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Huanhuan Jia and Xihe Yu*
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Objective: This cross-sectional research aims to develop reliable predictive

short-term predictionmodels to predict the number of RTIs in Northeast China

through comparative studies.

Methodology: Seasonal auto-regressive integrated moving average (SARIMA),

Long Short-Term Memory (LSTM), and Facebook Prophet (Prophet) models

were used for time series prediction of the number of RTIs inpatients. The

three models were trained using data from 2015 to 2019, and their prediction

accuracy was compared using data from 2020 as a test set. The parameters of

the SARIMA model were determined using the autocorrelation function (ACF)

and the partial autocorrelation function (PACF). The LSTM uses linear as the

activation function, the mean square error (MSE) as the loss function and the

Adam optimizer to construct the model, while the Prophet model is built on

the Python platform. The rootmean squared error (RMSE), mean absolute error

(MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the

predictive performance of the model.

Findings: In this research, the LSTM model had the highest prediction

accuracy, followed by the Prophet model, and the SARIMA model had the

lowest prediction accuracy. The trend inmedical expenditure of RTIs inpatients

overlapped highly with the number of RTIs inpatients.

Conclusion: By adjusting the activation function and optimizer, the LSTM

predicts the number of RTIs inpatients more accurately and robustly than

other models. Compared with other models, LSTMmodels still show excellent

prediction performance in the face of data with seasonal and drastic changes.

The LSTM can provide a better basis for planning and management in

healthcare administration.

Implication: The results of this research show that it is feasible to accurately

forecast the demand for healthcare resources with seasonal distribution

using a suitable forecasting model. The prediction of specific medical service

volumes will be an important basis for medical management to allocate

medical and health resources.
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Introduction

Background

Deaths and injuries from road traffic accidents (RTAs) are

a serious global public health problem. According to the World

Health Organization, more than 1.35 million people died from

road traffic injuries (RTIs) worldwide in 2018. Notably, RTAs

fatalities in developing countries are more than three times

higher than in developed countries (1). Reducing RTAs and

fatalities in developing countries has become a major common

concern in the field of road traffic safety and public health

worldwide (2).

As the world’s most populous developing country, China

has experienced a rapid expansion of its road network and the

number of private cars in the last decade (2). At the same

time, the incidence of RTAs is increasing yearly (3, 4). In

2003, the National Road Traffic Safety Law was introduced and

implemented by the Chinese government to effectively manage

transport and kerb the rise in RTAs (5). The enactment of this

law has improved the traffic situation in China to a large extent,

but a large number of RTIs still occur each year. According to

data released by the National Bureau of Statistics, there were

247,646 RTAs nationwide in 2019, with 62,763 fatalities and

256,101 injuries, resulting in direct property damage of RMB 134

million (6).

Motivation and objectives of the research

It is clear that China is facing a huge challenge posed by

the RTAs. This challenge comes from two main sources. Firstly,

there is the challenge of transport security, where the large

number of RTAs is seriously undermining China’s transport

efficiency (7, 8). On the other hand, the drain on healthcare

funding from RTIs is testing the ability of China’s healthcare

administration to allocate healthcare resources (9). Improving

the statistical accuracy and predictive accuracy of the number

of RTIs is an important task in addressing these issues (10).

Therefore, policymakers urgently need a reliable predicting

methodology that provides decision makers with early estimates

of future RTIs and resulting healthcare expenditure based on

historical time series data so that they can assess the potential

risks (11).

Road safety policies and interventions should be based on an

accurate assessment of the RTIs burden and projections of future

trends, which are often influenced by the quality of the data,

the correct estimation of parameters and the correct modeling

approach (12). To this end, we propose using comparative

research to develop an optimal prediction model for the number

of RTIs in Northeast China to provide a basis for the allocation

of health care resources by the health care sector.

Research methodology

In previous studies, various conventional methods have

been applied to estimate and predict RTAs-induced mortality in

China. Researchers have often used the seasonal autoregressive

integrated moving average (SARIMA) to predict the time series

of RTIs mortality in China (13–16). The advantage of this

model is that it is simple to model and requires few data

(16). It is therefore widely used in the predicting of various

time series. Other researchers have used linear models, gray

models, and other methods to predict deaths due to RTIs (4, 14).

