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Qatar is a peninsular country with predominantly hot and humid weather, with 88%

of the total population being immigrants. As such, it leaves the country liable to the

introduction and dissemination of vector-borne diseases, in part due to the presence

of native arthropod vectors. Qatar’s weather is expected to become warmer with

the changing climatic conditions across the globe. Environmental factors such as

humidity and temperature contribute to the breeding and distribution of di�erent

types of mosquito species in a given region. If proper and timely precautions are

not taken, a high rate of particular mosquito species can result in the transmission

of various vector-borne diseases. In this study, we analyzed the environmental

impact on the probability of occurrence of di�erent mosquito species collected

from several di�erent sites in Qatar. The Naive Bayes model was used to calculate

the posterior probability for various mosquito species. Further, the resulting Naive

Bayes predictions were used to define the favorable environmental circumstances

for identified mosquito species. The findings of this study will help in the planning and

implementation of an active surveillance system and preventive measures to curb the

spread of mosquitoes in Qatar.

KEYWORDS

climate change, environment, malaria, mosquitoes, Naive Bayes, Qatar, vector-borne disease
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1. Introduction

Mosquito-borne infections are a major health concern, with more than half of the world’s

population currently estimated to be at risk (1). World Health Organization (WHO) and the

US Centers for Disease Control and Prevention (CDC), along with other international health

agencies, have endeavored to improve surveillance for mosquito-borne diseases such as malaria

and dengue fever, among others (2). Despite the rising global importance of mosquito-borne

diseases, there are, to date no effective vaccines available to hamper the spread of these

infections (3, 4). However, recently, a tetravalent chimeric vaccine, Dengvaxia (CYD-TDV),

has been licensed for individuals 9–45 years of age in over ten dengue-endemic countries (5).

Consequently, this puts vulnerable populations at increased risk of contracting mosquito-borne

infections, thus affecting their quality of life. Several factors affect mosquito and mosquito-borne

pathogens’ life cycles and their geographical spread, including rapid population expansion
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and urbanization, animal migrations and trade, climate change, etc.

(6). The impact of global climate change and environmental factors

on vector-borne diseases (VBDs) can cause substantial changes in the

transmission of VBD pathogens from vectors to the hosts (animal and

human) (6).

Qatar is a small country with a total land area of 11,600

sq. km and a population of 3 million in 2022, and the

majority (∼88%) are immigrants and reside in the urban

area (99%) (7). The climate in Qatar is hot and humid, and

the average annual temperature is 27.1◦C, with an average

annual precipitation of 72mm (8). The large immigrant force,

urban area residents, and favorable weather conditions make

Qatar susceptible to VBDs (9–11). Presently, as a non-endemic

country, Qatar’s vector control and surveillance initiatives are

still inadequate (12). To address this problem, Qatar needs to

strengthen its technical capacities in the field of entomology,

with a particular focus on active surveillance and vector

detection. Extensive long-term surveys are required to assess

the effectiveness of mitigation strategies, which is a costly and

time-demanding investment.

The presence of a single occurrence of VBD poses a health

threat of transmission within different communities, especially

those at higher risk of contracting the infection. Recently, our

longitudinal and snapshot surveys in Qatar revealed that the

southern house mosquito, Culex quinquefasciatus, is the most

ubiquitous and populous mosquito species, followed by Culex

perexiguus, suggesting a risk of West Nile virus (WNV) transmission.

Anopheles stephensi was also widely distributed including in

urbanized areas in Qatar, implying a possibility of local malaria

transmission (9, 10, 12–14). In addition, Aedes caspius, a wetland

mosquito, is also common, posing a risk of Rift Valley Virus

(RFV) transmission.

Several studies have reported the effect of different factors,

such as temperature, habitat, precipitation, migration, and relative

humidity, on the mosquitoes’ growth and abundance (15–18).

Temperature is one of the essential abiotic factors responsible for

insects’ physiology, behavior, ecology, and survival (19). Mosquitoes

adapt strategies to maintain body temperature and adapt to

different climatic conditions by synthesizing heat shock proteins,

TABLE 1 Site details for mosquitoes collection.

