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Background: The association between prenatal pesticide exposures and a

higher incidence of small-for-gestational-age (SGA) births has been reported.

No prediction model has been developed for SGA neonates in pregnant

women exposed to pesticides prior to pregnancy.

Methods: A retrospective cohort study was conducted using information from

the National Free Preconception Health Examination Project between 2010

and 2012. A development set (n = 606) and a validation set (n = 151) of the

dataset were split at random. Traditional logistic regression (LR) method and

six machine learning classifiers were used to develop prediction models for

SGA neonates. The Shapley Additive Explanation (SHAP) model was applied to

determine the most influential variables that contributed to the outcome of

the prediction.

Results: 757 neonates in total were analyzed. SGAoccurred in 12.9% (n= 98) of

cases overall. With an area under the receiver-operating-characteristic curve

(AUC) of 0.855 [95% confidence interval (CI): 0.752–0.959], the model based

on category boosting (CatBoost) algorithm obtained the best performance in

the validation set. With the exception of the LR model (AUC: 0.691, 95% CI:

0.554–0.828), all models had good AUCs. Using recursive feature elimination

(RFE) approach to perform the feature selection, we included 15 variables in

the final model based on CatBoost classifier, achieving the AUC of 0.811 (95%

CI: 0.675–0.947).

Conclusions: Machine learning algorithms can develop satisfactory tools for

SGA prediction in mothers exposed to pesticides prior to pregnancy, which

might become a tool to predict SGA neonates in the high-risk population.

KEYWORDS

small for gestational age, exposure to pesticides, machine learning, prediction,

environmental pollution

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.940182
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.940182&domain=pdf&date_stamp=2022-08-08
mailto:panhui20111111@163.com
mailto:cspumch@163.com
https://doi.org/10.3389/fpubh.2022.940182
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.940182/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bai et al. 10.3389/fpubh.2022.940182

Introduction

Small-for-gestational-age (SGA) newborns are defined as

birth weight below the 10th percentile of gestational age

standards based on a specific population (1, 2). Infants born

SGA are at increased risk for perinatal morbidity and mortality
(3, 4). Unrecognized SGA before birth is a major risk factor for
stillbirth (5), highlighting the importance of prenatal prediction

of SGA because it permits closer surveillance and timely delivery

to decrease adverse birth outcomes. In fact, the risk of stillbirth

can be significantly decreased, even by four times, if SGA

newborns can be detected before delivery (6).

Adverse environmental factors have been related to a

reduction in birth weight (7–9). The association between

prenatal pesticide exposures and reduced birth weight has been

reported in human studies. Women exposed to the highest

quartile of 4-nitrophenol were at increased risk of delivering

SGA neonates, with a relative risk of 3.81 (1.10, 13.21) (10).

Also, a case-control study in India demonstrated that prenatal

exposure to some organochlorine pesticides might impair fetal

anthropometric development, reducing birth weight, length,

head circumference, and chest circumference (11). Additionally,

it has been reported that pyrethroids exposure was associated

with a slower rate of fetal development at birth with SGA (12).

Fetuses could appear to be more susceptible to pesticide residues

than adults because of their rapid growth, developing organ

systems, and immature metabolic pathways (13). However, there

are no studies developing a tool for SGA prediction in mothers

exposed to pesticides prior to pregnancy.

Because of the inherent constraints of not incorporating

the underlying interactions between variables, risk prediction

models based on traditional statistical approaches have a

negative impact on their use and efficacy in big datasets with

numerous features (14, 15). However, machine learning (ML)

techniques, which could handle complicated relationships and

optimize prediction performance from complicated dataset, can

overcome these restrictions (16, 17). As for predicting the

risk of SGA, in a few studies, ML classifiers were used to

develop SGA prediction tools in the overall population (18–

22). Unfortunately, the prediction tools did not perform well,

with amaximum area under the receiver operating characteristic

(ROC) curve (AUC) of 0.7+. Besides, several paternal features

and maternal exposure to PM2.5 in pregnancy have been

reported as independent risk factors for SGA neonates (23–26).

Despite the fact that these associations have been confirmed,

the combination of them has not previously been included in

prediction tools.

