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The brain tumor is an urgent malignancy caused by unregulated cell division.

Tumors are classified using a biopsy, which is normally performed after the

final brain surgery. Deep learning technology advancements have assisted the

health professionals in medical imaging for the medical diagnosis of several

symptoms. In this paper, transfer-learning-based models in addition to a

Convolutional Neural Network (CNN) called BRAIN-TUMOR-net trained from

scratch are introduced to classify brain magnetic resonance images into tumor

or normal cases. A comparison between the pre-trained InceptionResNetv2,

Inceptionv3, and ResNet50 models and the proposed BRAIN-TUMOR-net is

introduced. The performance of the proposedmodel is tested on three publicly

available Magnetic Resonance Imaging (MRI) datasets. The simulation results

show that the BRAIN-TUMOR-net achieves the highest accuracy compared

to other models. It achieves 100%, 97%, and 84.78% accuracy levels for three

di�erentMRI datasets. In addition, the k-fold cross-validation technique is used

to allow robust classification. Moreover, three di�erent unsupervised clustering

techniques are utilized for segmentation.

KEYWORDS

MRI, CNN, segmentation, classification, brain tumor classification, deep neural

networks, pre-trained models, transfer learning

1. Introduction

The terminology of “brain tumor” involves the growth of abnormal cells in brain

tissues. It is a grouping or bulk of abnormal brain cells (1). The skull, which acts as a

protective shield for the brain, is extremely rigid. Any growth inside such a confined

place might be dangerous. Brain tumors are categorized as being malignant (cancerous)

or benign (not cancerous). There are two types of brain cancer: primary and secondary. A

primary brain tumor develops within the brain, where many brain tumors in their early

stages are not hazardous. A secondary brain tumor, also known as a metastatic brain

tumor, occurs when cancer cells move from another organ, such as the lung or breast, to

the brain.
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A primary brain or spinal cord tumor develops within the

brain or spinal cord. Primary malignant tumors of the brain

and spinal cord have been detected in 24,530 people in the

United States (13,840 males and 10,690 females). The likelihood

of developing this type of tumors within one’s lifetime is less

than 1%. Approximately, 85–90% of all early malignancies are

brain tumors. According to Cancer Net (2), brain or central

nervous system tumors were detected in about 3,460 children

under the age of 15. Pressure or headache around the tumor, loss

of balance, and problems with fine motor skills are all symptoms

of brain tumors. According to Cancer Net (2), a pineal gland

tumor can induce vision alterations such as loss of eyesight,

double vision, and inability to gaze upward.

Several researchers compared Computed Tomography (CT)

with MRI for brain tumor diagnosis. MRI is more sensitive

but less specific (3). There is an ability with MRI to detect

abnormalities that are undetected or just faintly visible on CT.

When CT scans indicate only a hazy aura, MRI may be used

to confirm the tumor exact scope and location. Additionally,

MRI with superior contrast discrimination and the ability to

record images at several levels can aid in pinpointing the precise

site of the lesion with respect to important neuroanatomical

structures. As a consequence, we propose a framework for brain

tumor detection from MRI datasets with multiple deep learning

models.

The main problem considered in this paper is the

classification of different brain tumor cases from magnetic

resonance images based on segmentation after a first

classification stage. This paper is concerned with the utilization

of CNN models with different learning strategies for brain

tumor detection. First, we consider the transfer-learning-based

approach for brain tumor detection from magnetic resonance

images. Different pre-trained deep learning models, namely,

InceptionResNetv2, Inceptionv3, and ResNet50 are considered

and compared for the task of brain tumor detection from

magnetic resonance images. The second approach is the training

of a proposed CNN model called BRAIN-TUMOR-net from

scratch. The classification gives a decision about the case,

whether anomalous or not. After that, the suspicious area is

segmented. Three different datasets have been considered with

different sizes and characteristics (4–6). The main achievement

of this approach is the high accuracy of classification with

simple implementation.

2. Related work

Several machine and deep learning algorithms have been

proposed for detecting brain tumors from magnetic resonance

and CT images. Several findings confirm the importance of

MRI and image processing tools to identify brain tumors. The

MRI scanners are used to create images of organs in the body,

for cases such as fractures, bone dislocations, lung infections,

pneumonia, and COVID-19.

Sindhumol et al. (7) introduced an approach for improving

brain tumor classification from magnetic resonance images

using spectrum angle-dependent feature extraction and Spectral

Clustering Independent Component Analysis (SCICA). The

magnetic resonance images are firstly divided into clusters

depending on spectral distance. Then, Independent Component

Analysis (ICA) is applied on the clustered data. A Support

Vector Machine (SVM) is used for the classification process.