Site # Municipality Habitat Coordinates

Latitude Longitude

1. Al Khor Sewage basins 25.661767 51.517150

2. Al Khor Farm 25.760504 51.434899

3. Al Rayyan Farm 25.006483 51.194028

4. Al Shahaniya Zoo 25.439317 51.222233

5. Al Shahaniya Farm 25.171333 51.089283

6. Al Shamal Farm 25.959183 51.072083

7. Umm Salal Farm 25.466325 51.376284

8. Doha Widam company 25.236844 51.483064

9. Al Rayyan Farm 25.150400 51.363600

thermoregulation, or changing their behavioral activity (20, 21).

Moreover, temperature influences the length and duration of the

extrinsic incubation period (EIP) (22). Relative humidity work

in tandem with temperature to influence mosquito desiccation

resistance (23), oviposition rate, adult mortality, adult survival,

fecundity, hatching rates, sex proportion, and longevity ratio between

female and male mosquitos (24). For example, mosquitoes have a

shorter life span when relative humidity is <60%, but they live

longer with increasing relative humidity (25). For Aedes aegypti, the

gonotrophic cycle becomes shorter at higher mean temperatures and

is optimal between 26 and 30◦C (26). In addition, the temperature

was the highest predictor of malaria transmission via Anopheles

species, reaching its peaks at between 27 and 28◦C (24, 27, 28). It

was found that the risk of clinical malaria increased exponentially

above 60% relative humidity and was twice as high at 80% (25).

The Culex mosquito is the most prevalent mosquito species on

the planet and a vector of various medically important viruses

such as WNV, St. Louis Encephalitis virus (SLEV), and Japanese

Encephalitis virus (JEV) (29–31). The Culex quinquefasciatus larvae

also grow faster as the temperature rises, favoring the adult

population (32–34).

Climate change is expected to get worse within the gulf region,

which will result in higher dry and wet bulb temperatures, lower

rainfalls, and increased humidity, among other weather changes

(35, 36). Furthermore, a warmer climate means higher energy

consumption due to the increased expulsion of waste energy from

condenser/cooling towers as heat, thus further raising temperature

and humidity (37–39). Additionally, a sudden increase in population

during the FIFA World Cup 2022, coupled with favorable climatic

conditions, is likely to facilitate the distribution and proliferation of

mosquito species. Therefore, it is essential to conduct further studies

that correlate the propagation of mosquito species and mosquito-

borne diseases with environmental conditions.

Machine learning-based classification has become an increasingly

valuable tool in recent years and can handle nonlinear, high-

dimensional data with complex computable operations (40, 41).

Classification algorithms, such as Naive Bayes (NB), neural networks

(NN), decision tree (DT), Linear Discriminant Analysis (LDA),

Support Vector Machine (SVM), and deep learning (DL) algorithms,
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FIGURE 1

The location map, including Qatar Meteorological Department (QMD) stations in black and the studied nine sites in red color, respectively.

are significant types of machine learning approaches (42–45). Due

to its computational simplicity and efficiency, NB is consistently

being enhanced and is frequently employed in various applications

(46). For instance, Genoud et al. (47) implemented machine

learning methods such as DT, NB, LDA, and SVM to predict

the mosquitoes’ species using optical signals. Their findings show

that using optical sensors in conjunction with machine learning

can be a feasible alternative or complementary to traditional

mosquito population monitoring methods. Similarly, the present

work focuses on implementing machine learning technique to

compute the mosquitoes’ specie probability distribution. In addition,

the dependency of ambient conditions (ambient temperature and

humidity) on the mosquito species distribution in Qatar is analyzed

and discussed.