In our study, based on a prospective cohort study from

the National Free Preconception Health Examination Project

(NFPHEP) in China, multiple ML algorithms were applied

to establish and validate prediction models for SGA neonates

in mothers exposed to pesticides in a living or working

environment prior to pregnancy.

Materials and methods

Dataset source

Data were obtained from the NFPHEP, a three-year project

initiated by the National Health Commission of the People’s

Republic of China and conducted in 220 counties across 31

provinces or municipalities from 1 January 2010 to 31 December

2012. The general design and implementation of the NFPHEP

were reported in previous publications (27–29). The goal of

the NFPHEP was to explore risk factors for poor birth and to

promote the health of mothers and their babies. The National

Quality Inspection Center for Family Planning Techniques

performed the quality control on all data before uploading

them to a nationwide electronic data collecting system. The

Institutional Review Committee of the National Research

Institute for Family Planning in Beijing, China, approved this

study (protocol code 2017101702), and all participants gave their

informed consent.

Study participants and features

This study included all singleton neonates with a full

birth record and a gestational age > 24 weeks, after which

cases whose mothers had self-reported exposure to pesticides

in their living or working environment prior to pregnancy

were selected. The final analysis comprised 757 newborns after

records with incomplete data and extreme characteristic values

were removed.

A pre-pregnancy checkup was performed, as well as a

pregnancy and postpartum follow-up. 142 features about the

parental demographic factors, style of living, family medical

history, existing health issues, laboratory tests, and newborn

birth data were obtained by face-to-face inquiry and assessment

conducted by experienced and certified personnel. Specifically,

the sociodemographic features including pregnancy history,

disease history, family history, medication status, living habits,

diet and nutrition status, occupational status, working and

living environment features, social-psychological features, and

interpersonal relationships of the participants were obtained

through medical history inquiry. Height, body mass index,

blood pressure, heart rate, thyroid palpation, cardiopulmonary

auscultation, abdominal palpation, limb spinal examination, and

reproductive system examination were obtained by physical

examination. Blood routine, urine routine, vaginal secretions,

blood type, blood sugar, liver function, kidney function,

thyroid function, hepatitis B test, rubella virus, cytomegalovirus,

toxoplasma, and treponema pallidum screening were obtained

through laboratory tests. The Chinese Center for Disease

Control and Prevention reported PM2.5 values for all counties

included, based on a historical PM2.5 estimate hindcast model

created by satellite-retrieved aerosol optical depth (30). Based on
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FIGURE 1

The overall process of data extraction, training, and testing. NFPHEP, National Free Preconception Health Examination Project; RFE, recursive

feature elimination; SHAP, Shapley Additive Explanation.

Chinese Neonatal Network, SGAwas defined as neonates having

a birth weight below the 10th percentile for the gestational age

and sex (31).

Study design

Figure 1 depicts the data processing flow. Python (version

3.8.5) was used to perform all of the analyses. For the

generation and testing of ML prediction models, the dataset

was randomly divided into a training set (80%, n = 606)

and a testing set (20%, n = 151). Initially, ML algorithms

included 142 related features (Supplementary Table S1) as

candidate predictor variables. Seven ML classifiers were used

to establish prediction models in this study. AUC, sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV) were used to assess the performances

of the seven ML algorithms. The results of the AUC metric

were used as the major parameter for evaluating the efficacy of

the ML algorithms.

The category boosting (CatBoost), gradient boosting

decision tree (GBDT), and extreme gradient boosting (XGBoost)

algorithms were chosen for the final prediction model since

they were the top three performing algorithms. To lower the

computational cost of modeling, recursive feature elimination

(RFE) was used to select 15 variables that contributed

significantly to the outcome from 142 variables, using CatBoost,

GBDT, and XGBoost as the estimators, respectively. The efficacy

of the RFE method has been confirmed in a variety of medical

studies (32–35). The 15 most important features were chosen

using a 5-fold cross-validation method. These 15 features were

added to prediction models and the model which performed

best among the three algorithms was chosen as the final

prediction model. The tuning of the hyperparameters utilized

grid search, and the used hyperparameters of the most effective

ML classifier (CatBoost) were learning rate = [0.001, 0.005,

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5], max depth = [2, 3, 4, 5, 6, 7,

8], l2_leaf_reg = range (1, 50, 1), max leaves = range (1, 50,

1). The features of the final model’s hyperparameter tunning

were learning rate = 0.01, depth = 5, l2_leaf_reg = 40, loss

function = Logloss, eval metric = Accuracy, grow policy =

SymmetricTree, model size reg = 0.5, max leaves = 32, random

state= 0.

