient use of available tests. This review

has addressed some of the questions regarding contagiousness and immunity

against SARS-CoV-2.
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Initial infectious state

The average incubation period for SARS-CoV-2 is 2–7 days, with over

98% of symptomatic patients falling ill within 12 days (1–4). The different

variants of SARS-CoV-2 have different mean incubation times, the omicron

variant (B.1.1.529) has a mean incubation period of 3.2 days as compared to

4.4 days for the delta variant (B.1.617.2) (5). The delta variant also has a

shorter mean incubation period as compared to previous variants (6). The most

common way to diagnose COVID-19 infection is by using reverse transcription

polymerase chain reaction (RT-PCR) on samples collected from the upper respiratory

tract (nasopharyngeal and/or oropharyngeal swabs). SARS-CoV-2 virus in infected

individuals can be detected by RT-PCR for an average of 17.0 days in samples

taken from the upper respiratory tract, with the highest levels in the first week (7).
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The mean duration of viral shedding is variable depending on

what type of sample is being measured. Viral shedding can be

detected by RT-PCR in samples from the lower respiratory tract

for an average of 14.6 days while samples from stool are positive

for an average of 17.2 days (7).

In some cases, patients can remain SARS-CoV-2 positive

by RT-PCR for a prolonged time, up to 230 days in an

immunocompromised patient (8) but also in previously healthy

individuals for 60–110 days (9–11). However, it is unclear, in

these cases, whether the cause of prolonged viral shedding

is the retention of the virus in the body or re-infection.

It has been reported that patients with COVID-19 can be

tested negative after disease followed by a positive test (re-

detectable positive) both with the same and different variants

or even co-infected by multiple variants of the virus (12, 13).

Many individuals test positive for COVID-19 without showing

symptoms, after diagnosis, many patients develop symptoms,

but some remain asymptomatic. The reported percentage of

individuals that remain asymptomatic throughout the disease

varies widely. Based on testing in the general population and in

defined groups for COVID-19, the percentage of asymptomatic

COVID-19 positive individuals that do not develop symptoms

ranges from 12.2 to 62.5% (14–18). In addition, asymptomatic

infections of COVID-19 have been shown to be more common

when the SARS-CoV-2 virus has a specific mutation, the

11083G>T mutation (19). Symptomatic, pre-symptomatic,

asymptomatic individuals, and patients with COVID-19 can

transmit COVID-19 to others (20–22).

There are similar viral loads at the start of infection among

asymptomatic and symptomatic patients (7, 16) and viral load

does not seem to correlate with disease severity as there is no

statistical difference in viral load between asymptomatic and

hospitalized patients with COVID-19 (23). Higher viral load

in nasopharyngeal samples is more common in patients with

an unfavorable outcome; however, a high viral load is not an

independent risk factor for intensive care unit (ICU) admission

or death (24).

The viable SARS-CoV-2 virus, cultured in Vero cells, can

be isolated from the samples of patients with COVID-19 up to

24 days after symptom onset with more success in the earlier

days (25–29). Viable SARS-CoV-2 virus cannot be isolated from

all RT-PCR confirmed patients, as it is highly dependent on

a high viral load (27). The likelihood of isolating a viable

virus is significantly higher in the first week after the onset of

symptoms than in the second and after 10 days, the probability

drops to 6.0% (30). The virus is most commonly isolated from

nasopharyngeal swabs and sputum but has also been isolated

from saliva (25), endotracheal samples (28), stool (31), and

urine (32). The viable virus has been cultured in samples

from symptomatic, pre-symptomatic, asymptomatic, and re-

detectable positive patients with COVID-19 (33–35).

The infectivity of SARS-CoV-2 that varies among patients

with COVID-19 depends on multiple factors, such as

their vaccination status. However, the highest viral load

and infectivity are noted during the first 5 days of the

symptomatic state.

SARS-CoV-2 antibody response

Seroconversion following SARS-CoV-2
exposure has been under intense
investigation

Seroconversion (when antibodies against SARS-CoV-2 can

be detected) has been reported to be at around day 12

after the onset of symptoms with some individual variability

that is not associated with disease severity (36). The clinical

significance of the individual isotype responses has been

evaluated. Interestingly, higher immunoglobulin M (IgM),

immunoglobulin M (IgG), and immunoglobulin M (IgA) SARS-

CoV-2 specific antibodies have been associated with worse

clinical outcomes (37–41). Patients with high levels of IgG and

IgA anti-receptor-binding domain (RBD) antibodies were more

likely to require hospital admission, mechanical ventilation, and

fatal outcomes when compared to patients with lower levels.

Non-hospitalized patients also had lower neutralizing antibodies

(42). Patients with COVID-19 in the ICU had higher levels

of IgA for RBD, S1, and N protein when compared to non-

hospitalized patients (41).