2. Materials and methods

2.1. Study area and environmental data

A total of nine different sites of diverse habitats were

selected, as listed in Table 1, and the mosquitoes’ samples

were collected from August 2017 to August 2018, and

details have previously been described elsewhere (13). The

ambient conditions have been approximated using the data

from six different stations of the Qatar Meteorological

Department (QMD). The collected data is used to program

the machine-learning algorithm, i.e., NB, to predict the

probability distribution of certain mosquitoes species under

environmental conditions.
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2.2. Sample collection and morphological
characterization

To adjust for seasonal data, a set of repeated sampling

sessions was conducted across the country to gather adult

mosquito samples between August 2017 and August 2018. Farms,

sewage basins, widam company and zoo were among the nine

places chosen to represent various environmental sub-types that

could influence mosquito breeding (Table 1). Over a thousand

mosquitoes were collected and transported to the laboratory

for morphological and molecular characterization, as reported

previously elsewhere (13). Thousands of mosquitoes were collected,

but the presence of considerable by-catches (attracted by the

TABLE 2 Arguments details for NB algorithm.

Arguments Description

D Dataset

X Observations in D

Y Known Class labels of X

N The number of observations in D

C The number of classes

C The label of an observation

N The dimensions of X

black light) and the poor quality of preservation did not allow

all specimens to be properly sorted and identified. However,

to obtain an estimate of sampling outcomes under our time

constraints, we performed subsampling and analyzed one randomly

chosen sample per month and per site. We analyzed 327

samples, yielding the detection of seven mosquito species or

groups. The details are furnished in the previously published

study (13).

2.3. Environmental conditions

The dry-bulb (ambient) temperature and relative humidity

observations from August 2017 to August 2018 were collected

from the six meteorological stations of the Qatar Meteorological

Department (QMD), Civil Aviation Authority. The locations of

QMD stations are shown in Figure 1 in black dots. The Qatar

Civil Aviation Authority stated that meteorological observations

had undergone rigorous appropriate methodology to ensure

homogeneity and quality. Furthermore, the six stations have had

no systematic changes in their location or measurement techniques

in the last three decades. The red dots represent the collection

sites and habitats for mosquito collection. The temperature and

humidity conditions of the nine sites considered in this work

were derived from the data gathered from QMD stations. The

inverse distance weighted (IDW) analysis tool within the geographic

information system (GIS) was employed to estimate the weather

FIGURE 2

Mosquitoes’ species collection and identification for di�erent sites.
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FIGURE 3

Monthly average temperature distribution in [◦C] for selected sites.

conditions using the coordinates of sites (listed in Table 1) (48).

The IDW is a widely used deterministic interpolation tool in

the spatiotemporal characterization of climatic parameters. The

IDW can be extended by reducing and extending methods to

solve interpolation problems. It does not require any subjective

assumption to select the semi-variogram model. Instead, it

directly depends on the adjacent measured values or specific

mathematical formulations for defining the smoothness of the

surface. By definition, the IDW considers the measured points

adjacent to the undetermined point, which is compared with the

distant points. The general formula for the IDW is expressed

as follows:

Ẑ (so) =
∑

N
i=1λi Z (si) (1)

Where Z(si) is the measured/determined value at the ith

location; λi is the undetermined weight for the measured

value at the ith location, which depends totally on the

distance to the prediction location; s0 is the prediction

location, and N is the number of measured values. For

more information about the IDW tool, the readers can refer

to (49).

2.4. Naïve Bayes (NB) algorithm

Since its creation, Naive Bayes (NB) has been effectively used in

numerous applications. The Bayes’ theorem (also known as Bayes’

law or Bayes’ rule), which carries Thomas Bayes’ name, predicts the

likelihood of an event based on knowledge of circumstances that may

be associated with it in probability theory and statistics (50). Its ability

to forecast future probabilities of events is quite effective. A family of

straightforward “probabilistic classifiers” known as NB classifiers is

based on using the Bayes theorem with strong (naive) independence

assumptions between the features. NB is a conditional probability

model that assigns probabilities to each of C possible outcomes or

classes given a problem instance to be classified, represented by a

vector X encoding some n attributes. Based on the observed data,

it works by estimating the posterior probabilities of a given instance

belonging to each conceivable class.

This study’s goal was to forecast the existence of a certain

mosquito species at a particular location under particular

environmental circumstances, not to categorize various mosquito

species. Therefore, in this study, instead of using the NB classifier,

the posterior probabilities calculated by the NB were utilized to

estimate the production of different mosquito species with variations

in temperature and humidity in the state of Qatar. Due to its

straightforward and easy implementation, the NB model has been
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FIGURE 4

Monthly average relative humidity distribution for selected sites.

chosen for this study, and previously this model has been used in

several similar applications (47, 51).

