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Background: New variants of SARS-CoV-2 are constantly discovered.

Administration of COVID-19 vaccines and booster doses, combined with

the application of non-pharmaceutical interventions (NPIs), is often used to

prevent outbreaks of emerging variants. Such outbreak dynamics are further

complicated by the population’s behavior and demographic composition.

Hence, realistic simulations are needed to estimate the e�ciency of proposed

vaccination strategies in conjunction with NPIs.

Methods: We developed an individual-based model of COVID-19 dynamics

that considers age-dependent parameters such as contact matrices,

probabilities of symptomatic and severe disease, and households’ age

distribution. As a case study, we simulate outbreak dynamics under the

demographic compositions of two Israeli cities with di�erent household sizes

and age distributions. We compare two vaccination strategies: vaccinate

individuals in a currently prioritized age group, or dynamically prioritize

neighborhoods with a high estimated reproductive number. Total infections

and hospitalizations are used to compare the e�ciency of the vaccination

strategies under the two demographic structures, in conjunction with

di�erent NPIs.

Results: We demonstrate the e�ectiveness of vaccination strategies targeting

highly infected localities and of NPIs actively detecting asymptomatic

infections. We further show that di�erent optimal vaccination strategies exist

for each sub-population’s demographic composition and that their application

is superior to a uniformly applied strategy.

Conclusion: Our study emphasizes the importance of tailoring vaccination

strategies to subpopulations’ infection rates and to the unique characteristics

of their demographics (e.g., household size and age distributions). The

presented simulation framework and findings can help better design future

responses against the following emerging variants.

KEYWORDS

agent-based model (ABM), individual-base model, COVID- 19, vaccination strategies,

non-pharmaceutical interventions (NPIs), SARS-CoV-2
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Introduction

In December 2019, a new virus, SARS-CoV-2, emerged in

Wuhan, China. In March 2020, the World Health Organization

(WHO) announced coronavirus disease 19 (COVID-19), a

pandemic (1). Countries closed their borders and implemented

harsh travel restrictions to slow the virus’s spread (2).

Nevertheless, the virus led to massive mortality, severe hospital

loads, and a worldwide impact on the economy (1). At the

beginning of the pandemic, a vaccine was not available. Hence,

to relieve the burden on hospitals and limit the number of

casualties, governments worldwide applied non-pharmaceutical

interventions (NPIs). These NPIs included home isolation of

infected or suspected individuals, closure of workplaces, schools,

kindergartens, and more (3).

The Food and Drug Administration (FDA) approved the

first SARS-CoV-2 vaccine at the end of 2020, and a worldwide

vaccination operation started. Since then, 4.6 billion people have

been fully vaccinated (received two doses), and 11.8 billion doses

have been administered worldwide (4). Countries chose different

vaccination strategies, including rollout rates and prioritization

of sub-groups (age, comorbidities, or essential workers). For

example, Israel was an especially early adopter of the vaccine

and prioritized older ages and individuals with health risks

(5, 6). Two months after the initiation of the first vaccination

campaign, almost 70% of the individuals eligible for vaccination

(age > 18 years), and 80% of individuals older than 60 years,

were fully vaccinated in Israel (6).

New variants of the SARS-CoV-2 are constantly evolving

worldwide (7, 8); some have become the locally or globally

predominant variants. For example, in April 2021, the

Delta variant emerged from India and quickly became the

predominant variant in many parts of the world (9). In

Israel, which was among the first countries to reach high

vaccination coverage by the end of March 2021, vaccine

breakthroughs by the Delta variant were already common

during July 2021. Analyses of the breakthrough data pointed to

the importance of waning vaccine immunity (10). To mitigate

the Delta variant outbreak while minimizing lockdowns, Israel

administered a third dose of the COVID-19 vaccine. Statistical

and mathematical models have demonstrated that the booster

campaign was instrumental in controlling the Delta resurgence

(11–13). However, to estimate the efficiency of other, untested

vaccination strategies in conjunction with NPIs, realistic

simulation tools are needed.