It has become increasingly common to test for the presence

of SARS-CoV-2-specific antibodies in the serum of individuals.

It is performed for numerous reasons 1) to determine if an

individual has been infected with the SARS-CoV-2 virus, 2)

to determine the level of protection against re-infection, 3) to

determine the level of protection in vaccinated individuals, and

4) to determine if an individual is contagious or not. However,

it remains to be completely resolved if serological status against

SARS-CoV-2 can be used to determine the non-infectious

state. Excluding RT-PCR and measuring only antibodies for

SARS-CoV-2 are not sufficient to indicate whether an individual

has been infected in the first week of disease but after 21–35

days, the sensitivity of pooled IgG/IgM measurements rises to

96.0% (43).

The sensitivity and specificity of the various commercially

available SARS-CoV-2-specific serologic assay kits vary,

based on testing method and manufacturer. Currently,

there are at least 222 commercialized SARS-CoV-2 antibody

immunoassays that have received CE-in vitro diagnostic (IVD)

certification (44).

Immunological memory after COVID-19
and neutralizing antibodies

Immunological memory is formed after infection, but how

long the memory lasts is highly dependent on the type of
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infection. Neutralizing antibodies are of special importance as

they prevent the binding of the pathogen to the host cells. Studies

have shown that antibodies formed after COVID-19 last at least

6 months or more in most patients, but the level of antibodies

decreases with time (18, 45–47). Levels of IgG specific for the

spike protein of SARS-CoV-2 are stable for over 6 months and

the number of spike-specific memory B cells is higher 6 months

after infection when compared to 1 month (46, 48).

The half-life of anti-spike protein IgG antibodies has been

shown to be 184 days, with a shorter half-life for men (49). The

spike protein consists of the S1 and S2 subunits, with the RBD

situated within S1. The half-life of antibodies against different

parts of the spike protein differs, with antibodies against S1

having the shortest half-life at 115 days, 125 days for antibodies

against the RBD, and 344 days for antibodies against the S2

part (50).

The main neutralizing antibodies for SARS-CoV-2 have

been found to be directed against the spike protein of the virus

and the RBD domain, presumably, as they prevent respiratory

epithelial cellular entry by the virus (51). Although the majority

of today’s known neutralizing antibodies disrupts angiotensin-

converting enzyme 2 (ACE2) binding to the RBD, others have

been found to recognize epitopes outside this site (52). The

half-life of neutralizing antibodies against SARS-CoV-2 has been

documented to be from 90 to 114 days (46, 53). Only 20.2%

of the mean serum levels of SARS-CoV-2-specific antibodies

in convalescent and vaccinated individuals is needed to confer

a 50% protection against severe infection (53). Only time will

tell how the antibodies for SARS-CoV-2 are maintained in

the long term. However, it has been estimated that antibodies

will maintain a 50% protection against COVID-19 infection

for 1.5–2 years, while 50% protection against serious infection

would last several years (49, 53). This can clearly represent a

weakness in the efficacy of the vaccines, as the spike protein

is prone to mutate, making the SARS-CoV-2 virus more

infectious (54).

Vaccine targets

After the SARS outbreak in 2003, studies reported

neutralizing antibodies against the SARS-CoV spike protein

(55). Since both SARS-CoV and SARS-CoV-2 utilize the

attachment of spike protein to the human ACE2 receptor

to invade host cells, it is crucial to develop neutralizing

antibodies against the spike protein to induce protection against

SARS-CoV-2 infection (56). The spike protein thus became the

main target of vaccine development (52). Presently, Sputnik

V, ChAdOx1, Spikevax, BNT162B2, Vidprevtyn, VLA2001,

COVID-19 Vaccine Janssen, Nuvaxovid, and COVID-19

Vaccine from Sinovac all target the spike protein. This can

clearly represent a weakness in the efficacy of the vaccines, as

the spike protein is prone to mutate (57–59).

Recent results from a retrospective study based on the U.S.

registry have shown that transfusion of plasma with high anti-

SARS-CoV-2 antibody levels was associated with a lower risk

of death when compared to plasma with lower antibody levels

(60). In Iceland, RonapreveTM was used successfully in treating

patients against the first variants of concern. However, with the

emergence of the Omicron variant, the usefulness of many of the

monoclonal antibody biologicals is dwindling. SotrovimabTM

was effective against the BA.1 Omicron subvariant, but the

effectiveness against the BA.2 Omicron subvariant is negligible.