Rating was done using T1 weighted, T2 weighted, and proton

density fluid inversion recovery images. To determine the

stability and effectiveness of SC-ICA-based classification, a

comparison with ICA-based SVM and other conventional

classifiers was performed. For a recurrent lesion, ICA-based

SVM analysis achieves 98% for accuracy. Hemanth et al. (8)

introduced a CNN-based automated segmentation approach.

This approach comprises pre-processing, average filtering,

segmentation, feature extraction, and a Neural Network (NN)

for classification. An accuracy of 91% has been attained. Mallick

et al. (9) suggested an image compression strategy based on a

Deep Wavelet Auto-encoder (DWA). A Deep Neural Network

(DNN) is employed in the classification phase. An accuracy of

96% has been acquired.

Anaraki et al. (10) presented an approach for MRI brain

tumor identification based on CNNs and Genetic Algorithms

(GAs). In addition, an ensemble approach was used to

reduce the variation of prediction error. For classifying three

glioma grades, an accuracy of 96% was obtained. Nalepa

et al. (11) provided an end-to-end classification approach

for Dynamic Contrast-Enhanced Magnetic Resonance Imaging

(DCE-MRI). This strategy attained a 99% accuracy. Amin

et al. (12) presented an automated approach for detecting

brain tumors from MRI datasets. For the segmentation of

potential lesions, several approaches have been used. For

the classification procedure, the SVM classifier was used.

It achieved an average accuracy of 98%. Gupta et al. (13)

developed a non-invasive approach for tumor identification

from T2-weighted MRI. Pre-processing improves the magnetic

resonance images, which were then segregated using the

multilayer customization of the Otsu thresholding technique.

From the segmented image, several textural and form features

are recovered, and two dominant ones are chosen using an

entropy measure.

Sumitra and Saxena (14) introduced an NN technique for

identifying magnetic resonance images for brain. It is divided

into three steps: feature extraction, dimensionality reduction,

and classification. Using Principal Component Analysis (PCA),

important characteristics such as mean, median, variance, and

correlation values of maximum and minimum intensity are

obtained from magnetic resonance images. An NN is built

depending on back-propagation. The classifier classifies images

as normal, benign, or malignant based on the category to which

they belong. The classification accuracy on a brain imaging

testing dataset was 73%. Using GAs and an SVM, Jafari and

Shafaghi (15) developed a hybrid approach for categorizing
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brain tumor tissues in MRI datasets. The introduced system

has four stages. Noise reduction and contrast enhancement are

done during pre-processing in the first stage. The second stage

involves segmentation. Morphological operations are used to

remove the skull from the images. The selection and extraction

of features is the third stage. The features are classified into

four categories: static features, Fourier and wavelet transform

histograms, and a mixture of them. The features are chosen

using GAs. Finally, the selected features are fed into the SVM

classifier, which achieves an accuracy of 83.22% in detecting

normal and abnormal activities.

Jayachandran and Dhanasekharan developed a hybrid

algorithm for diagnosing brain tumors from magnetic

resonance images, based on statistics and SVM classifiers (16).

Noise reduction, feature extraction, feature reduction, and

classification are the four utilized steps of this algorithm. To

reduce noise and prepare the image for feature extraction, the

anisotropic filter is used. Using the Gray Level Co-occurrence

Matrix (GLCM), the texture features are then extracted. The

extracted features are then reduced using PCA. Finally, an SVM

classifier is utilized for classification. It yields an accuracy of

95.80%. Selvapandian et al. (17) proposed a Non-Sub-Sampled

Contourlet Transform-based (NSCT) method for brain tumor

diagnosis. The classification procedure is carried out using the

Adaptive Neuro Fuzzy Inference System (ANFIS). After that,

morphological functions are used to segment the tumor sections

in the glioma brain images.

A learning-based system for robust and automated nucleus

segmentation with shape preservation was suggested by Xing et

al. (18). Initial deep CNN filtering is followed by iterative region

merging segmentation using a selective sparse shape model.

It makes use of the benefit of faster computations, making

it suitable for real-time applications. This system achieves a

sensitivity of 89% and an accuracy of 85%. Narayana and Reddy

(19) introduced a median filter GA segmentation technique

for the segmentation operation. With an SVM classifier, the

GLCM is used including the features. An accuracy of 91.23%

has been obtained. Zaw et al. (20) developed an algorithm for

detecting tumor locations in distinct brain magnetic resonance

images, and predicting whether or not the discovered region

is a tumor. Pre-processing, pixel removal, maximum entropy

cut-off, statistical feature extraction, and a Naive Bayes classifier

are used. The accuracy of this algorithm was 94%. Veeramuthu

et al. (21) proposed a Combined Feature and Image-based

Classifier (CFIC) for brain tumor classification. This approach

was evaluated using the kaggle brain tumor detection 2020

dataset. It has given a sensitivity, a specificity, and an accuracy

of 98.86, 97.14, and 98.97%, respectively.