Model-based analyses have been used to help assess the

effectiveness of different NPIs and vaccination strategies (14–

17), as controlled experiments are impossible and retrospective

data analysis is often lacking. Most modeling studies of SARS-

CoV-2 employ compartmental models, such as the differential

equation-based SEIR (Susceptible - Exposed - Infected -

Recovered/ Removed) model. These models categorize all

individuals into a few compartments, not considering the

variance in their roles in the outbreak.

An alternative complementary modeling strategy is

individual-based models (IBMs; also called agent-based

models, ABMs) with stochastic, interacting autonomous agents

representing individuals in the population. IBMs can simulate

complex dynamics, the system’s temporal evolution, and

generate intricate patterns of behaviors produced by individuals’

interactions. Incorporating fundamental population-specific

features can provide insight into systems with small susceptible

populations, which are highly affected by stochasticity (18).

However, incorporating such features comes at the cost of

intense computational demands and decreased interpretability

of some results, due to the models’ complexity. Nonetheless,

IBMs have been previously used to simulate the spread of

infectious diseases (19–22) and specifically to study the effects

of NPIs and vaccination strategies against COVID-19 (23–30).

For instance, previous studies have shown that prioritizing

vaccination of the elderly could limit future deaths or quality-

adjusted life year losses (31). In contrast, other IBM models

have suggested that prioritizing vaccination of individuals

with a large number of contacts can be useful to mitigate

outbreaks (32).

Here, we developed an IBM populated with COVID-

19 parameters. The model simulates outbreaks while

considering age-dependent parameters, such as contact

matrices, symptomatic and severe disease probabilities, and

households’ age distribution. Demographic characteristics

of a population are especially influential in COVID-

19 outbreaks (33, 34). Hence, our simulation utilizes the

demographic compositions of two Israeli cities with similar

population sizes but different household sizes and age

distributions as case studies. First, the city of Holon, in

which about a quarter of the population is <18 years, and

the mean household size is approximately 2.8 individuals.

In contrast, the city of Bnei Brak has a much younger

and denser population, with approximately half of its

population <18 years and an average household size of

4.5 individuals. Using these two disparate demographics, we

investigate the effects of different vaccination strategies,

in combinations with different NPIs, on infections

and hospitalizations.

Methods

IBM architecture

The IBM is based on three components (the explicit

simulation framework is found in Supplementary material,

sections “SEIR model, parameters, and their distribution”, and

“Creating a population”):
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1 Demographics: Each individual in the simulated synthetic

population is assigned a certain age, neighborhood, and

household. Each individual also has weekly routines (a

workplace, school, and time spent in their neighborhood),

determining contacts with other individuals with

overlapping routines. Here, we use the demographics of

two cities similar in population size (about 194,000 in

Bnei Brak and 193,000 in Holon, as of 2017) but different

in their household sizes and age distributions, as case

studies. Based on the demographic data of either of the

two cities in Israel, a synthetic population comprising

household members’ joint distribution, ages, employment,

and education is generated.

2 Infection dynamics: Daily contacts between individuals

in the described social setting are simulated (35). Age-

heterogeneous contact matrices were used as the risk of

contacting an infected person varies between age groups

and locations, representing the probability of contacting

persons from another age group. This simulation uses the

POLYMOD contact matrix (35). POLYMODwas generated

in 2017 and includes contact matrices based on data from

152 countries, including Israel.

3 Disease states (Figure 1): At any given time point,

each individual is classified into one of the disease

states: susceptible, infected at a latent state, subclinical

(also termed asymptomatic), presymptomatic (incubation),

clinical (symptomatic), immune, critical, and deceased.

Each susceptible individual may change to a latently

infected state when contacting an infectious individual. The

contact probability, relative infectiousness, and duration

distribution in each state are based on previous studies

(26). Other parameters, such as susceptibility to infection

on contact, relative infectiousness of subclinical cases, and

the delay from disease onset to hospitalization, are based on

empirical data and plausible ranges from relevant literature

(see Supplementary material).

The simulations and their analyses were conducted in

Python 3.7, using the following packages: Numpy 1.22.3, Pandas

1.4.2, Matplotlib 3.5.1, Scipy 1.8.0 and Pyfunctional 0.7.0.