Suppose a data D = {Xi, yi}, where Xi = (xi1, x
i
2, . . . xin)

represents an instance with n features, yi represents one of class

c = 1, 2, . . . , C associated with an instance Xi, and i = 1, 2, . . .N

is the total N observations in D. For a new observation X̂, NB assigns

a label ŷ, which is predicted as:

ŷ = arg maxc = 1, 2, ...,C P(y = c
∣∣∣X̂ ) (2)

where the posterior probability P is calculated by the Bayes

theorem as:

ŷ = arg maxc = 1, 2, ...,C

P(y = c)P(x̂1, x̂2, . . . . . . .., x̂n
∣∣y = c )

P(X̂)
(3)

Based on the features independence supposition, the joint probability

is expressed as:

P(y = c|x̂1, x̂2, . . . . . . .., x̂n ) ∝ P(y = c)
∏

n
i=1P(x̂i

∣∣y = c ) (4)

This indicates that the conditional distribution over the

class variable c under the aforesaid independence assumptions is

as follows:

P
(
y = c

∣∣x̂1, x̂2, . . . . . . .., x̂n
)
=

1

Z
P(y = c)

∏
n
i=1P(x̂i

∣∣y = c ) (5)

where Z = P(X̂) =
∑

c P
(
y = c

)
P

(
X̂

∣∣∣y = c
)
is a scaling contact

depending only on the feature variables x̂1, x̂2, . . . . . . .., x̂n which

are known.

The NB classifier calculates the posterior probabilities as defined

in Equation (5) and classifies an observation as belonging to

one of the classes as defined in Equation (2). In this study, the

posterior probabilities calculated by the NB were utilized to estimate

the production of different mosquito species with variations in

temperature and humidity in the state of Qatar. Table 2 enlists the

details of the arguments for the NB algorithm. Furthermore, the

numerical experimentation was carried out in MATLAB R2019 on

a 2.9 GHz 6-Core Intel Core i9 Mac-Book Pro.

3. Results and discussion

3.1. Morphological identification and
characterization of vector species

Among the various species of mosquitoes identified, the most

abundant were Culex quinquefasciatus and Cx. (Cux.) perexiguus,

(which are often difficult to distinguish from dried—and frequently

damaged—adults), found at all sites. The only Anopheles species

found was (Cellia) stephensi at seven sites (excluding site 1: Al

Khor—Sewage basins and site 6: Al Shamal—Farm). Moreover,
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FIGURE 5

Monthly average probability distribution of Anopheles mosquito for di�erent sites.

Culex quinquefasciatus was prevalent throughout the year, while

An. stephensi was only moderately abundant between October and

November and then between June and July. Aedes (Ochlerotatus)

caspius, was observed at six different sites and at various times

throughout the year but was found in small numbers. Our

entomological survey collected samples from farms, garden centers,

industrial regions, sewage lakes and treatment plants, urban

building areas, wetlands, worker housing, and a zoo to account

for diverse elements affecting mosquito reproductive capabilities

and distributions.

Furthermore, every inspected area contained one or more

mosquito species, with the southern house mosquito species Culex

quinquefasciatus having the most widespread geographical range due

to the high degree of adaptability to their environment. Additionally,

our findings were consistent with the species’ known preferences and

posed a risk to public health through disease transmission (52). For

generalization, the mosquitoes were grouped into Culex, Anopheles,

and Aedes, as shown in Figure 2. Most of the mosquitoes’ samples

were collected from Doha and Al-Rayyan municipalities. This data

was used in combination with the weather dataset to predict the

mosquitoes’ probability distribution. To appropriately assess the risk

ofmosquito-borne diseases, routine fieldmonitoring and analyses are

required to address research gaps in terms of breeding, distribution,

and biting inclinations of various mosquito species presently found

in Qatar.