An algorithm for detecting brain tumors was developed by

AstinaMinz and ChandrakantMahobiya. It revealed lower error

rates and required less training time, but it has a limitation that

it can only optimize the margin for features that have previously

been described (22). This algorithm achieved an accuracy of

FIGURE 1

Block diagram of proposed methodology for brain tumor

detection and segmentation.

89.90% and a precision of 74%. Raju et al. (23) used Bays scan

fuzzy clustering segmentation, information-theoretic scatters,

and wavelet features for brain tumor diagnosis. An accuracy

of 93% has been achieved. Sert et al. (24) presented Single

Image Super Resolution (SISR) and a Maximum Fuzzy Entropy

Segmentation (MFES) method for brain tumor detection and

segmentation. For feature extraction and classification, the

ResNet model and the SVM were employed, respectively. An

accuracy of 95% has been obtained. Deepak et al. (25) presented

a classification technique for extracting features from brain

magnetic resonance images based on transfer learning with

GoogLeNet. To categorize the extracted features, the SVM

classifier was used. The presented method achieved an accuracy

of 98%.

3. Materials and methods

3.1. Datasets

Three different datasets of MRI brain tumors are used

to evaluate the proposed approach. The datasets are briefly

described in this section. There are 155 images for tumor

cases and 155 images for normal cases for the first MRI

brain tumor dataset (4). The second MRI brain tumor dataset

(5) includes 1,500 images for tumor cases and 1,500 images

for normal subjects. The third MRI brain tumor dataset (6)

comprises 5,504 images for tumor cases and 6,159 images for

normal subjects.

The proposed approach is shown in Figure 1. Magnetic

resonance images are used as input to the proposed brain tumor
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detection approach. Different CNN-based models combined

with segmentation techniques, namely, transfer-learning-based

models and an end-to-end CNN model have been studied and

compared. As previously indicated, the ResNet50, Inceptionv3,

and InceptionResNetv2 were used in the transfer-learning-

based models. The k-fold stratified cross-validation was used

to train the BRAIN-TUMOR-net model from scratch. An

input layer, three convolutional layers, three Rectified Linear

Unit (ReLU) layers, and three Batch Normalization (BN)

layers make up the proposed BRAIN-TUMOR-net model

structure. For dimensionality reduction, two pooling layers

are employed. A Fully-Connected (FC) layer, a softmax

layer, and a classification layer are used at the end of the

model.

3.2. Transfer-learning-based approach

Deep learning from scratch is a time-consuming process

that requires data classification and division. Transfer learning

is ideal for removing the huge strain of this process. According

to the input characteristics, transfer learning causes little

modifications in deep pre-trained networks. The used dataset

is partitioned into two datasets randomly, with a 75/25

training/testing ratio. The pre-trained models were loaded, and

the BN, ReLU, and softmax layers were substituted for the last

three FC layers.

3.3. State-of-the-art CNNs for transfer
learning

Recent CNNmodels for brain tumor detection are addressed

in this section.

• ResNet. Deep residual learning network is a new tool

for training very deep neural networks. Identity mapping

is used for shortcut connections in the deep residual

learning network. It is a new way for training very deep

neural networks. In a range of computer vision challenges,

ResNet exceeded the state-of-the-art networks and won the

ImageNet ILSVRC 2015 classification competition.

• Inceptionv3. Its architecture is based on Szegedy et

al. publication “Rethinking the Inception Architecture

for Computer Vision” (2015), which presented an

improvement to the inception module to enhance

ImageNet classification accuracy, dramatically (26).

The authors proposed Inceptionv2 and Inceptionv3

(27). Factorization, which breaks convolutions into

smaller convolutions and other minor adjustments to

Inceptionv1, were introduced in Inceptionv2. The typical

7 × 7 convolution has been factored into three 3 × 3

convolutions. However, Inceptionv3 is a version of

Inceptionv2 that includes a BN-auxiliary. The BN-auxiliary

refers to the variant in which the fully-linked layer of the

auxiliary classifier, rather than merely convolutions, is

normalized. The model [Inceptionv2 + BN-auxiliary] is

referred to as Inceptionv3. The Inception module reduces

the grid size, which expands the filter banks.

• InceptionResNetv2. It is a convolutional neural

architecture that uses residual connections from Inception

designs. The residual connection takes the place of the filter

concatenation stage (28). This network is able to classify

1000 categories.