Simulation parameters

The main simulation parameters are shown in Table 1.

Additional model parameters and specifications are given in

Supplementary Table 1.

Vaccination strategies

Israel’s country-wide daily vaccination rate, from the

initial vaccination campaign, was used to define the daily

vaccination rollout for the two evaluated cities, scaled to the

size of the cities modeled (4). This scaling led to a daily

rollout of 700 vaccines in each city. We deliberately did

not use the actual rate of vaccination of each city during

the epidemic, so we can directly estimate the effects of

demographics, unconfounded by other factors. Individuals who

were susceptible, asymptomatic, latent, or incubating post-latent

at the time of vaccination were eligible for vaccination. However,

individuals that recovered from an asymptomatic infection

were not vaccinated. Although this might not reflect reality

under policies not testing for antibodies before vaccination, the

effect should not be substantial: asymptomatic infections are

more common in individuals below the age of 18 [(47); see

Supplementary Table 1 for details], who were not in the age

group eligible for vaccination in this simulation. Furthermore,

in this simulation framework, individuals were immediately

immunized after receiving the vaccine, not reflecting the actual

time until immunity, approximately 1–2 weeks (48, 49). Thus,

a correction for the delayed immunity was implemented by

shifting the vaccination timeline by a week (i.e., individuals

scheduled to be vaccinated at time t were actually vaccinated at

time t+ 7).

Four vaccination strategies were evaluated, keeping the same

number of vaccinated individuals per day. Vaccine efficacy (VE)

of 90% in preventing infections and hospitalizations was used,

as was suggested during the first vaccination campaign (42–44).

VE was modeled by limiting the vaccinated proportion by the

value of VE. For example, if VE was set to 90%, then 90% of

the individuals originally chosen for vaccination were instead

vaccinated daily. The following vaccination strategies were the

focus of this study:

1 General strategy—vaccinate individuals older than the

minimum vaccination age (set at 18) and within the

currently vaccinated age group (with random vaccine

allocation within the age groups). Meaning that each day,

N randomly chosen individuals who meet the criteria for

vaccination are being vaccinated.

2 Neighborhood strategy—each day, the neighborhood

(defined as housing approximately 3,000 individuals) in

which the estimated instantaneous reproductive number

Rt (which estimates the average number of secondary cases

caused by an infected individual at time t; see Equation 1 in

Supplementary material) is the highest is vaccinated first.

Since Rt can only be calculated after the first infections

are recovered and secondary infections are present, during

the first vaccination period, the Neighborhood strategy

vaccinates from the oldest age group and descends until

enough data to calculate the Rt is available.

Each strategy was tested with three types of age

prioritization: a descending order, where the oldest age

group is vaccinated first; an ascending order, where the youngest
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FIGURE 1

Illustration of the IBM framework. (A) A synthetic population was generated based on Israeli demographics. The population is divided into a

hierarchy of social circles, including households and neighborhoods. Contacts between di�erent age groups and settings, such as their

household, school, or workplace, are drawn from data-informed contact matrices (35). (B) Disease progression and immunity states are

imposed on each individual in the population. Orange rectangles represent exposed and infectious states, and purple rectangles represent

removed states. Transition rates between the states are denoted with their parameters, which are given in Table 1.

age group is vaccinated first; and no age prioritization (i.e.,

vaccination was done randomly in proportion to the age

distribution). Results for the latter prioritization strategy were

left for the Supplementary Figure 4. Other, less successful

strategies were also implemented and examined, and their

details and results are presented in Supplementary material

under “vaccination strategies”. These vaccination strategies

included: a Household strategy, wherein individuals in a

prioritized age group are vaccinated by clusters of households;

an All At Once strategy, in which an entire household is

vaccinated if it contains at least one individual in the currently

prioritized age group.

NPI modeling

The NPIs in this simulation were modeled by lowering the

contact rates between the relevant groups. For example, school

closure was modeled by limiting contacts between school-aged

individuals, and house quarantine was modeled by reducing

contacts with the general public while increasing contacts within

the household. Compliance with the NPIs was modeled by

introducing a parameter governing the proportion of individuals

complying with each NPI.