The results obtained from this type of research are not very

accurate and can reflect limited information. In recent years,

with the widespread use of machine learning techniques, more

researchers have used machine learning models to research

the prediction of road traffic injuries in China (17). The use

of models such as extreme gradient boosting (XGBoost) (18),

Elman recurrent neural network (ERNN) (12, 19), and long and

short-termmemory networks (LSTM) (16, 20–23) have all led to

significant improvements in RTIs prediction. The introduction

of machine learning techniques provides more options for

predictive research in RTIs. The relatively complex modeling

approach of machine learning models, however, makes it

necessary to model different problems individually. Facebook

Prophet (Prophet) (24, 25) is a model that has performed very

brightly in many time series prediction studies in recent years

and has achieved good results in the field of disease prediction.

There is no research related to the application of this model to

the prediction of RTIs.

Novelty of research

The limitations of each of these studies make them of

limited value as a reference for healthcare administration.

Firstly, previous studies have focused on the number of deaths

and mortality rates. Healthcare administration has focused

more on the number of RTIs inpatients and the cost of care.

Secondly, the scope of previous studies was usually defined as

the whole of China, whereas the specific trends and conditions

of RTIs in different regions of China vary greatly and have

little practical application to different regions. This research is

more informative to policy makers from a health care resource

perspective than traditional studies that focus only on deaths

in RTIs.

In addition, there is a lack of studies related to regions in

China that are relatively economically backwards and severely

aging, especially in Northeast China. In order to fill this gap in

these regions, this research takes the number of RTIs inpatients

in Jilin province in Northeast China as the research object and

uses three time series models, SARIMA, LSTM, and Prophet,

for comparative analysis to obtain the model with the most

accurate prediction effect of RTIs inpatients in Jilin province.
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Jilin province is the most representative region in Northeast

China, and using this region as the research sample is well-

representative. It provides a more reliable theoretical basis for

later research.

Thesis structure

In this research, the data were first divided into training

and test sets. SARIMA, Prophet, and LSTM prediction models

were built using the training set data and the prediction

results were obtained separately. This research compares the

prediction results of the three prediction models by comparing

the difference between the prediction results of the three

prediction models and the test set data, and discusses the

practical usefulness of the prediction models in actual healthcare

resource allocation.

Methods

RTIs inpatients data collection

The data used in this research were obtained from inpatient

data of general hospitals in Jilin Province aggregated by the

Jilin Provincial Health and Wellness Commission. The data

include the time of admission, the reason for admission and the

healthcare expenditure of the inpatients. Patients were selected

for the research by screening those whose reason for admission

to the hospital was a RTAs. Data was obtained on the number

of patients admitted to the hospital as a result of RTAs between

2015 and 2020 and their spending during their treatment. Data

on a total of 24,885 patients admitted to hospital for RTIs were

included in this research (Supplementary Material).

This research uses three leading models—seasonal

autoregressive integrated moving average (SARIMA), Long

Short-Term Memory (LSTM) and Facebook Prophet (Prophet)

models—to analyze the number of RTIs inpatients. Data

from 2015 to 2019 were used as the training set to train the

model, and data from 2020 were used as the test set to test

the model’s predictive effectiveness. Figure 1 shows the typical

architecture of the proposed model to predict the future count

of RTIs inpatients.

SARIMA model

ARIMA model is an Autoregressive (AR) model, moving

average (MA) model and ARMA model are commonly used

models in the processing of time series, and these three models

are suitable for the analysis of stationary time series, but it is

difficult to analyze the time series studied when there is an

upwards or downwards trend. The ARIMA model, also known

as Box-Jenkins model (26), is an extension of AR, MA, and

ARMAmodels. The formula of the ARIMA model is as follows:



































φ (B)∇dxd = θ (B) εt

E (εt) = 0, Var (εt) = σ 2
t ,E (εtεS ) = 0, s 6= t

Exsεt ,∀s < 1

B denotes the backwards operator, and εt denotes the error term

at time t. The model contains three parameters namely p, d,

and q, p means autoregressive, d means degree of non-seasonal

difference and q means order of moving average. When time

series show no strong seasonal trend, the ARIMA model can

predict accurately, but when time series have strong seasonal

effect, the seasonal ARIMA model (SARIMA) is required (16).