The dataset is divided into three parts randomly, with

the ratio of 75/25 for training or validation/testing. After

loading the pre-trained models, the last three fully-connected

layers were replaced with BN, ReLU, and softmax layers. The

training approaches used in this paper demonstrated their

ability to control the degradation problem, while also providing

the required convergence in a short time. Due to its high

convergence and short running duration, Stochastic Gradient

Descent (SGD) is employed for training (29). The ReLU is used

to activate all convolutional layers. The main objective of the

proposed approach is to combine image batch identification

with a fine-tuned classifier to classify many instances as tumor

or normal cases (30).

3.4. Convolutional neural network
trained from scratch

Deep learning models have been employed in a variety

of medical data classification, segmentation, and lesion

detection applications. Medical imaging techniques such

as MRI, X-ray, and CT are used to generate medical

images. Machine learning and deep learning models

may be evaluated on MRI, CT, and X-ray datasets.

This paper provides a number of CNN-based deep

learning models for identifying tumor instances by

categorizing magnetic resonance images as normal or tumor

cases (31–34).

Furthermore, a model is built from scratch for the

classification task. Figure 2 presents the structure of the BRAIN-

TUMOR-net.

A CNN model is made up of several layers, including an

input layer, convolutional layers, pooling layers, FC layers, and

an output layer (32, 33, 35–38). The proposed BRAIN-TUMOR-

net is constructed as follows:

• Input layer. The inputs are magnetic resonance images with

a resolution of 224× 224 pixels.

• COVN layers. The convolutional layer (Conv), the BN

layer, and the ReLU layer make up the COVN layers.

The convolutional layer captures and compresses image
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FIGURE 2

Block diagram for the BRAIN-TUMOR-net model.

features to create feature maps. As a consequence,

convolutions were conducted over the input images for

the first, second, third, fourth, and fifth Conv layers, with

different filters (8, 16, 32, 64, and 128) and a fixed window

size of 3. The BN layers are used in optimization to reduce

overfitting and improve test accuracy. The activations of

the preceding layer are normalized for each batch during

training. To incorporate element-wise non-linearity, a

ReLU activation function is used.

• Pooling layer. This layer is used to extract the most

important features from each feature map. We use the

max-pooling method for pooling operations. The max-

pooling layer vectors are concatenated to form a fixed-

length feature vector. The stride is set to 2 and the max-

pooling window is set to 2× 2.

• Fully-Connected (FC) layer. It takes a simple vector as

input and returns a single vector as output. The proposed

model has four FC levels. The last layer is an FC output

layer with softmax activation for classifying the input

images into two categories.

The principal structural components of a CNN network

are convolution, BN, and pooling layers. The convolution

layers extract the local features, and the BN layers normalize

them. Pooling layers are used to minimize the number of

extracted features. To reflect fluctuations in local activity

levels, max-pooling is used. It displays the edges wih

considerable details. The highest values obtained are mostly

associated with edges. Magnetic resonance images are rich

in details. The resulting feature map can be represented

as follows:

Yj
l
= f (

∑

i∈Nj

Yi
l−1

∗ Xij
l
+ bj

l) (1)

where Yj
l represents the local features obtained from the

previous layer, Xij
l represents the adjustable kernels. In order to

prevent the overfitting, the bias is used and denoted by bj
l. The

pooling process is implemented as follows:

Yj
l
= down(Yj

l−1) (2)

where down(.) represents the down-sampling function. The FC

layers have full connections to all activations in the previous

layer. The FC layer provides discriminative features for the

classification of the input image into various classes.

Whenever a classification task, whether binary or multi-

class classification, is performed, the data is divided into

train and test sets, and the model is trained to improve

the accuracy (39). Numerous performance metrics and data

splitting mechanisms are becoming increasingly important (40).

As a result, stratified k-folds and a variety of performance

measures may be employed to help in the development of

a reliable deep-learning-based model (41). The model precise

accuracy cannot be determined, since the model accuracy

is altered by modifying the random state values. It samples

the data without consideration of class distributions. In case
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of binary classification, and out of a 100% dataset, 80%

belong to class 0 and the remainder to class 1. Through the

utilization of random sampling to achieve this balance, there

is a strong chance to have different class distributions between

training and testing. Tearing on such a dataset will result in

inaccurate results.

The most popular validation technique is the k-fold

technique. The division of the training dataset into k-folds

is known as cross-validation. The first k − 1 folds are used

for training, while the remaining fold is used for testing.