Several NPIs have been investigated. The two NPIs yielding

reduction in infections and hospitalizations without forcing

a complete lockdown were chosen to be investigated in

combination with the vaccination strategies. In both NPIs,

social distancing was implemented in the population. Other

interventions were implemented only for specific individuals:

1 Household isolation includes the isolation of symptomatic

cases and their household members.

2 Asymptomatic Detection includes isolation of symptomatic

cases and their household members and test and isolation

of asymptomatic cases below the age of 18. To consider

compliance and the tests’ imperfect sensitivity, only 70%

of asymptomatic cases in individuals < 18 were detected

and isolated [in accordance with estimates of PCR tests’

sensitivity in detecting infections (45)].
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TABLE 1 Relevant parameters and estimated distribution.

Parameter Description Value/Distribution References

dE Latent period (E to IP/Is ; in days) ∼Gamma (4, 4) (26, 36–38)

dP Duration of preclinical (incubating)

infectiousness (days)

∼Gamma (1.5, 4) (26, 39)

dC Duration of clinical (symptomatic)

infectiousness (days)

∼Gamma (3.5, 4) (26, 36–38)

dS Duration of subclinical (asymptomatic)

infectiousness (days)

∼Gamma (5, 4) (26, 33)

Re The effective reproductive number of new

variants

3 (2.5, 3.5 as sensitivity analyses) Calculated from the base

infectiousness (40, 41)

u Probability of infection per contact Calculated from R0 See details in

Supplementary material -

“Calibration of R0” section

yi Probability of clinical symptoms for an

infected individual from age group i

Shown in Supplementary Table 1 See details in

Supplementary material

f Relative infectiousness of subclinical cases 50% As assumed in (26, 33)

Ci,j Number of age-j individuals contacted with

an age-i individual (per day)

POLYMOD contact matrix (35)

Ve Vaccination efficacy against infection and

hospitalizations

90% (42–44)

Sensitivity of Asymptomatic Detection 70% (45)

Reduction in contacts due to social distancing Household contacts increase by

25%, workplace contacts reduce by

25% and within neighborhood

contacts reduce by 25%.

As assumed in (46)

The gamma distribution parameterization corresponds to (mean, shape).

Simulation configurations

The main simulation configurations examined and

presented in the main text were:

- City demographics (Holon, Bnei Brak)

- Vaccination Strategies

- Strategy (General, Neighborhood)

- Age prioritization (Ascending, Descending, No

Age priritization)

- NPI (Household Isolation, Asymptomatic Detection)

Evaluation metrics

Two metrics were used for each scenario to compare the

performance of the different vaccination strategies: the total

number of infections and the total number of hospitalized cases

per 100 k individuals, averaged over 500 simulations. These

metrics were chosen to reflect disease spread and morbidity.

All simulations were run for 150 days, as this period sufficed

for the outbreaks to fade and to emulate simplified SARS-CoV-

2 variant outbreak dynamics without waning immunity (10).

Additionally, this period corresponds to the eligibility criterion

of the minimal time elapsed from vaccination to a booster shot,

as was set in Israel (10).

The mean differences in the total infections and

hospitalizations across simulation repetitions were compared

for pairs of vaccination strategies. The central limit theorem

was used to derive 95% confidence intervals (CI) for these

comparisons, assuming unequal variances.

Results

First, typical outbreak dynamics under the Asymptomatic

Detection intervention are shown in Figure 2. The results are

presented for both demographics, and include the number

of infected (Figures 2A,B) and hospitalized (Figures 2C,D)

individuals, and the instantaneous reproductive number Rt

(Figures 2E,F), over time. An analogous figure for theHousehold

Isolation intervention can be found in Supplementary Figure 8.