The formula of the SARIMA model is as follows:

∇d∇D
S xt =

θ(B)φs(B)

φ(B)φs(B)
εt

Where, xt denote the time series, ∇ denote the difference

operation, B denote the backwards shift operator, s is the period

length, and εt is the white noise sequence. The three parameters

p, d, and q have the same meaning as the parameters in the

ARIMA model, parameters P, D, Q, and s represent seasonal

autoregressive, seasonal degree of difference, seasonal order of

moving average and seasonal period length, respectively. We

first observe the stationarity and seasonal periodicity of the time

series, and then eliminate and stabilize the seasonal period of the

time series by differential processing. After that, autocorrelation

function (ACF) and partial autocorrelation function (PACF)

pictures of the difference sequence are drawn to determine the

parameters p and q of the model. We chose the model with the

smallest Akaike Information Criterion (AIC) as the final model,

then evaluated the fitting effect of the model by detecting the

white noise of the residues.

Facebook Prophet model

The Prophet model is an additive model for time series

predicting that was open sourced by Facebook Inc. in 2017 (27).

According to Google’s official presentation, it works best with

time series that have strong seasonal effects and several seasons

of historical data (24). Prophet is robust to missing data and

shifts in the trend and typically handles outliers well (28). The

model quickly became a hot time series model upon its release.

Themodel splits the time series into three main components: the

seasonal term St, the trend term Tt and the residual term Rt:

yt = St + Tt + Rt
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FIGURE 1

Architecture of the RTIs predictive model.

Additionally, the Prophet model incorporates the effect of

holiday h(t) to meet the needs of the actual scenario:

yt = g (t) + s (t) + h (t) + εt

The model is robust to missing data and outliers and fits a wide

range of data relatively well, making it a popular time series

predicting model among data analysts.

LSTM model

The LSTM model is a neural network model based on an

improved RNN neural network. RNN are widely used for time

series prediction, but they are hardly competent for long-term

data-dependent problems (22). Hochreiter and Schmidhuber

proposed the LSTM model in 1997 to improve the RNN model

with memory units to overcome its limitations in long-term

data dependence (29). The memory unit is self-linking, stores

the network time state and is controlled by three gates: input

gate, output gate and forget gate. Input gates and output gates

work to control the flow of inputs and outputs from the memory

unit to the rest of the network. In addition, forgetting gates are

added to the memory unit, which passes output information

with high weights from the previous neurone to the next

neurone. LSTM neurons have memories within their pipeline

that can store previous information, update the information,

and pass it to the next layer or cell without losing information

(Figure 2).

1. Forgetting gate: The function of the forgetting gate is to

determine the information that needs to be retained or

discarded in the middle and previous layers. The forgetting

gate function can be expressed as follows:

ft = σ

(

Wf , · ,
[

ht−1, , , xt
]

,+, bf

)

2. Input gate: The input gate is followed by the forgetting gate,

which updates the data and collates it into the storage unit

by means of an activation function. The specific formula is

as follows:

it = σ
(

Wi, · ,
[

ht−1, , , xt
]

,+, bt
)

3. Output gate: The output gate determines the output of

the model with the weight of the control state Ct to the

current LSTM implicit layer. The initial output is obtained

by the activation function and then the output values

are normalized by the tanh function. The expression is

as follows:

ot = σ
(

Wo, · ,
[

ht−1, , , xt
]

,+, bo
)

.
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FIGURE 2

The LSTM cell consists of an input gate, an output gate and an oblivion gate. A and B are activation functions.

ht = ot · tanh (Ct) .

4. Memory Cell: The memory cell uses the candidate values

generated by the activation function and then updates the

memory state in combination with the input information

from the input gate and the current state information. The

calculation formula is as follows:

C̃t = tanh
(

Wc, ·,
[

ht−1, , , xt
]

,+, bC
)

.

In the above formulas, σ presents activation function. Wf, Wi,

Wc, Wo denote the weight values of the forgetting gate, the input

gate output gate and the memory unit. bf, bi, bc, bo denote the

deviation of each component. They are all generated by random

initialization function.

A loss function is a way for a computer machine to learn

the difference between the predicted and true values of a model.

As machine learning models are prone to over-fitting during

training, and over-fitting of the model to the input set data leads

to a reduction in the generalization ability of the model. Looking

at the input set and output set loss functions is the main means

of determining whether a model is over-fitted (30). The input set

loss function is generally considered to be larger than the output

set loss function. In this research, Mean Squared Error (MSE) is

used as the loss function (31) with the following equation.

MSE =

∑n
i=1 (Xi − X̂i)

2

n

Xi is the actual value, X̂i is the fitting values or predicted value, i

= 1. . . n and n is the number of observation.

Model evaluation

Two indexes measure the prediction performance of the

models: Root Mean Squared Error (RMSE), Mean Absolute

Percentage Error (MAPE) and Mean Absolute Error (MAE).