3.2. Environmental conditions

Figure 3 exhibits the monthly average ambient temperature and

relative humidity distributions for selected sites from August 2017

to August 2018. The lowest monthly average temperature recorded in

January ranged from 16.9 to 18.8◦C. The temperatures steadily rose as

the summermonths approached. For the period from June to August,

the monthly average temperature reached 35 to 37◦C. However, the

maximum temperature during summer can potentially reach well

beyond 45◦C.

Moreover, the monthly average temperature variation was small

between different sites, and the maximum variation in temperature

was <2◦C. The monthly average temperature at site 8 was found

to be slightly higher than at the other sites. The monthly average

relative humidity variation for different sites is shown in Figure 4.

The humidity index in Qatar typically tends to be high, averaging

in the range of 45–65% during the half of summer (August and

September), fall, and most of the winter season until the following

February. Afterward, the average monthly humidity decreased to the

lowest at 26% (June) and then increased again during the summer,

thus continuing the cycle. In contrast with the temperature profile,

the variation of relative humidity (12–22%) among different sites was

statistically significant. In summary, site 8 was relatively warmer and

less humid, and site 6 exhibited lower monthly average temperature

and higher relative humidity than other sites, respectively.
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FIGURE 6

Monthly average probability distribution of Aedes mosquito for di�erent sites.

FIGURE 7

Predicted probability distribution of mosquito species with respect to environmental conditions (ambient temperature and humidity).

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.970694
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tahir et al. 10.3389/fpubh.2022.970694

3.3. Probability distribution

At first, the accuracy of the NB model is evaluated by conducting

a 10-fold cross-validation, and the observed model’s accuracy

was found to be 81.34%. The model’s accuracy can be further

improved by improving the class imbalance problem of the collected

dataset. As, many samples in this dataset belong to Culex class

only, therefore the classifier learning can be biased toward this

particular class. Culex families of mosquitoes were found to be more

abundant in Qatar; hence, the probabilities were computed only for

Anopheles and Aedes mosquitoes. The results presented in sections

Morphological identification and characterization of vector species

and Environmental conditions were used to train the NB algorithm

to predict the distribution of mosquito species. Figure 5 shows the

probability distribution of Anopheles (malaria vector) throughout

the year for the different collection sites. It was observed that the

probability of the presence of Anopheles mosquitoes is lowest during

the winter season (≤0.05) and increases during summer, reaching

its peak in June, given that they thrive in warmer temperatures.

However, it varies when compared between different sites as the

probability of Anopheles mosquito at site 6 is just 0.162 and at site

8 is 0.538. This significant difference could be due to site 8 (Doha—

Widam Company) being much warmer and less humid than site

6 (Al Shamal—Farm), which has lower ambient temperature and

higher humidity compared to the other sites. Figure 6 represents

the Aedes mosquito probability distribution from August 2017 to

August 2018 for the different collection sites. It follows a similar

trend to that of Anophelesmosquito distribution, i.e., lower presence

in the winter (December to February) and higher in the summer

season, respectively. However, in the summer season, the probability

of presence of Aedes mosquitoes is lower than that of Anopheles

mosquitoes. Like Anopheles mosquito probability distribution, the

probability for Aedesmosquito tends to decrease at higher humidity.

Thus, temperatures around 35◦C with humidity levels of 35–45 % are

suitable environmental conditions for the abundance of both species,

i.e., Anopheles and Aedes.

These conditions, compounded by a largely immigrant

population of Qatar who travels to and from VBD endemic countries

(9), have the potential to further propagate Anopheles and Aedes

species of mosquitoes.

Figure 7 shows the comparative distribution probability of

mosquitoes with respect to temperature and humidity. For both

species (Anopheles and Aedes), the likelihood increased at higher

temperatures and lower humidity. However, for Aedesmosquito, the

probability increased with the declining humidity levels to a certain

point before it started to decrease again. The suitable environment

for Aedes mosquitoes was observed to be in the range of 35–

40◦C temperature and 35–45 % relative humidity. Furthermore,

our findings align with the studies (28, 53, 54). Although machine-

learning models are good at predicting the mosquitoes’ specie

probability distribution, the only drawback these models have is

the requirement of labeled data for model learning. It is often

difficult to collect and label different mosquito species, especially

the species those are rarely found at specific sites. Therefore, it

might not be feasible to apply such models in scenarios where

the labeled data is not available. However, if the labeled data

is available to train machine-learning models, these models can

easily predict the presence of certain species at certain sites in

advance, and therefore, precautionary measures could be taken in

advance to control the production of mosquitos on those sites,

if necessary.