The two Neighborhood vaccination strategies, prioritizing

neighborhoods with high transmission rates, yielded low
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FIGURE 2

Typical outbreak dynamics under di�erent vaccination strategies and demographic structures. The cumulative number of new infections per

100 k (A,B), hospitalizations per 100k (C,D), and Rt (E,F), are shown. The left and right-hand columns present the results under the demography

of Bnei Brak and Holon, respectively. Each panel presents the daily mean of 500 simulations, and the shaded regions around the curves

represent the standard error of the mean.

infection rates throughout the simulations. Under the

demographics of Bnei Brak, the Neighborhood Descending

strategy allowed for low hospitalization rates, while keeping the

total infections lower than the General strategies and similar

to the Neighborhood Ascending strategy. Furthermore, while

the General Ascending strategy resulted in only a few more

infections than both Neighborhood strategies, it resulted in

almost twice as many hospitalizations.

Simulating Holon’s demographics, the Neighborhood

Descending strategy resulted in the best trade-off between both

criteria (infections and hospitalizations) compared to the other

vaccination strategies (Figures 2B,D). While this strategy did

not result in the lowest number of infections, it yielded relatively

low numbers in both criteria. On the other hand, the General

Descending strategy resulted in almost twice as many infections

as the two ascending strategies. Moreover, this strategy resulted

in about 1.6-fold infections as its analogous Neighborhood

strategy. When simulating the city demographics of Bnei Brak,

the Neighborhood Descending strategy again resulted in an

advantage over its analogous General strategy, but with a less

substantial difference than in the demographics Holon. Thus,

the Neighborhood Descending strategy yielded a reasonable

trade-off between the two metrics (total infections and total

hospitalizations), for both cities.

To complete the picture, we also examined the daily

estimated instantaneous reproductive number (compare

Figures 2E,F). Implementing Asymptomatic Detection with any

vaccination strategy resulted in a decline in the reproductive

number in both cities, with a faster decline in Holon, eventually

dropping below 1 (i.e., the number of infections is reducing).

In contrast, the Rt values under the Household Isolation

intervention did not drop below 1 until the completion of the

simulation (Supplementary Figure 8). Lastly, while comparing

the overall performance of the different strategies, it appears

that there is larger variability between the strategies in the total

infections and the Rt-values in Holon (Figures 2A,B,E,F).

In Figure 3, we present a comparison of the distributions

of the total infections and hospitalizations when applying

the Asymptomatic Detection and the Household Isolation

NPIs, and for different vaccination strategies. All comparisons

were performed using the number of cases per 100,000

individuals. Compared to Household Isolation, Asymptomatic

Detection limited both epidemiological metrics assessed: it

resulted in approximately 1/8 of the total infections in
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Bnei Brak’s demographics, less than half the infections in

Holon’s demographics, and <1/2 of the hospitalized cases in

both demographics.

Simulating Bnei Brak’s demographics, under the

Asymptomatic Detection intervention, both Neighborhood

strategies led to fewer infections per 100,000 individuals

compared to the General Ascending strategy [- 48.1, 95% CI (-

74.3, - 21.9) for Neighborhood Ascending, and - 37.6, 95% CI

(- 64.5, - 10.7) for Neighborhood Descending]. Furthermore,

the Neighborhood Descending strategy also resulted in fewer

infections compared to the General Descending strategy [- 191.8,

95% CI (- 221.3, - 162.3)]. The number of infections under

Neighborhood Ascending and Neighborhood Descending were

very similar and not statistically different [- 10.5, 95% CI (-

35.6, 14.6)]. Comparing the total hospitalizations, rates were

higher for the Neighborhood Descending strategy than for the

General Descending strategy [9.8, 95% CI (5.3, 14.3)]. Still, the

Neighborhood Descending strategy performed better than the

Neighborhood Ascending [- 8.8, 95% CI (- 13.6, - 4.0)] and the

General Ascending strategies [- 72.6, 95% CI (- 78.8, - 66.5)].

Moreover, the Neighborhood Ascending strategy led to fewer

hospitalizations than the General Ascending strategy [- 63.9,

95% CI (- 70.5, - 57.5)].