In addition, we used the Shapley Additive Explanation

(SHAP) method to apply the post hoc explainability on the

prediction models based on CatBoost, GBDT and XGBoost

classifiers, in order to interpret the impact of variables on the

prediction outcome. SHAP uses game theory for evaluating

the impact of specific input variables to the outcome of a

certain model (36). Moreover, decision curve analysis (DCA)

was applied to evaluate the net benefit of the prediction models

based on CatBoost, GBDT and XGBoost algorithms.
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ML algorithms

A traditional logistic regression (LR) approach and six

widely usedML classifiers, including random forest (RF), GBDT,

XGBoost, light gradient boosting machine (LGBM), CatBoost,

and support vector machine (SVM), were used in this study

for data modeling. All these classifiers are the most prevalent

supervised ML approaches handling categorization problems.

Utilizing a sigmoid function to calculate logistic transformation

of the likelihood, the LR method is applied to estimate the

likelihood of the binary dependent variable (37). SVM aims to

generate a hyperplane. SVM’s primary purpose is to optimize

the distance between each class’s nearest points, known as

support vectors (38, 39). RF is an ensemble classification process

which uses majority voting to aggregate multiple decision trees

(40, 41). GBDT is built on decision tree ensembles and is

known for its precision, effectiveness, and interpretability. The

residue between the current prediction and the ground truth

is matched by a new decision tree that is trained for each step

(42). LGBM uses a histogram to aggregate gradient information,

which greatly increases the training efficiency (43). XGBoost is

a high-speed, high-performance distributed gradient boosting

library. It makes use of the second-order gradient, which

improves the approximation greedy search, parallel learning,

and hyperparameters (44). CatBoost provides a novel categorical

feature handling approach that can address gradient bias and

prediction shift (45).

Statistical analyses

The Chi-square or Fisher’s exact test was used to compare

categorical features that were expressed as numbers (%). The

two-tailed Student’s t-test was used to compare continuous

TABLE 1 Demographic characteristics of the subjects by the status of small for gestational age (SGA).

Parameters Overall

(n= 757)

Not SGA

(n= 659)

SGA

(n= 98)

P value

Gestational at birth, week 39.0 (39.0–40.0) 39.0 (39.0–40.0) 39.5 (39.0–40.0) 0.168

Male gender 384.0 (50.7%) 334.0 (50.7%) 50.0 (51.0%) 0.963

Birth weight, kg 3.4 (3.1–3.6) 3.5 (3.2–3.7) 2.5 (2.2–2.7) <0.001

Maternal age, year 26.0 (23.0–29.0) 26.0 (23.0–29.0) 27.0 (23.0–30.0) 0.487

Paternal age, year 28.0 (24.0–32.0) 28.0 (24.0–32.0) 28.0 (24.3–32.0) 0.392

Maternal height, cm 158.8± 5.3 158.9± 5.3 157.8± 5.7 0.055

Paternal height, cm 170.0 (167.0–173.0) 170.0 (167.0–173.0) 170.0 (165.0–172.0) 0.046

Maternal BMI, kg/m2 21.6 (19.8–23.7) 21.6 (20.0–23.7) 21.3 (19.5–23.5) 0.229

Paternal BMI, kg/m2 22.2 (20.8–24.1) 22.2 (20.8–23.9) 22.0 (20.6–24.5) 0.447

Maternal education level

Below junior high school 714.0 (94.3%) 619.0 (93.9%) 95.0 (96.9%) 0.442

Senior high school 39.0 (5.2%) 36.0 (5.5%) 3.0 (3.1%)

Bachelor’s degrees and above 4.0 (0.5%) 4.0 (0.6%) 0.0 (0.0%)

Paternal education level

Below junior high school 700.0 (92.5%) 608.0 (92.3%) 92.0 (93.9%) 0.838

Senior high school 49.0 (6.5%) 44.0 (6.7%) 5.0 (5.1%)