4. Conclusion and recommendations

Climate change affects the environment and humans, and also

has social and economic implications. The increased greenhouse

gas emissions on the part of human activities contribute to

warming temperatures on Earth. This will, in turn, engender further

dissemination of infectious diseases via vectors of concern and

floods—all of which are threats to human health. Such events propel

human beings beyond the limits to which they can adapt; therefore,

death rates increase. Depending on the area that a population is

living in, the relationship between temperature and mortality varies.

The changes in temperature and other climate variables control how

vectors are redistributed. Such changes contribute to the burden of

VBDs and the deterioration of human health.

This study conducted mosquitoes species identification and

propagation at nine different sites of various habitats in Qatar using

the Naive Bayes algorithm. It was found that theCulexmosquitoes are

the most abundant, followed by the Anopheles and Aedes types. The

Anopheles and Aedes types were observed at seven and six collection

sites, respectively. Results show that higher temperatures and lesser

humidity enhance the chance of both species (Anopheles and Aedes).

However, the risk of an Aedes mosquito increases as the humidity

decreases, but only to a certain point and then drops. Temperatures

between 35 and 40◦C and relative humidity levels between 35 and

45 % are ideal for Aedes mosquitoes. Our results reaffirm the

need for a robust surveillance system working in combination with

the environmental sector and an extensive, multivariate dataset to

provide a clearer outlook of the potential distribution and abundance

of mosquito species.

A resilient healthcare structure to protect against mosquito-borne

infection requires (1) continuous monitoring and surveillance and

(2) a large dataset to provide a clearer picture of the likelihood of

mosquito species abundance and distribution. In addition, there is

an increased risk of VBD transmission during FIFAWorld Cup 2022

as Qatar prepares to host the event, with over a million attendees

expected to arrive in the country. Therefore, policy development and

implementation are vital for adequate emergency preparedness and

response for VBDs.
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37. Andrić I, Le Corre O, Lacarrière B, Ferrão P, Al-Ghamdi SG. Initial
approximation of the implications for architecture due to climate change.
Adv Build Energy Res. (2021) 15:337–67. doi: 10.1080/17512549.2018.
1562980

38. Andric I, Kamal A, Al-Ghamdi SG. Efficiency of green roofs and green walls as
climate changemitigationmeasures in extremely hot and dry climate: Case study of Qatar.
Energy Reports. (2020) 6:2476–89. doi: 10.1016/j.egyr.2020.09.006

39. Salimi M, Al-Ghamdi SG. Climate change impacts on critical urban infrastructure
and urban resiliency strategies for the Middle East. Sustain Cities Soc. (2020)
54:101948. doi: 10.1016/j.scs.2019.101948

40. Rehman AU, Belhaouari SB, Ijaz M, Bermak A, Hamdi M. Multi-classifier tree
with transient features for drift compensation in electronic nose. IEEE Sens J. (2021)
21:6564–74. doi: 10.1109/JSEN.2020.3041949

41. Thessen A. Adoption of machine learning techniques in ecology and earth science.
One Ecosyst. (2016) 1:e8621. doi: 10.3897/oneeco.1.e8621

42. Chickering M, Heckerman D, Meek C. Large-sample learning of Bayesian networks
is NP-hard. J Mach Learn Res. (2004) 5:1287–330. Available online at: https://www.jmlr.
org/papers/volume5/chickering04a/chickering04a.pdf (accessed August 25, 2022).