This process is repeated for each fold. k folds are fitted and

evaluated collectively, and the mean accuracy for all of these

folds is returned. This technique produced promising results for

balanced classification issues, but it did not work for imbalanced

classes. This is because cross-validation randomly divides the

data without taking into consideration class imbalance. As a

result, rather than splitting the data randomly, the solution is

to stratify it. The stratified k-fold cross-validation technique

is a variation of the cross-validation commonly used for

classification issues. It maintains the same class ratio as in

the original dataset throughout the k-fold technique. So, by

using a stratified k-fold technique, the same class ratio may

be maintained throughout all k folds (42). The essential

configuration option for k-fold cross-validation is the number

of folds k (43). When the number k is set too high, the bias of the

actual error rate estimator becomes minimal, but the estimator

variance and time consumption become large. If k is small, the

calculation time decreases, and the estimator variance decreases,

but the estimator bias increases (44). The most common values

are k = 3, k = 5, and k = 10. As a consequence, if a maximum

classification accuracy is required, the ideal value of k needs to

be chosen. The value of k in this paper is set to 5.

3.5. MRI brain tumor segmentation
approach

The pixel value properties of the MRI datasets are used to

segment the data. On the MRI datasets, the following steps were

used in the segmentation process:

1. Post-processing:

• Image enhancement.

• Utilization of the usual shrink denoising process to

remove noise from the images.

• Edge preservation by applying a bilateral filter method

on the denoised output.

2. Segmentation:

• Edge-based segmentation using a 3 × 3 mask and the

Kirsch operator. A 3 × 3 mask is utilized to implement

the Sobel operator. Also, a 5× 5 mask is utilized to build

the sophisticated Sobel operator.

• Magnetic resonance brain image segmentation based

on thresholds. The Otsu threshold algorithm is

implemented.

• Clustering-based segmentation. The k-means clustering

method with a predetermined number of iterations and

a certain value of kwas developed. The adaptive k-means

clustering technique was used. The number of iterations

to convergence has been determined. In addition, the

fuzzy c-means clustering technique was used.

• Watershed algorithm with marker control. The

segmentation function was accomplished using the

Watershed technique with gradient magnitude.

3.6. Performance metrics

The proposed approach performance is assessed using

conventional metrics such as sensitivity (SEN), specificity

(SPEC), accuracy (ACC), precision (PRECI), Matthews

Correlation Coefficient (MCC), F1_score, kappa, and false

positive rate (Fpr). The number of successfully detected

anomalous cases (Tp) is the true positive. The number of

accurately detected normal instances (Tn) is the true negative. A

false positive (Fp) is a collection of normal instances designated

as anomaly diagnoses. A false negative (Fn) is a collection of

abnormalities seen as normal (45, 46).

Sensitivity is given as:

SEN =
Tp

Tp + Fn
× 100 (3)

Specificity is given as:

SPE =
Tn

Tn + Fp
× 100 (4)

Accuracy is given as:

ACC =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (5)

Precision is given as:

PRECI =
Tp

Tp + Fp
(6)

Matthews correlation coefficient (MCC) is defined as:

MCC =
Tp × Tn − Fp × Fn

√

(

Tp + Fp
)

×
(

Tp + Fn
)

×
(

Tn + Fp
)

× (Tn + Fn)

×100 (7)

False positive rate is given as:

Fpr =
Fp

Tn + Fp
(8)
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F1_score is given as:

F1_score =
Tp

Tp +
1
2 (Fp + Fn)

× 100 (9)

Kappa coefficient is defined as:

kappa =
2× (Tp × Tn − Fn × Fp)

(Tp + Fp)× (Fp + Tn)× (Tp + Fn)× (Fn + Tn)

×100 (10)

4. Simulation results

The proposed approach is evaluated on three different

publicly-available datasets. The performance of the CNNmodels

differs from one dataset to another according to the size of

the dataset.

4.1. Results on the first MRI dataset

Table 1 summarizes the results for the proposed approach

in terms of SEN, SPEC, ACC, PRECI, MCC, Fpr , F1_score,

TABLE 1 Detection performance results for various CNNmodels with a 75/25 training/testing ratio on the first dataset.

Models
Evaluation metric

ACC SEN SPE PRECI F1_score MCC Error Kappa FPR

InceptionResNetv2 0.9130 0.9348 0.8913 0.8958 0.9149 0.8269 0.0870 0.8261 0.1087

Inceptionv3 0.8804 0.9130 0.8478 0.8571 0.8842 0.7625 0.1196 0.7609 0.1522

ResNet50 0.9348 0.9348 0.9348 0.9348 0.9348 0.8696 0.0652 0.8696 0.0652

Transfer learning model 0.9130 0.9130 0.9130 0.9130 0.9130 0.8261 0.0870 0.8261 0.0870

BRAIN-TUMOR-net 0.8478 0.8043 0.8913 0.8810 0.8409 0.6983 0.1522 0.6957 0.1087

FIGURE 3

Confusion matrix and ROC curve for (A) Inceptionv3, (B) InceptionResNetv2, (C) ResNet50, and (D) BRAIN-TUMOR-net on the first dataset.