RMSE tends to be dominated by larger values, the MAE and

MAPE give a good indication of the error between the predicted

and true values (32–34).

RMSE =

√

∑n
i=1 (Xi − X̂i)

2

n
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FIGURE 3

Number and healthcare expenditure of RTIs inpatients for the period 2015–2020.

MAE =

∑n
i=1

∣

∣

∣
Xi − X̂i

∣

∣

∣

n

MAPE =

∑n
i=1

∣

∣

∣
Xi−X̂i

∣

∣

∣

Xi
× 100

n

Xi is the actual value, X̂i is the predicted value, i= 1. . . n and n is

the number of observation.

Data and analysis

Data from January 2015 to December 2019 were used as

the training set for the construction of the SARIMA model and

the Prophet model. Data from January 2015 to December 2018

were used as the input set January to December 2019 as the

output and to train the LSTM model. MSE was used to define

the loss function. The loss function of the model in the input

set output set is plotted to determine if the model is over-fitted.

Finally, RTIs predictions for 2020 were made using the three

completed training models and compared with the true value

of the number of RTIs inpatients in 2020. The accuracy of the

model predictions was judged by comparing the RMSE and

MAE of the three models.

Excel 2016 was used to build the monthly database of RTIs

inpatients in Jilin Province, and Python 3.8.8 software was used

to build the SARIMA model, LSTMmodel and Prophet model.

Results

Statistical results

As shown in Figure 3, the number of RTIs inpatients is

represented by the blue line, and the red line represents the total

monthly healthcare expenditure caused by RTIs inpatients. It is

clear from Figure 3 that the trend in total healthcare expenditure

is highly consistent with the number of inpatients. The statistics

show a gradual decrease in average healthcare expenditure for

RTIs inpatients between 2016 and 2019, but an increase in

healthcare expenditure in 2020 due to COVID-19. The statistics

show that the average healthcare expenditure of RTIs inpatients

saw a large increase between 2015 and 2016. The average

healthcare expenditure for RTIs inpatients gradually decreases

between 2016 and 2019, before once again showing a significant

rise in 2020. The medical expenditure of patients hospitalized

with RTIs is reported in Table 1. The medical expenditures of

patients hospitalized with RTIs vary considerably due to the

degree of injury. In contrast, the mean and median medical

expenditure for inpatients with RTIs did not vary significantly

each year.

SARIMA model

A dataset of RTIs inpatients in Jilin Province in Python,

using 2015 to 2019 data as the training set and 2020
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TABLE 1 The healthcare expenditure arising from RTIs in Jilin Province from 2015 to 2020.

2015 2016 2017 2018 2019 2020

Maximum 935,866.8 847,102.3 868,335.4 916,696.8 566,297.9 912,172

Minimum 33.27 50.5 49.34 19 7.5 6

Mean 29,908.97 50,232.74 42,422.14 36,734.02 34,335.39 43,454.7

Q1 4,858.538 7,075.955 6,847.453 5,856.933 5,978.21 7,955.33

Median 13,152 27,712.31 22,004.19 18,998.58 18,013.31 19,147.01

Q3 39,305.65 64,587.82 52,659.97 40,473.39 49,811.57 57,307.12

FIGURE 4

ACF and PACF images of the SARIMA (1,1,0), (2,1,3)12 model.

data as the test set, the SARIMA model was tested for

predictive effectiveness.

The Dickey-Fuller test was used to demonstrate that the data

were non-stationary (p = 0.136). After first-order differencing

and seasonal differencing, the SARIMA model determines

the three parameters of p, d, and q from ACF and PACF

images (Figure 4). The parameters of the final model are then

determined by means of a minimum AIC (AIC = 101.79). The

final model for the final number of road accident admissions was

determined to be SARIMA (1,1,0), (2,1,3)12.

The Ljung-Box test was used to test whether the residuals of

the model conformed to a normal distribution, with a p-value

of 0.32. Therefore, the original hypothesis cannot be rejected

(H0: residuals are normally distributed). The residuals were

analyzed by plotting ACF plots of the residuals, Q-Q plots of

the residuals and histograms of the residuals (Figure 5). The
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FIGURE 5

Residual analysis of the SARIMA (1,1,0),(2,1,3)12 model.

residuals of the model SARIMA (1,1,0), (2,1,3)12 models are

normally distributed, which indicates that all the information in

the data is extracted by the SARIMA model.