Bachelor’s degrees and above 8.0 (1.0%) 7.0 (1.0%) 1.0 (1.0%)

Paternal smoking status

Quitting smoking 486.0 (64.2%) 429.0 (65.1%) 57.0 (58.2%) 0.012

Reduced smoking 154.0 (20.3%) 138.0 (20.9%) 16.0 (16.3%)

The same or increased smoking 117.0 (15.5%) 92.0 (14.0%) 25.0 (25.5%)

Maternal interpersonal pressure

None 635.0 (83.9%) 557.0 (84.5%) 78.0 (79.6%) 0.380

Mild 98.0 (12.9%) 81.0 (12.3%) 17.0 (17.3%)

Severe 24.0 (3.2%) 21.0 (3.2%) 3.0 (3.1%)

Paternal interpersonal pressure

None 632.0 (83.5%) 556.0 (84.4%) 76.0 (77.5%) 0.045

Mild 96.0 (12.7%) 82.0 (12.4%) 14.0 (14.3%)

Severe 29.0 (3.8%) 21.0 (3.2%) 8.0 (8.2%)

BMI, body mass index. Data are presented as median (interquartile range), mean (standard deviation) or number (%).
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features that had a normal distribution, expressed as mean

[standard deviation (SD)]; otherwise, the median (interquartile

range [IQR]) andWilcoxon Mann-Whitney U test were applied.

Models’ AUC, sensitivity, specificity, PPV, and NPV were

evaluated. The performances of the ML classifiers were assessed

by the AUCs in the development and validation sets. Statistical

significance was defined as a two-sided p-value < 0.05. All

statistical analyses were performed using Python (version 3.8.5).

Results

Baseline characteristics

From 1 January 2010, to 31 December 2012, the NFPHEP

database recorded 757 neonates whose mothers were exposed to

pesticides prior to pregnancy. There were 98 SGA births (12.9%)

among the 757 neonates. Table 1 displays the demographic

features of the study subjects. The findings of comparing the

142 candidate features for predictors in the database are listed in

Supplementary Table S1. Overall, the neonates in the cohort had

a median gestational age of 39.0 weeks (IQR: 39.0–40.0). SGA

neonates had a significantly lower birth weight [2.5 kg (2.2–2.7)]

than non-SGA neonates [3.5 kg (3.2–3.7)]. In comparison to the

non-SGA group, significant lower paternal height was observed

in the SGA group [170.0 cm (165.0–172.0) vs. 170.0 cm (167.0–

173.0)]. In addition, proportion of fathers who did not quit

smoking during pregnancy in the SGA group was significantly

higher than that in the non-SGA group (25.5% vs. 14.0%).

Moreover, the proportion of fathers with severe interpersonal

pressure in the SGA group was significantly higher than that in

the non-SGA group (8.2% vs. 3.2%).

Performance evaluation of classification
models

The training dataset (n = 606) was used to develop the

models based on LR, RF, GBDT, XGBoost, LGBM, CatBoost,

and SVM algorithms, and the testing dataset (n = 151) was

used to evaluate their SGA prediction performances. The ROC

curve assessment of ML classifiers in the validation set is

shown in Figure 2. Overall, the CatBoost model achieved the

top AUC value in the testing set, with an AUC of 0.855 [95%

confidence interval (CI): 0.752–0.959]. For SGA prediction,

all models had a acceptable AUC: CatBoost (AUC: 0.855,

95% CI: 0.752–0.959), GBDT (AUC: 0.831, 95% CI: 0.704–

0.958), XGBoost (AUC: 0.791, 95% CI: 0.662–0.921), RF (AUC:

0.787, 95% CI: 0.647–0.928), LGBM (AUC: 0.778, 95% CI:

0.643–0.912), and SVM (AUC: 0.752, 95% CI: 0.610–0.894),

with the exception of LR (AUC: 0.691, 95% CI: 0.554–0.828).