TABLE 2 Detection performance results for the proposed CNNmodels with a 75/25 training/testing ratio on the second dataset.

Models
Evaluation metrics

ACC SEN SPE PRECI F1_score MCC Error Kappa FPR

InceptionResNetv2 0.9689 0.9578 0.9800 0.9795 0.9685 0.9380 0.0311 0.9378 0.0200

Inceptionv3 0.9633 0.9622 0.9644 0.9644 0.9633 0.9267 0.0367 0.9267 0.0356

ResNet50 0.9656 0.9822 0.9489 0.9505 0.9661 0.9316 0.0344 0.9311 0.0511

BRAIN-TUMOR-net 0.9700 0.9644 0.9756 0.9753 0.9698 0.9401 0.0300 0.9400 0.0244
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FIGURE 4

Confusion matrix and ROC curve for (A) Inceptionv3, (B) InceptionResNetv2, (C) ResNet50, and (D) BRAIN-TUMOR-net on the second dataset.

TABLE 3 Detection performance results for the proposed CNNmodels with a 75/25 training/testing ratio on the third dataset.

Models
Evaluation metric

ACC SEN SPE PRECI F1_score MCC Error Kappa FPR

InceptionResNetv2 0.9446 0.9988 0.8904 0.9011 0.9474 0.8944 0.0554 0.8892 0.1096

Inceptionv3 0.9767 0.9855 0.9679 0.9685 0.9769 0.9535 0.0233 0.9534 0.0321

ResNet50 0.9691 0.9970 0.9412 0.9443 0.9699 0.9397 0.0309 0.9382 0.0588

BRAIN-TUMOR-net 1.00 1.00 1.00 1.00 1.00 1.00 0.0 1.00 0.0

kappa, and error using three transfer-learning-based CNN

models and a CNN model trained from scratch on the

first MRI dataset. Figure 3 presents the receiver operating

characteristic (ROC) curves and confusion matrices for

Inceptionv3, InceptionResNetv2, ResNet50 and BRAIN-

TUMOR-net models. It is clear that the ResNet50 model

achieves the highest performance among other models on

the first MRI dataset. It achieves a sensitivity of 93.48%, a

specificity of 93.48%, an accuracy of 93.48%, a precision of

93.48%, an MCC of 86.96%, a false positive rate of 0.0652,

an F1_score of 93.48%, a kappa of 86.96%, and an error

of 0.0652.

4.2. Results on the second MRI dataset

Table 2 shows the detection performance results for different

CNN models with a 75/25 training/testing ratio on the second

dataset. Figure 4 presents the ROC curves and confusion

matrices for Inceptionv3, InceptionResNetv2, ResNet50 and

BRAIN-TUMOR-net models, respectively. It is clear from the

obtained results that the BRAIN-TUMOR-net model achieves

the highest performance among the other proposed ones on

the second MRI dataset. It achieves a sensitivity of 96.44%,

a specificity of 97.56%, an accuracy 97%, a precision of

97.53%, an MCC of 94.01%, a false positive rate of 0.0244,

an F1_score of 96.98%, a kappa of 94%, and an error

of 0.0300.

4.3. Results on the third MRI dataset

Table 3 shows the detection performance results for

different CNN models with a 75/25 training/testing ratio

on the third dataset. Figure 5 presents the ROC curves

and confusion matrices for Inceptionv3, InceptionResNetv2,

ResNet50 and BRAIN-TUMOR-net models. It is clear from

the obtained results that the BRAIN-TUMOR-net model

achieves the highest performance among the other proposed

ones on the third MRI dataset. It achieves a sensitivity
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FIGURE 5

Confusion matrix and ROC curve for (A) Inceptionv3, (B) InceptionResNetv2, (C) ResNet50, and (D) BRAIN-TUMOR-net on the third dataset.

TABLE 4 Detection performance results for BRAIN-TUMOR-net based on stratified k-fold cross validation with a 75/25 training/testing ratio on the

three datasets.

Dataset
Evaluation metrics

ACC (%) SEN (%) SPE (%) PRECI (%) F1_score (%) MCC (%) Error Kappa (%) FPR

First MRI dataset 89.03 92.26 85.81 86.67 89.38 78.23 0.1097 78.06 0.1419

Second MRI dataset 98.67 98.67 98.67 98.67 98.67 97.33 0.0133 97.33 0.0133

Third MRI dataset 99.49 99.38 99.60 99.60 99.49 98.98 0.0051 98.98 0.0040

of 100%, a specificity of 100%, an accuracy 100%, a

precision of 100%, an MCC of 100%, a false positive rate

of 0.0, an F1_score of 100%, a kappa of 100%, and an

error of 0.0.