We observed a similar trend when applying the Household

Isolation intervention: Neighborhood Ascending reduced

infections better than the General Ascending [- 334.0, 95% CI

(- 508.8, - 167.1)] and General Descending [- 800.5, 95% CI

(- 975.3, - 625.6)] strategies. Similar to the results of applying

Asymptomatic Detection, the Neighborhood Descending strategy

reduced more infections than both the General Ascending [-

328.6, 95% CI (- 498.4, - 158.8)] and General Descending [-

791.1, 95% CI (- 964.9, - 617.4)] strategies. The difference

between the Neighborhood Ascending and the Neighborhood

Descending strategies was again not significant [- 9.3, 95% CI

(- 185.6, 167.0)]. When examining the ability to limit total

hospitalizations, both Descending strategies were better than

their parallel Ascending strategies [- 93.4, 95% CI (- 109.5, -

77.3) for the difference between the Neighborhood Descending

and Neighborhood Ascending strategies and - 619.3, 95% CI (-

641.1, - 597.4) for the difference between the General strategies].

While comparing both Descending strategies, the Neighborhood

Descending strategy resulted in more hospitalization than the

General Descending strategy [73.6, 95% CI (64.5, 82.8)].

When simulating the city demographics of Holon, there

were no significant differences in infection rates between the

Neighborhood Ascending and the General Ascending strategies

[- 13.3, 95% CI (- 31.3, 4.6)]. Still, both Neighborhood strategies

performed better than the commonly used General Descending

strategy [- 333.9, 95% CI (- 363.2, - 304.5) for Neighborhood

Ascending vs. General Descending; and - 238.9, 95% CI (- 270.6,

- 207.2) for Neighborhood Descending vs. General Descending].

Neighborhood Descending performed better than all other

strategies in reducing hospitalizations [- 56.0, 95% CI (- 66.2, -

45.8) forNeighborhood Descending vs. General Ascending; - 29.2,

95% CI (- 38.6, - 19.7) for Neighborhood Descending vs. General

Descending; and - 14.7, 95% CI (- 24.4, - 5.0) for Neighborhood

Descending vs. Neighborhood Ascending].

While applyingHousehold Isolation to the city demographics

of Holon, the Neighborhood Ascending strategy resulted in

fewer infections than its analogous General Ascending strategy [-

154.7, 95% CI (- 207.2, - 102.3)] and an even more substantial

reduction compared to the General Descending strategy [-

1308.5, 95% CI (- 1388.0, - 1229.1)]. Comparing the total

hospitalizations, the Neighborhood Descending strategy had an

advantage compared to all other strategies [- 234.8, 95% CI

(- 256.3, - 213.2) for Neighborhood Descending vs. General

Ascending; - 41.1, 95% CI [- 56.5, - 25.7] for Neighborhood

Descending vs. General Descending; and - 52.8, 95% CI (- 71.9, -

33.7) forNeighborhoodDescending vs.Neighborhood Ascending].

We further sought to examine whether vaccination strategies

should be uniformly or differentially applied to locations

with differing demographics. To this end, we independently

simulated outbreaks under both demographic compositions

(i.e., no spillover between the two populations) and both

NPIs and summed the infections and hospitalizations per

100,000 people. These results are presented in Figure 4, under

either uniform vaccination strategies, where the same strategy

is applied in both cities, or under a different strategy for

each demographic composition. When applying Household

Isolation, the optimal strategy in terms of the combined number

of hospitalizations was General Descending under the Bnei

Brak demography and Neighborhood Descending under the

Holon demography. Similarly, when applying the Asymptomatic

Detection intervention, using the same combination of strategies

resulted in the lowest combined number of hospitalizations.

Discussion

This study employs a realistic individual-based model

of COVID-19 dynamics to investigate epidemic outcomes

under different vaccination strategies. The unique structure

of our IBM enabled us to compare complex vaccination

strategies that target subpopulations and their interplay with

applications of different NPIs. These investigations would have

been extremely difficult to implement using classic SEIR-based

compartmental models. Moreover, we explicitly considered

differing demographic structures, incorporating population

structures from two demographically distinct Israeli cities.