43. Kohonen T. An introduction to neural computing. Neural Netw. (1988) 1:3–
16. doi: 10.1016/0893-6080(88)90020-2

44. Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets.
Neural Comput. (2006) 18:1527–54. doi: 10.1162/neco.2006.18.7.1527

45. Quinlan JR. Decision trees and decision-making. IEEE Trans Syst Man Cybern.
(1990) 20:339–46. doi: 10.1109/21.52545

46. Xue Z, Wei J, GuoW, A. Real-time naive bayes classifier accelerator on FPGA. IEEE
Access. (2020) 8:40755–66. doi: 10.1109/ACCESS.2020.2976879

47. GenoudAP, Gao Y,WilliamsGM, Thomas BP, A. comparison of supervisedmachine
learning algorithms for mosquito identification from backscattered optical signals. Ecol
Inform. (2020) 58:101090. doi: 10.1016/j.ecoinf.2020.101090

48. Ajjur S, Baalousha H. Sustainable development of qatar aquifers under global
warming impact. Int J Glob Warm. (2021) 25:1. doi: 10.1504/IJGW.2021.10039988

49. Li L. “Constraint databases and data interpolation,” in: Encyclopedia of GIS. (2008)
(Boston, MA: Springer US), 144–53. doi: 10.1007/978-0-387-35973-1_188

50. Rish I, et al. “An empirical study of the naive Bayes classifier,” in IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence. (2001), 41–6.

51. Kasinathan T, Singaraju D, Uyyala SR. Insect classification and detection in field
crops using modern machine learning techniques. Inf Process Agric. (2021) 8:446–
57. doi: 10.1016/j.inpa.2020.09.006

52. Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes and
their control. Spr Sci. Bus. Media. (2010). doi: 10.1007/978-3-540-92874-4

53. Portilla Cabrera CV, Selvaraj JJ. Geographic shifts in the bioclimatic suitability
for Aedes aegypti under climate change scenarios in Colombia. Heliyon. (2020)
6:e03101. doi: 10.1016/j.heliyon.2019.e03101

54. Marinho RA, Beserra EB, Bezerra-Gusmão MA, Porto V de S, Olinda RA, dos
Santos CAC. Effects of temperature on the life cycle, expansion, and dispersion of
Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. J Vector Ecol. (2016)
41:1–10. doi: 10.1111/jvec.12187

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.970694
https://doi.org/10.1371/journal.pone.0058824
https://doi.org/10.1371/journal.pone.0079276
https://doi.org/10.4269/ajtmh.2006.75.448
https://doi.org/10.1016/j.antiviral.2009.10.008
https://doi.org/10.1007/s13365-014-0285-z
https://doi.org/10.1186/1756-3305-4-70
https://doi.org/10.1007/s00484-020-02059-9
https://doi.org/10.1016/j.scitotenv.2020.142420
https://doi.org/10.1093/jmedent/43.2.309
https://doi.org/10.1038/nclimate2833
https://doi.org/10.1080/17512549.2018.1562980
https://doi.org/10.1016/j.egyr.2020.09.006
https://doi.org/10.1016/j.scs.2019.101948
https://doi.org/10.1109/JSEN.2020.3041949
https://doi.org/10.3897/oneeco.1.e8621
https://www.jmlr.org/papers/volume5/chickering04a/chickering04a.pdf
https://www.jmlr.org/papers/volume5/chickering04a/chickering04a.pdf
https://doi.org/10.1016/0893-6080(88)90020-2
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/21.52545
https://doi.org/10.1109/ACCESS.2020.2976879
https://doi.org/10.1016/j.ecoinf.2020.101090
https://doi.org/10.1504/IJGW.2021.10039988
https://doi.org/10.1007/978-0-387-35973-1_188
https://doi.org/10.1016/j.inpa.2020.09.006
https://doi.org/10.1007/978-3-540-92874-4
https://doi.org/10.1016/j.heliyon.2019.e03101
https://doi.org/10.1111/jvec.12187
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Assessing the impact of climate conditions on the distribution of mosquito species in Qatar
	1. Introduction
	2. Materials and methods
	2.1. Study area and environmental data
	2.2. Sample collection and morphological characterization
	2.3. Environmental conditions
	2.4. Naïve Bayes (NB) algorithm

	3. Results and discussion
	3.1. Morphological identification and characterization of vector species
	3.2. Environmental conditions
	3.3. Probability distribution

	4. Conclusion and recommendations
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References