4.4. Results for BRAIN-TUMOR-net based
on stratified k-fold validation

Stratified k-fold validation is combined with BRAIN-

TUMOR-net model in order to get a more stable error.

Table 4 presents the detection performance results from

BRAIN-TUMOR-net using a stratified k-fold validation

model with a 75/25 training/testing ratio on the three

MRI datasets. Figure 6 presents the ROC curves and

confusion matrices for the first, second and third

datasets. Figure 7 provides the value of accuracy for

each k.

4.5. MRI brain tumor segmentation
results

On magnetic resonance brain images, an image

segmentation method is used to separate similar

sections of the image based on the gray level values of

the pixels. The primary goal of segmenting magnetic

resonance brain images is to aid in tumor detection.

Edge-based segmentation (Krisch and Sobel), threshold-

based segmentation (Otsu), and clustering algorithms,

namely k-means, adaptive k-means, fuzzy c-means, and

marker-controlled watershed, were used as segmentation

techniques. Segmentation process consists of seven steps to

generate the segmented image. The normal shrink image is

generated from the normal shrink denoising algorithm. Edge

preservation is achieved by applying a bilateral filter on the

denoised output.

Various clustering techniques such as k-means clustering,

adaptive clustering, and fuzzy c-means clustering have
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FIGURE 6

Confusion matrix and ROC curve for BRAIN-TUMOR-net on (A) First dataset, (B) Second dataset, and (C) Third dataset.

FIGURE 7

Accuracy values for di�erent k-folds using the BRAIN-TUMOR-net with stratified k-fold validation on the three MRI brain tumor datasets.
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FIGURE 8

Results obtained from watershed algorithm with marker control technique. (A) K-means clustering, (B) Fuzzy c-means clustering, and (C)

watershed algorithm.

FIGURE 9

Accuracy values for di�erent CNN models on the three MRI brain tumor datasets.
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been implemented. Figure 8 depicts the outcomes for

k-means clustering, fuzzy c-means clustering, and the

results obtained from the watershed algorithm with marker

control.

Finally, the magnitude of the gradient is determined

and employed as a segmentation function. Then,

the watershed transform is applied on the gradient

magnitude. The original image is then changed into

another image by employing morphological operators

to iterate with other images of specified shape

and size.

5. Discussion and comparison with
the-state-of-the-art methods

As the dataset size grows, the BRAIN-TUMOR-net

trained from scratch outperforms the transfer-learning-

based techniques. However, the results show that even

when using a small dataset, transfer learning produces

satisfactory outcomes. State-of-the-art models were trained

on 25 million images. Their convolution layer filters were

chosen, because they are effective in novel applications like

brain tumor detection. Furthermore, the accuracy of the

classification application is influenced by the depth of the

CNNmodels.

The stratified k-fold validation procedure with 5 folds

is employed to get a more steady error rate. This is

attributed to the stratified k-fold cross-validation capacity

to cope with imbalanced data. It keeps the same class

ratio as that of the original dataset throughout the k folds.

The accuracy results for different CNN models on the

three MRI brain tumor datasets are shown in Figure 9.

The results clearly vary based on the depth of the CNN

model, the classification complexity, and the amount

of data.

The computation time is the most important metric for

comparing various techniques. It is obvious from Table 5

that the ResNet50 model yields run times of 4.68, 9.44, and

24.67 s on the first, second, and third datasets, respectively,

which are the shortest times. The Inceptionv3 model was

reported to give the second-best runtimes of 7.67, 23.91,

and 71.835 s on the first, second, and third datasets,

respectively. However, the CNN model trained from scratch

using k-fold validation has the longest runtimes of 376,

3418, and 16284.818 s on the first, second, and third

datasets, respectively. It obtained a level of accuracy of

100%. In the future work, numerous solutions such as

image downsizing, adjusting the number of max-pooling

layers, and dropout will be investigated to minimize the

computation time.

TABLE 5 Computational times of the examined approaches.