Our results are consistent with the widely accepted

notion that prioritizing the elderly for vaccination reduces

hospitalizations under a broad range of conditions. Indeed,

this has been demonstrated in recent theoretical studies (15,

31) and was the strategy of choice in many countries (50),

following the finding that older individuals have higher chances

of developing severe COVID-19 given infection. On the other
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FIGURE 3

Examining the e�ciency of the two main NPIs. Each panel shows violin plots of the number of infected (A,B) or hospitalized (C,D) per 100 k

individuals at the end of 500 simulations. The plots are further stratified by the application of the Asymptomatic Detection (A,C) or Household

Isolation (B,D) interventions.

FIGURE 4

Applying vaccination strategies uniformly and di�erentially between demographics. Colors represent the mean hospitalizations (top) and

infections (bottom) per 100 k individuals, combined for both demographic compositions. Results are shown using either the same vaccination

strategy in both demographic compositions or the best strategy for each demographic composition, under Household Isolation (left) or

Asymptomatic Detection (right). The numbers represent the mean of 500 simulations per scenario. The vaccination strategies are sorted

according to the total hospitalizations. The General Descending strategy is highlighted as it is the most commonly used strategy in most

countries. ND, Neighborhood Descending; NA, Neighborhood Ascending, and GD, General Descending.

hand, we showed that prioritizing vaccination for younger

individuals reduced infections. This is due to the high rate

of social interactions of younger individuals, coupled with

their higher rates of asymptomatic infections (47, 51), leading

to lower probabilities of case isolations. Similar results have

been demonstrated in recent theoretical studies that evaluated

vaccination strategies focusing on individuals with a large

number of contacts (32).

We further examined the effects of NPIs and vaccination

strategies on the two distinct demographic compositions.

We found that the same interventions and vaccination

strategies produced different results in the selected population

structures. Under the ‘older’ demography of Holon, the

different vaccination strategies mainly affected the number of

infections and, correspondingly, the Rt values. With respect to

NPIs, actively detecting asymptomatic infections (Asymptomatic
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Detection) led to a significantly lower number of infections

and hospitalizations than isolating household members of

symptomatic cases (Household Isolation).

Several reasons could explain the success of the

Asymptomatic Detection intervention. First, younger individuals

tend to be more mobile and have more contacts per day (52),

leading to higher chances of secondary infections for each

asymptomatic case. Second, since younger individuals are less

prone to present symptoms (33, 53), their abundance may

reduce the effectiveness of NPIs that mainly target symptomatic

cases (54). Altogether, actively testing to detect asymptomatic

infections can be valuable in demographic settings with a

younger population.

Nevertheless, applying the Asymptomatic Detection

intervention is not trivial. First, it requires compliance from

parents to test their children frequently. Second, it is expensive to

implement due to the high use of testing kits. On the other hand,

the Asymptomatic Detection intervention successfully reduced

both the number of infections and hospitalizations compared

to Household Isolation. For example, under the demographics

of Bnei Brak, the Household Isolation intervention resulted

in an eight-fold increase in infections and almost a two-fold

increase in hospitalizations relative to applying Asymptomatic

Detection. Accordingly, when aiming to limit the number of

hospitalizations and reduce the burden on intensive care units,

Asymptomatic Detection should be investigated as a useful NPI,

especially in settings with a young population structure.

Under both demographic settings, the Neighborhood

strategies were less affected by the order of the vaccination

than the General strategies. A possible explanation is that

the Neighborhood strategies focused all of the vaccines on a

single neighborhood at a time. Thus, it allowed for a more

rapid shift from the prioritized age group to other age groups

within the neighborhood. Moreover, for the demographics

of Holon, the Neighborhood Descending strategy performed

better than any other strategy, under both NPIs, to reduce

hospitalizations and better than the General Descending strategy

in reducing infections. Under the demographics of Bnei Brak,

the Neighborhood Descending strategy performed best in

reducing infections and resulted in the second-lowest total

hospitalizations. Notably, the General Descending strategy is

the most used vaccination strategy worldwide (50). However,

while reducing hospitalizations, the General Descending

strategy performed the worst at reducing infections compared

to the other vaccination strategies simulated. We hence

propose that using the Neighborhood Descending strategy as a

potential alternative can provide a good trade-off between total

hospitalizations and infections.