Examining the neutralizing antibodies in seropositive and

seronegative individuals after receiving the BNT162b2 mRNA

(Pfizer) vaccine, it was seen that individuals who had been

infected with SARS-CoV-2 produced antibodies with a higher

neutralization potency and were less susceptible to escape

variants of the virus. Suggesting that booster doses of the

vaccine that induced a higher frequency of memory B cells

are able to produce a broader range of neutralizing antibodies

and target the escape variants (61). Moreover, neutralizing IgG

and IgA antibodies have been detected in the breast milk of

lactating women, reaching stable levels 14 days after the second

dose (62). The third dose of BNT162b2 has also been shown

to have a 93% effectiveness in preventing COVID-19-related

hospital admission, 92% effectiveness in preventing against

severe disease, and 81% effectiveness in preventing death,

when compared to two doses administered at least 5 months

before (63).

The declining efficacy of BNT162b2 in protecting against

SARS-CoV-2 infections of the BNT162b2 vaccine has been

reported 6 months after being fully vaccinated (two doses),

the reason probably being due to waning immunity, rather

than new variants, such as Delta. Importantly, however,

the effectiveness of the vaccine in protecting against severe

disease and hospital admissions did not wane (64). A fourth

dose, administered 4 months after the third, has been

shown to be efficacious against symptomatic disease. It did

not show any substantial differences in humoral responses

when compared to the third, suggesting that the third

dose induced the maximal immunogenicity of the vaccine,

whereas the fourth dose was able to restore the antibody

levels (65).

The omicron variant harbors over 30 mutations in the

coding region for the spike protein (66). Models, validated

by experimental results, have suggested that the omicron

variant is 2.8 times more contagious than the delta variant

(67). This is of concern regarding the efficacy of the

current vaccines targeting the spike protein of the SARS-

CoV-2 virus. It has been shown that the efficacy of the

BNT162b2 vaccine is still maintained, although at a lower

level (68). One month (66, 69) after the second dose of the

mRNA-1273 vaccine, the neutralization titers were 35 times

lower against the omicron variant than the delta variant. While

a booster dose of the vaccine increased the neutralization
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FIGURE 1

Infectivity and non-infectivity of fully vaccinated, immune competent, patients infected with Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2). Flow chart depicting the suggested strategy on how to isolate SARS-CoV-2 infected individuals to minimize the likelihood of

releasing infectious individuals back into society. The flow chart takes into account that it is the last symptom or reverse transcription

polymerase chain reaction (RT-PCR) measurement (Cq value) that defines in what category the individual will place since patients will be in

di�erent stages of the disease when they are sampled. *It should be noted that the positive predicted value of the antigen test can vary and it

may therefore be important to confirm the diagnosis with RT-PCR. Created with BioRender.com.

titer against the omicron variant 20-fold when compared

to 1 month after the second dose of the vaccine (70).

Three doses of mRNA COVID-19 vaccine have also been

associated with protection against both the omicron and delta

variants (65, 71), with the fourth dose able to restore the

antibody levels comparable to the third dose, but not showing

any difference in the levels of omicron-specific neutralizing

antibodies (65).

Thus, it is clear that vaccines protect against infections

with SARS-CoV-2 and even though the virus mutates, they

still offer some protection against the new variants. However,

vigilance is needed offering the science community a challenge

to develop new vaccines tailored against new virus variants.

Even though initial vaccines offer less protection against newer

variants but they are still helpful as demonstrated by their

ability to protect against severe disease, hospitalization, and

death (72).

Is it possible to determine
non-infectivity?

A clear defining criterion when patients with COVID-19

cease to be infectious remains to be determined. This has a wide

range of implications, such as public health recommendations,

the safety of healthcare personnel, and international traveling to

name a few.

Scientifically validated guidelines on this matter are

required. Unfortunately, major differences exist between the

current guidelines, and they are everchanging. The most

common clinical and biological markers used to determine

non-infectivity are viral RNA copies, viable viral isolation,

symptom score, serology, and days from initial symptoms.

Viral viability studies are the gold standard but are not

practical for widespread use. Case studies where patients with

COVID-19 have been followed have shown that infectivity can
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TABLE 1 Determination of non-infectivity in relation to vaccination status and symptoms.

Vaccination status Symptoms Days of isolation until non-infectivy

Three dosesa No or mild symtpoms 5 days, no need for second PCR or antibody

measurements

Two dosesb No symptoms or low symtpoms 7 days, no need for second PCR or antibody

measurements

Partially and unvaccinatedc 10 days, no need for second PCR or antibody

measurements.

Serious COVID-19 disease, indipendent of

vaccionation status

Serious COVID-19 symptoms needing dexamethasone,

tocilizumab, ICU admission, respirator.

14 days and patient has N-protein specific antibodies

and/or 1 negative PCR test OR 21 days after diagonsis

aThree doses of vaccine or two doses of vaccine and recovered from COVID-19.
bTwo doses of vaccine or one dose of vaccine and recovered from COVID-19.
cNo vaccination or only one dose.

be maintained for a longer time than the 20-day transmission-

based precautions recommended by the Centers for Disease

Control and Prevention (CDC) (26, 73) or the 14–20 days of

isolation as recommended by the European Center for Disease

Prevention and Control (ECDC) for individuals with severe

symptoms (74).