Prophet model

This research uses the training data to build the Prophet

model in Python 3.7. We implemented the trend model

with a saturating growth, and the carrying capacity of the

logistic growth model was set as 8.5. The change-points were

automatically selected and the number of change-points was set

as 25. We set the interval width as 0.8. The parameters of the

Prophet model are shown in Table 2.

LSTM model

The LSTM neural network was modeled using Python

3.7. To improve the training efficiency of the model, we first

TABLE 2 Prophet and LSTM parameters and their values.

Method Parameters Values

LSTM Layers 3

No. of neurons {16,32,64}

Learning rate 0.01

Dropout 0.3

Optimizer Adam

Batch size 3

Maximum Epochs 1,000

Activation Function Linear

Prophet Growth Logistic

Changepoint Range 0.8

Holidays CN

Changepoint Prior Scale 0.05

normalized the data before feeding it into the LSTMmodel. The

main parameters in the LSTMmodel are the activation function,
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dropout, batch size, epoch, neurones in the hidden layer and

the optimizer. The maximum number of iterations of the model

is 1,000, and the model stops training when the loss function

is <0.075. The parameters of the LSTM model are shown in

Table 2.

Figure 6 shows the performance of the loss functions for the

training and test sets, with the red line being the training set loss

function and the blue line being the test set loss function. The

loss values of the training and test sets decreased at the same

time. In most cases, the loss value of the training set was smaller

than that of the training set. The results show that the LSTM

model is well-trained and does not show any over-fitting.

Comparison of models

We used the trained SARIMA, Prophet, and LSTM models

to predict the number of RTIs inpatients in 2020 and compared

them to the test dataset. The predictive performance of the

model was evaluated by calculating the RMSE, MAE and MAPE

between the three predicted and actual values. Table 3 reports the

evaluation results for the SARIMA, Prophet, and LSTMmodels.

Table 4 shows the actual values vs. the predicted values from the

three models. Figure 7 visualizes the predicted and actual values

of the SARIMA, Prophet, and LSTMmodels.

From these results, it can be seen that the LSTM model

performs the best, the Prophet model the second best and the

SARIMA model the worst.

Discussion

Monthly trends in the number of RTIs inpatients in Jilin

Province from 2015 to 2020 show a clear seasonal pattern.

The number of RTIs reported from other regions in China

also showed a clear seasonal pattern, but the high incidence

season was different (35–38). The reasons for this difference

may be the result of a combination of factors such as the

length of daylight, alcohol consumption, recreational driving,

and possible inclement weather (39).

Statistical analysis of health expenditure data shows that

the average expenditure of RTIs inpatients changed significantly

between 2015 and 2016, with the cost of treatment decreasing

each year for the next 3 years. The main reason for this change

is the abolition of the drug mark-up reform system that came

into effect in 2016 (40, 41). The results from 2016 show that this

system has succeeded in curbing the rapid increase in treatment

costs. The increase in costs in 2020 is mainly due to the overall

increase in healthcare expenditure as a result of the COVID-

19 epidemic (42). In addition, the trend in total healthcare

FIGURE 6

Loss function for LSTM models.
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TABLE 3 LSTM, Prophet, and SARIMA prediction e�ect evaluation

parameters.

LSTM Prophet SARIMA

(1,1,0), (2,1,3)12

RMSE 46.12 143.58 208.95

MAE 39.93 121.2717 191.48

MAPE 20.26% 71.04% 92.82%

TABLE 4 Actual values vs. predicted values from the three models.

Mouth Actual LSTM Prophet SARIMA

January 259 225.29 379.84 408.59

February 64 148.88 349.81 361.90

March 276 223.70 388.75 363.91

April 287 267.50 407.86 528.79

May 268 299.20 486.73 602.42

June 332 379.61 503.07 601.83

July 487 448.03 562.20 663.29

August 551 504.08 560.51 668.26

September 501 510.49 564.63 658.03

October 571 490.83 543.43 621.43

November 377 359.91 451.45 541.87

December 197 214.41 371.83 447.52

expenditure is highly consistent with the trend in the number of

RTIs inpatients. This suggests that accurate predicting of RTIs

inpatient can be a useful tool for healthcare resource planning.

At the same time, the prediction of the number of patients is

more in line with the needs of DRG reform in China.

This research observed a very significant decrease in the

number of RTIs inpatients in Jilin Province in the first 3 months

of 2020 compared to previous years. This is due to the severe

travel control measures implemented in Jilin Province during

this period. In the second half of 2020, as travel controls were

lifted, the number of RTIs admissions gradually returned to the

average for the same period in previous years. This phenomenon

has been replicated in other parts of China, and management

policies can have a very significant impact on RTIs incidence

(43–45). The government can achieve the goal of reducing the

number of RTIs occurrences by imposing reasonable regulatory

measures (46, 47).