Furthermore, Table 2 includes the AUCs in the development and

validation sets, as well as sensitivity, specificity, PPV, and NPV of

FIGURE 2

Receiver operating characteristic (ROC) curves of the seven

machine learning (ML) models in predicting small for gestational

age (SGA) in the testing dataset. SVM, support vector machine;

GBDT, gradient boosting decision tree; LGBM, light gradient

boosting machine; XGBoost, extreme gradient boosting;

CatBoost, category boosting.

each model. Model sensitivity, specificity, PPV, and NPV varied

from 0.600 to 0.733, 0.650 to 0.956, 0.186 to 0.625, and 0.952 to

0.964, respectively.

Feature selection and final prediction
model

The RFE approach was applied to choose 15 features that

contributed significantly to the prediction outcome from the

142 features to lower the modeling’s computational expense.

CatBoost, GBDT, and XGBoost classifiers were chosen as the

estimators for RFE since they were the top three performing

algorithms. After selecting 15 features using these three

algorithms to model, respectively, the AUC values in the

testing set of the models based on CatBoost, GBDT, and

XGBoost were 0.811 (95% CI: 0.675–0.947), 0.803 (95% CI:

0.665–0.942), and 0.789 (95% CI: 0.643–0.935), respectively.

Therefore, the CatBoost model, which achieved the highest

AUC result in the comparison of the three models, was

chosen as the final prediction model. The 15 variables in

the final model were maternal blood type, paternal blood

type, maternal exposure to PM2.5 during the late pregnancy,

maternal alanine aminotransferase (ALT) prior to pregnancy,

paternal smoking status in the first trimester, maternal folacin

intake, maternal thyroid-stimulating hormone (TSH) prior to

pregnancy, maternal economic pressure prior to pregnancy,
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TABLE 2 Performance of models by di�erent algorithms in predicting small for gestational age (SGA) neonates.

Model AUC AUC Sensitivity Specificity PPV NPV

Training Testing Testing Testing Testing Testing

LR 0.841 0.691 0.733 0.650 0.186 0.957

SVM 0.763 0.752 0.600 0.869 0.333 0.952

RF 0.943 0.787 0.733 0.781 0.268 0.964

GBDT 0.997 0.831 0.667 0.956 0.625 0.963

XGBoost 0.992 0.791 0.667 0.818 0.286 0.957

LGBM 0.994 0.778 0.667 0.774 0.244 0.955

CatBoost 0.991 0.855 0.667 0.912 0.455 0.962

AUC, area under the receiver-operating-characteristic curve; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; RF,

random forest; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; LGBM, light gradient boosting machine; CatBoost, category boosting.

paternal life/work stress prior to pregnancy, paternal ALT prior

to pregnancy, maternal age, maternal secondhand smoking prior

to pregnancy, paternal economic pressure prior to pregnancy,

paternal secondhand smoking prior to pregnancy, and maternal

contraception prior to pregnancy. The final prediction model’s

ROC curve results in the development and validation set

are shown in Figure 3. The AUC results in the development

and validation dataset, sensitivity, specificity, PPV, and NPV

in the validation dataset were 0.962 (95% CI: 0.943–0.980),

0.811 (95% CI: 0.675–0.947), 0.667, 0.898, 0.417 and 0.961,

respectively, demonstrating the effectiveness of the utilized ML

algorithm and feature selection method. Additionally, the DCA

result demonstrated the benefit of the final ML model for

the prediction of SGA newborns (Supplementary Figure S1).

Moreover, the ROC curves, feature selection results, and

DCA results of the GBDT and XGBoost models are shown

in Supplementary Figure S1 and Supplementary Figures S3–6.

Most of the features in the final CatBoost prediction model,

including maternal blood type, paternal blood type, maternal

exposure to PM2.5 during the late pregnancy, paternal

smoking status in the first trimester, maternal ALT, maternal

TSH, paternal ALT, maternal economic pressure and paternal

economic pressure prior to pregnancy, also contributed

significantly in the GBDT and XGBoost model.

Post-hoc interpretation results

The final prediction model’s SHAP graphic based on

CatBoost algorithm was drawn to determine the variables with

the most impact on the outcome (Figure 4). The importance

of the features was shown on the y-axis from top to bottom,

while mean SHAP values were exhibited on the x-axis. Each dot

was a sample. If the variable had a high (low) value, the plot

was highlighted in red (blue). The 5 most critical variables were

maternal blood type, paternal blood type, maternal exposure

to PM2.5 during the late pregnancy, maternal ALT prior to

FIGURE 3

Receiver operating characteristic (ROC) curves of the final

machine learning (ML) model using CatBoost algorithm

generated after recursive feature elimination (RFE) in predicting

small for gestational age (SGA).

pregnancy, and paternal smoking status in the first trimester.