MRI dataset CNNmodel Elapsed time (s)

Dataset 1

InceptionResNetv2 31.66

Inceptionv3 7.67

ResNet50 4.68

BRAIN-TUMOR-net 53

BRAIN-TUMOR-net with K-fold 376

Dataset 2

InceptionResNetv2 68.95

Inceptionv3 23.91

ResNet50 9.44

BRAIN-TUMOR-net 1,069.2

BRAIN-TUMOR-net with k-fold cross

validation

3418

Dataset 3

InceptionResNetv2 210.0371

Inceptionv3 71.83508

ResNet50 24.6754

BRAIN-TUMOR-net 11,702.6

BRAIN-TUMOR-net with k-fold cross

validation

16284.818355

The proposed approach yields an accuracy level of 100%,

which is greater than the levels of the traditional approaches

shown in Table 6. These findings support the CNNmodel ability

to execute the essential classification task after being trained

from scratch.

6. Conclusions

The CNN is regarded as one of the most effective

tools for classifying image datasets. It produces the forecast

by reducing the image into features without losing the

necessary information to make the prediction, correctly.

In this paper, three different deep learning models for

brain tumor classification have been introduced. Transfer-

learning-based models, as well as a CNN model, BRAIN-

TUMOR-net, and a model trained from scratch, have been

introduced. Three publicly available MRI datasets have been

used to test the proposed models. The results show that

the BRAIN-TUMOR-net achieves the highest accuracy among

the other models as the dataset size increases. It achieves

a 100% accuracy on the third dataset, while it achieves

97% and 84.78% accuracy levels on the second and first

MRI datasets, respectively. When compared to existing pre-

trained models, the proposed model needs extremely less

processing power and achieves far higher accuracy outcomes.

In future research, optimization techniques can be applied so
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TABLE 6 Comparison of the proposed work with state-of-the-art models.

References Method Accuracy

Sindhumol et al. (7)
Spectral angle-based feature extraction method and

Spectral Clustering Independent Component Analysis (SC-ICA)
98% for SVM and 96.1% for reproduced lesion

Sumitra and Saxena (14)
PCA,

Back-propagation neural network
73%

Jafari and Shafaghi (15)
Genetic Algorithm (GA) and

Support Vector Machine (SVM),
83.22%

Jayachandran and Dhanasekaran (16)
Statistical, SVM classifier

and PCA
95.80%

Xing et al. (18)

The HySIME algorithm initial filtering by

deep CNN followed by iterative region merging

segmentation by selective sparse shape model.

85%

Zaw et al. (20)

Morphological operation, pixel subtraction,

and maximum entropy threshold segmentation

with Naive Bayes classifier.

94 %

Narayana and Reddy (19)
Median filter GA segmentation

with SVM classifier.
91.23%

Minz and Mahobiya (22) GLCM (Gray Level Co-occurrence Matrix) for classification boosting. 89.90% & 74.00%

Raju et al. (23)
Bayesian fuzzy clustering segmentation with

HSC-based multi SVNN classification method.
93%

Sert et al. (24)

Single image super-resolution for image

enhancement and segmentation with maximum fuzzy entropy (MFE)

and SVM classifier.

95%

Deepak and Ameer (25) Min-max normalization, with SVM and KNN classifier. 97.8% & 98%

Hemanth et al. (8) Average filter, and pixel subtraction with CNN-linkNet classifier. 91%

Mallick et al. (9)
DICOM image processing, and DWT-DNN

features with MLP classifier.
96%

Selvapandian and Manivannan (17)
NSCT image enhancement, and GLCM texture features

with ANFIS classifier.
98.5%

Nalepa et al. (11)
Sharpening and smoothing filters, threshold

segmentation, and SGLD features with ANN classifier.
99%

Anaraki et al. (10)
Image rescaling, and data

augmentation with CNN classifier.
96%

Amin et al. (12)
Skull stripping-BSE Gaussian filtering,

k-Means clustering with SVM classifier.
98%

Gupta and Khanna (13)
Image enhancement-DSR-AD, and

Otsu segmentation with SVM classifier.
98%

Proposed work

Dataset 1

InceptionResNetv2 InceptionResNetv2 91.30%

Inceptionv3 Inceptionv3 88.04%

ResNet50 ResNet50 93.48%

BRAIN-TUMOR-net BRAIN-TUMOR-net 84.78%

k-fold model k-fold validation model 89.03%

Dataset 2

InceptionResNetv2 InceptionResNetv2 96.89%

Inceptionv3 Inceptionv3 96.33%

ResNet50 ResNet50 96.56%

BRAIN-TUMOR-net BRAIN-TUMOR-net 97%

k-fold Model k-fold validation model 98.67%

(Continued)
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TABLE 6 (Continued)

References Method Accuracy

Dataset 3

InceptionResNetv2 InceptionResNetv2 94.46%

Inceptionv3 Inceptionv3 97.67%

ResNet50 ResNet50 96.91%

BRAIN-TUMOR-net BRAIN-TUMOR-net 100%

k-fold Model k-fold validation model 99.49%

as to decide the number of layers and filters that can used

in the model.
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