Theoretical of predictive model

In principle, the SARIMA model has shown its effectiveness

and advantages in capturing linear trends in seasonal series

compared to auto-regressive integrated moving average and

exponential smoothing models, and can be easily developed

by many data analysis software. SARIMA is one of the most

effective linear models for forecasting seasonal time series (13).

However, the drawbacks of SARIMA models are also apparent.

When generating a smooth time series, it is usually necessary

to pre-process a large amount of longitudinal data and use

appropriate transformation techniques, such as differencing and

transformation, to stabilize the variables before modeling (48).

Although the SARIMA model can capture linear trends in

seasonal time series, it may not accurately predict RTIs because

of the non-linearity of the data and the various influences

associated with traffic fatalities. In contrast, the LSTM model is

one of the RNNmodels that can approximate the ideal accuracy

for complex non-linear functions of real-world data.

In this research, the advantage of the LSTM in the

comparison of the three models is very clear, and the reason for

this phenomenon may have a lot to do with the characteristics

of the data (49–51). In previous studies using additive models

such as SARIMA models and Prophet, one is often dealing

with more stable data. SARIMA and Prophet models have a

strong advantage in dealing with time series data with significant

seasonality. However, some researchers have pointed out that

these models are less resistant to disturbances (16, 52), and in

this research, there was a very large drop in the data for the first 3

months of 2020, which led to a relatively large deviation of these

two models. LSTM models can be adapted to more application

scenarios by calling different activation functions, which also

makes them more resistant to disturbances than traditional

additive models, and when external factors (16). This also

makes the LSTM model more resistant to disturbances than the

traditional additive model, so that when external factors change

significantly, the LSTM model can still make reliable predicts

(21). In this research, the difference between the prediction

accuracy of the LSTMmodel and the traditional model becomes

more significant due to the large change in the number of RTIs

inpatients in 2020. It is worth mentioning that the predicted

values given by the three models for the second half of 2020

are closer to the true values. This provides some evidence that

the SARIMA and Prophet models are able to obtain satisfactory

prediction results in a stable seasonal time series.

Advantages and limitations

Admittedly, there are some limitations to this research.

Firstly, the data for this research was sourced from the healthcare

finance system of the Jilin Provincial Health and Wellness

Commission. The data from this system is derived from hospital

reporting and there may be selection or omission bias, which

may affect the accuracy of the predictions. Secondly, our

research focuses on the north-eastern Chinese city of Jilin, and

the results obtained in this research are of considerable referable

value in areas with similar natural, social and environmental

factors. However, the reference value is limited for regions where
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FIGURE 7

Visualizations of predicted and actual values for SARIMA, Prophet, and LSTM models.

natural, social and environmental factors differ significantly.

Finally, although the LSTM model has obvious advantages in

terms of prediction accuracy, the training time and modeling

complexity of this model are much greater than those of the

other two models.

Policy recommendations

Based on this, we propose the following policy

recommendations: (1) Introducing effective traffic control

policies or optimizing the urban traffic layout by the relevant

authorities can achieve efficient traffic flow. (2) Improving the

infrastructure of urban traffic and improving the possibility

of roads can effectively reduce RTAs. (3) Establishing green

channels can improve the speed of handling RTIs inpatients.

The timely treatment of people injured in an accident not

only improves the effectiveness of treatment but also reduces

the corresponding healthcare expenditure. (4) Analyzing the

high incidence of RTAs in cities through the use of big data

tools and carrying out targeted transformation and diversion

of these areas can reduce the number of RTAs. This research

demonstrated that the LSTM model can accurately predict the

number of RTIs inpatients in Jilin Province. This suggests that

we can use this model to effectively predict the demand for

services in different subgroups of the DRG in Jilin Province in

the future so that during the process of DRG reform, a more

scientific and effective budget allocation can be made.

Conclusion

By adjusting the activation function and optimizer, LSTM

predicts the number of inpatient RTIs more accurately and

more robustly than other models. Compared with other models,

LSTM models still show excellent prediction performance in

the face of data with seasonal and drastic changes. Proper

use of LSTM model can provide a better basis for planning

and management by healthcare administrations. As China

is the largest developing country in the world, the present

research results are of strong value to developing countries in

similar situations.
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