The mean SHAP value of each feature in the final prediction

model is shown in Supplementary Figure S2.

Discussion

This is the first research to apply ML classifiers in the

establishment and testing of tools for SGA prediction in

mothers who were exposed to pesticides prior to pregnancy.

Paternal features and maternal pregnancy exposure to PM2.5

were also creatively incorporated as prediction features in our

ML models. The results demonstrate that in comparison to

the traditional LR method, ML classifiers can generate more
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FIGURE 4

The Shapley Additive Explanation (SHAP) values for the most important predictors of SGA in the final model. The abscissa is the SHAP value,

which shows the degree of impact on the outcome. Each dot represents a case. If the feature’s value is high (low), the plot is colored red (blue).

ALT, alanine aminotransferase; TSH, thyroid stimulating hormone.

accurate prediction models, with the CatBoost model showing

the top SGA prediction performance (AUC: 0.855), indicating

the use of ML classifiers to predict SGA is a viable method.

The ML prediction model might be used to provide a prenatal

prediction of SGA neonates in order to improve perinatal

outcomes and effectively manage at-risk pregnancies.

To safeguard crops in the agricultural planting region,

pesticides are extensively utilized. Pesticide usage is estimated to

be over 3.5 million tons per year globally, with China using 1.8

million tons of pesticides in 2015, making it one of the countries

with the highest overall pesticide usage (46). Among them,

common pesticide types include organophosphorus pesticides,

carbamate pesticides and organochlorine pesticides (46, 47).

With increased exposure to pesticides, the percentage of SGA

newborns rose. Prenatal exposure to pesticides, such as 4-

nitrophenol, organochlorine, organophosphate, and pyrethroid

pesticides, could impair fetal anthropometric development and

reduce birth weight, resulting in an increased risk of delivering

SGA neonates (10–12, 48, 49). Pesticides have been found

in amniotic fluid, demonstrating they may pass the placenta

and cause non-negligible fetal exposures (50–52). Fetuses could

appear to be more susceptible to pesticide residues than adults

because of their rapid growth, growing organ systems, and

immature metabolic pathways (13). Specifically, organochlorine

pesticides have been linked to growth retardation due to

their genotoxic, immunotoxic, endocrine disrupting, cytotoxic,

and fetotoxic effects (53). Through disrupting glyceraldehyde,

organophosphorus pesticides could have a negative impact on

birth weight (54). However, to the best of our knowledge,

no prediction tool has been established for SGA neonates in

mothers who were exposed to pesticides prior to pregnancy. We

compared seven ML classifiers’ performances for SGA (Table 2).

CatBoost algorithm achieved the greatest AUC value (0.855)

among these models, followed by GBDT, XGBoost, RF, and

LGBM. But with an AUC of 0.691, the LR model got the lowest

AUC. This might be as a result of the LR approach’s sensitivity

to outliers and need for a big dataset in order to function

well. Furthermore, LR model’s performance might be harmed

by the unbalanced dataset. Our findings demonstrated that in

comparison to traditional LR method, the ML algorithms were
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more effective in predicting SGA neonates in women who had

been exposed to pesticides prior to pregnancy (AUC: 0.855

vs. 0.691).

The prediction of SGA newborns held considerable promise

with the help of advanced ML classifiers. The cause behind

it was that traditional modeling approaches failed to discover

interactions between predictors that may occur. The advanced

ML algorithms explored in our present work might resolve

such problems. The automated handling of multidimensional

and multivariable data by ML algorithms might uncover unique

correlations between certain features and SGA outcomes, as

well as discover trends that would otherwise be ignored by

researchers (55). In addition, a robust SGA prediction model

(AUC: 0.811, Figure 3) could be established using only 15

features, including parental demographic features, accessible

medical test indices, and local PM2.5 exposure, suggesting

suitable variables were chosen from 142 candidate variables

using the RFE method. The RFE approach is a backward

elimination technique based on wrappers that recursively

computes the learning function to generate a recursive ranking

of a given feature set (56). The efficacy of the RFE algorithm

has been fully confirmed in a variety of medical studies

(32–35, 57, 58).