The quantification cycle (Cq, also known as threshold

cycle (Ct)) value from the RT-PCR has also been used as a

surrogate marker for infectivity, where Cq < 35 is regarded

as positive. Thus, a value of <20 has been shown to correlate

with high viral load, whereas values of >35 might reflect a

low contagious state with no detectable viable virus (27, 75).

However, detection power is significantly affected by various

factors (76), such as sampling location, swab technique, days

from exposure, duration, and severity of symptoms among

others. It is also important to note that one sample only

gives a point estimate in time and the Cq values are most

likely low (high viral load) before symptom onset and in

the post-infectious state and as previously mentioned, re-

infections with SARS-CoV-2 are common. However, a meta-

analysis shows that a pooled estimate of how many people

are re-detectable positive, in a cohort of recovered COVID-19

patients post discharge, is 14.8% and that the time from onset

of symptoms to being re-detectable positive is 35.4 days (77).

COVID-19 could therefore have a longer disease duration than

previously thought.

Rapid antigen tests have significantly lower sensitivity and

specificity than RT-PCR assays. These have been suggested as

an alternative quick way to differentiate between contagious

and non-contagious individuals (78, 79). In addition, in a

comparative study of 122 CE-marked SARS-CoV-2 antigen

rapid diagnostic tests (Ag RDTs), 78.6% met the authors’ 75%

sensitivity criteria in samples with relatively high viral load

(Cq ≤ 25). Finally, only 20.8% met that criterion in samples

with moderate viral load (Cq >25 to <30) and the majority

were negative in samples with low viral load (Cq > 30).

A Cochrane review on rapid antigen tests shows that these

tests have a higher sensitivity for symptomatic patients with

COVID-19 than asymptomatic (72.0 vs. 58.1%, respectively)

and in patients that have Cq ≤25 than in those with higher

Cq (94.5 vs. 40.7%, respectively). In addition, in the first

week of symptoms, the average sensitivity of the rapid antigen

tests was higher than in the second week (78.3 vs. 51.0%,

respectively) (78). Another recent study found that the rate

of false negative rapid antigen testing was noted in 87 of the

807 tests. Furthermore, the negative predictive value correlated

strongly with the time of symptoms with a negative predictive

value of rapid antigen testing being 80–100% for symptoms

lasting < 5 days, whereas, the negative predictive value for

the longer duration was only 50% (80). Thus, since very high

viral load most often coincides with a symptomatic state,

it is clear that rapid antigen tests are, at best, only useful

in identifying potentially infected individuals with symptoms

highly suggestive of COVID-19 that should be corroborated

with PCR testing (81). It has been shown that if viral load

fell below 106 copies/ml in patients with COVID-19, it was

not possible to culture viable virus despite positive RT-PCR

up to day 28 (27). In addition, in an earlier report, it was

suggested that patients with Cq above 33–34 by RT-PCR

technology might not be contagious and might be used to

determine if they could be safely discharged or relieved from

strict confinement. Similar findings have been observed by

others suggesting that Cq values above 30–33 might be used

to define the viability of replicating the SARS-CoV-2 virus

(1). In addition, comparing Cq values between laboratories

can be problematic, as large variation has been found with

a quantitative comparison between samples (82). Where the

method of sampling and sampling location are of importance,

with the nasopharyngeal swabs still being the gold standard

while throat swabs are not recommended due to the low

sensitivity and positive predictive value (83). Thus, based upon

these and similar findings, this has been further stratified into

the following groups of viral load: high (Cq 17–25), moderate

(Cq 25–30), and low (Cq 30–36).
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Based on the data discussed above and the clinical

experience of the physicians managing the pandemic in Iceland,

a flow chart (Figure 1, Table 1) was created, proposing a strategy

on how to determine a low risk for viral transmission (non-

infectivity) in fully vaccinated individuals based upon their

symptomatic state. A similar strategy has already been proven

to be highly successful at Landspitali University Hospital in

Reykjavik, Iceland.

Concluding remarks

Numerous attempts have been made to provide evidence-

based protocols to establish non-infectivity, particularly for

determining when to stop quarantine of infected individuals,

when healthcare workers can return to work, and more

importantly for infected immunocompromised individuals.

While rapid antigen tests do not have the sensitivity

or specificity of RT-PCR tests, they can contribute to the

removal of asymptomatically infected or pre-symptomatic

SARS-CoV-2 spreading individuals from the general population.

In addition, in selected cases in asymptomatic individuals, in-

depth SARS-CoV-2-specific IgM/IgG/IgA levels might provide

a better overview of the individuals’ timeline of infectivity.

Thus, the suggested flow chart will hopefully provide some

insight into how to minimize the likelihood of releasing an

infected and contagious individual from all restrictions either

within the hospital or within general public settings.
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