The proposed Neighborhood strategies can be considered

as previously studied “spatial vaccination” strategies, which

prioritize individuals for vaccination based on their geographic

location. For example, a recent study investigated the use

of a spatial vaccination strategy in which regions at higher

risk of importing the pathogen are prioritized, compared to

a vaccination strategy in which highly connected regions are

prioritized for vaccination (55). The Neighborhood strategies

studied here are also analogous to “targeted geographic

vaccination”. This previously used vaccination strategy focuses

on areas, neighborhoods, or villages with higher infection rates

(56) and was successfully used in the Ebola outbreak in Chow

in South Kivu (57). Moreover, it was shown that the targeted

geographic vaccination was more effective than both mass and

ring vaccination (58). Another similar vaccination strategy, used

to some extent in the UK against the B.1.617.2 SARS-CoV-

2 variant, is “surge vaccination” (59). Under this vaccination

strategy, younger age groups and previously unvaccinated

individuals in areas with high prevalence or rapidly growing

outbreaks are prioritized for vaccination. Furthermore, the UK

government has suggested using the surge vaccination strategy

in tandem with NPIs, to mitigate outbreaks while vaccine

induced immunity develops (60). Hence, focusing on highly

infected population units, such as a neighborhood, has empirical

support for potential efficiency against both COVID-19 and

other infectious diseases- aligned with our results.

The disadvantages of the Neighborhood vaccination

strategies are their logistical demands and public perception.

The selected neighborhood and prioritization within the

neighborhood can change rapidly, requiring efficient

information flow and high compliance from the neighborhoods’

residents. To overcome the logistical difficulties, small

neighborhoods can be combined into larger clusters based

on their Rt . Furthermore, the selection of the next cluster to

vaccinate can be made less frequently (e.g., every week). Future

studies could examine how the frequency of prioritizing the

vaccination locations affects optimal strategies, using explicit

simulation frameworks, such as ours. Finally, targeting specific

subpopulations before others can be perceived negatively by

the public. Subpopulations offered the vaccine early on might

hesitate to comply for fear of side effects (61); alternatively,

sup-populations vaccinated later on may feel discriminated

against (62).

We also sought to understand whether applying mixed

strategies to different populations could be beneficial. While

a uniform vaccination strategy is usually chosen across entire

countries, we showed a potential advantage in combining

different strategies for different sub-populations. For example,

while applying the Household Isolation intervention, using

a combined strategy resulted in 7% fewer hospitalizations

compared to the best uniform strategy, which in this case was

the commonly used General Descending strategy. This result

demonstrates the potential benefit of selecting the optimal

strategy per city, county, or other lower-level localities, as

countries are not uniform in their demographics. However,

similar difficulties to those elaborated above regarding

the Neighborhood strategies apply when implementing

combinations of vaccination strategies in different localities.

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.966756
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ben-Zuk et al. 10.3389/fpubh.2022.966756

We also note that our assumed form of VE imposes potential

limitations on the generalizability of our study. Since we model

vaccination by moving individuals directly to the recovered

compartment, ourmodel refers to vaccination as equally efficient

against infections and developing severe disease given infection.

Consequently, our study is mainly relevant for scenarios where

VE is similar with respect to both of these outcomes. Indeed,

this assumption held in the initial vaccination campaigns against

the first SARS-CoV-2 variants (42–44). Future work should

focus on expanding this model and decomposing VE so it

can assume different values against infection, transmission, and

severe disease.

To conclude, we have shown that subpopulations with

different demographic compositions may require different

vaccination strategies. Our study emphasizes the importance

of tailoring a strategy to the unique characteristics of a

subpopulation’s demographics (e.g., household size distribution

and age distribution) instead of following a uniformly applied

strategy. We also demonstrated the effectiveness of vaccination

strategies targeting highly infected localities and of NPIs

that actively seek asymptomatic infections. The presented

simulation framework and our findings can help better design

future responses against emerging SARS-CoV-2 variants and

other pathogens.
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