Although there is evidence of familial influence in the

cause of SGA births, the majority of studies have focused on

maternal factors. Paternal factors, which can also potentially
predict adverse birth outcomes, have received far less attention.

In fact, several paternal determinants, including paternal age,
height, race, level of education, and smoking status, are proven

to be risk factors for SGA births (23, 24, 59–62). Furthermore,

high-level ambient PM2.5 has been associated with an increased

risk of SGA, proving the adverse effect of ambient PM2.5 on

fetal growth (25, 26). These features, however, were not taken

into account in prior SGA prediction tools developed in the

overall population. We found that paternal blood type, smoking

status, life/work stress, ALT, economic pressure, secondhand

smoking status, and maternal exposure to PM2.5 during the

late pregnancy were all among the 15 most important variables,

implying that paternal factors and pregnant women’s exposure

to PM2.5 played an important role in SGA newborns prediction

in the study subjects.

SHAP method was applied to explain the influence of the

selected features on the outcomes of prediction models. The

SHAP values reflected the influence distribution of each variable

on the model outcome (Figure 4). For example, a high maternal

ALT level increased the risk of SGA newborns. A similar pattern

was shown by the variables maternal economic pressure and

paternal economic pressure. Also, A lower level of maternal TSH

before pregnancy decreased the risk of SGA. On the contrary,

a lower level of maternal PM2.5 exposure in the last trimester

was associated with an increased risk of SGA. Besides, paternal

continued smoking during pregnancy, maternal secondhand

smoking before pregnancy, and paternal secondhand smoking

before pregnancy were also associated with an increased risk

of SGA newborns. Maternal blood type O was related with

an increased risk of SGA. Blood type O has been reported to

be an independent risk factor for preeclampsia and gestational

diabetes mellitus, which may explain the relationship between

maternal blood type and SGA (63, 64). Also, reduced fetal

growth has been related to increased maternal ALT level in

recent studies (65). Additionally, both maternal and paternal

smoking have been considered to be linked to an increased risk

of delivering SGA newborns (66–68), which is consistent with

our results. Chronic fetal hypoxia caused by smoking as well as

placental vasoconstriction and increased apoptosis of placental

syncytiotrophoblasts caused by nicotine have been proposed as

the hypothesized mechanisms (69, 70). A higher maternal TSH

concentration has also been proven to be associated with a lower

birth weight (71). Moreover, lower income and less-privileged

social class have been associated with higher risk of having SGA

births because of the fact that fetal development could be affected

by maternal emotional and psychological environment (72, 73).

However, the association between maternal PM2.5 exposure

and SGA contradicts previous studies, which may be caused

by the difference of PM2.5 concentrations. The average PM2.5

concentration in previous studies from developed countries

ranged from 1.82 to 22.11 µg/m3, which is less than one-third

of the mean level of our study (74).

There are several limitations in this study. Firstly, despite

the fact that the data was obtained nationally, the sample size

was small, which might imply bias. Secondly, the dataset lacked

information on the type of pesticides and average daily exposure

in mothers’ living or working environment prior to pregnancy.

Besides, data lacked information on the ultrasonic biometric

measurements. Including these data in the prediction model

might increase the model’s accuracy and applicability. To better

understand the real value of the ML model in predicting SGA

neonates, theML prediction model still has to be tested and used

in actual clinical settings.

Conclusions

In this work, seven ML algorithms were used to build

prediction models for SGA neonates in mothers exposed to

pesticides prior to pregnancy. The results suggest that ML

algorithms perform well in the classification of SGA neonates.

Using feature selection and optimization approaches, the final

prediction model using the CatBoost algorithm shows good

performance on the prediction for SGA (AUC: 0.811) solely

utilizing 15 variables, including parental demographic features,

accessible medical test indices, and local PM2.5 exposure.

Moreover, SHAP analysis enhanced the interpretation of the

impact of the chosen variables to the categorization of SGA

neonates, complementing the prediction findings. In high-risk

populations, the prediction model based on ML algorithms

might be a potentially effective tool for predicting the delivery

of SGA neonates.
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