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Artificial intelligence (AI), also known as machine intelligence, is a branch of

science that empowers machines using human intelligence. AI refers to the

technology of rendering human intelligence through computer programs.

From healthcare to the precise prevention, diagnosis, and management of

diseases, AI is progressing rapidly in various interdisciplinary fields, including

ophthalmology. Ophthalmology is at the forefront of AI in medicine because

the diagnosis of ocular diseases heavy reliance on imaging. Recently, deep

learning-based AI screening and prediction models have been applied to

the most common visual impairment and blindness diseases, including

glaucoma, cataract, age-related macular degeneration (ARMD), and diabetic

retinopathy (DR). The success of AI in medicine is primarily attributed to the

development of deep learning algorithms, which are computational models

composed of multiple layers of simulated neurons. These models can learn

the representations of data at multiple levels of abstraction. The Inception-

v3 algorithm and transfer learning concept have been applied in DR and

ARMD to reuse fundus image features learned from natural images (non-

medical images) to train an AI system with a fraction of the commonly used

training data (<1%). The trained AI system achieved performance comparable

to that of human experts in classifying ARMD and diabetic macular edema

on optical coherence tomography images. In this study, we highlight the

fundamental concepts of AI and its application in these four major ocular

diseases and further discuss the current challenges, as well as the prospects

in ophthalmology.
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Introduction

Artificial intelligence (AI) is a broad branch of computer

science that develops theories, methods, technologies, and

application systems to simulate, extend, and expand human

intelligence in machines (1). Machine learning (ML) (2) is

a subcategory of AI that uses statistical techniques to build

intelligent systems. Using either a supervised or unsupervised

approach, the intelligent system can learn and improve its

performance automatically, such as accuracy, without being

explicitly programmed. Deep learning (DL) (3), which uses

advanced ML techniques, has achieved great success in

computer vision and natural language processing tasks. This

success is primarily attributed to its excellent feature extraction

and pattern recognition capabilities, which use multiple

processing layers (artificial neurons) to learn representations of

data with different levels of abstraction (4) such that it associates

the input with a diagnostic output. Because of this outstanding

success, many investigators have applied DL to medical and

healthcare-related tasks, such that DL has become a powerful

tool in intelligent screening, diagnosis, and treatment of various

diseases recently. DL has been used for COVID-19 detection

from chest X-rays (5), thyroid classification from ultrasound

imaging (6, 7), and lung nodule detection and staging from

computed tomography (CT) images (8, 9).

Currently, AI has achieved radiologist-level diagnosis of

medical images by learning from example images, which

has significantly improved clinical workflows. The application

of AI for medical image analysis plays an important role

in maximizing efficiency and enhancing the accuracy of

diagnosis and treatment for physicians. AI application also

plays a significant role in improving current logistic and

economic issues, which could influence the healthcare system

by expanding clinical capacity and augments. Furthermore, AI

is useful as an important auxiliary tool in the early detection

of diseases, particularly in low-resource clinical settings. Based

on fundus photographs and optical coherence tomography

(OCT), in the field of ophthalmology, DL has been applied

to four major eye diseases that cause blindness, including

diabetic retinopathy (DR) (10–13), glaucoma (13, 14), age-

relatedmacular degeneration (ARMD) (13, 15, 16), and cataracts

(17). AI has shown great promise in the auxiliary diagnosis of

refractive error (18), retinopathy of prematurity (ROP) (19),

retinal detachment (20), choroidal disease (21), and ocular

tumors (22). Early detection is particularly crucial to prevent

delays in treatment and vision loss.

AI simulates the thinking and diagnostic capabilities of

doctors by learning their expertise and medical data to provide

efficient and accurate diagnoses and personalized treatment

plans in a short period using medical images and other relevant

data. The IBM Watson System, a question-answering system,

can effectively provide diagnostic and treatment strategies for

patients with lung, prostate, and other cancers. This system

was successfully developed by learning from empirical evidence-

based medical articles, publications, treatment plans, clinical

data, and experimental reports.

Personal health data in the future can be dynamically

monitored through wearable devices and smart home devices,

which will provide a wealth of data for medical diagnosis.

Modeling with these personal health data will allow accurate

personal health information to predict disease risk in a

standardized and accurate manner. Artificial intelligence

provides accurate guidance on the management of blood glucose

and blood pressure, serves as a medication reminder, monitors

health elements, and offers the population with comprehensive,

full-cycle health services in a high-quality, intelligent, and

daily manner.

The recent development of AI algorithms is providing

unprecedented opportunities to address some major challenges

in DR and other ocular diseases. For instance, the Inception-

v3 algorithm trained with annotated fundus images can

achieve diagnosis performance comparable with human

experts. Although there exist several related reviews in the

community, the technical background, unfortunately, has not

been thoroughly investigated. In this study, we highlight the

fundamental concepts of AI and its application in four major

ocular diseases, and further discuss the current challenges, as

well as the prospects in ophthalmology, providing unexplored

insight in this area. The ability to introduce the fundamental

concept of AI with reference to its clinical applications will

increase the awareness of using AI in the community and

discover new capabilities in the analysis of ocular diseases.

Method of literature research

In this overview, we retrieved English articles

from the commonly used database engines, including

Pubmed/MEDLINE, Springerlink, the Cochrane Library,

Google Scholar, and EMbase Medline with the keywords

“Artificial Intelligence,” “Machine Learning,” “Deep Learning,”

combined with keywords, including “diabetic retinopathy,”

“cataract,” “glaucoma,” and “age-related macular degeneration.”

The end date for the retrieval is December 2021. Studies

retrieved by each pair of keywords were then combined to

build an objective dataset of articles. A comprehensive review

by several authors was performed of all references cited in

the dataset. Proposals protocols, reviews, letters, opinions,

and studies and/or articles that were not peer-reviewed were

excluded. Publications relevant to our topic were selected and

are found in the references. In this study, we focused on giving

an overview of the application of AI in DR and other ocular

diseases. We, therefore, attempt to select representative AI

techniques for each disease category. We acknowledge that

not all the articles under these keywords’ combinations were
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FIGURE 1

A diagram illustrating a fast R-CNN algorithm for automatic lesion detection and disease recognition from fundus images. The input fundus

image will be fed into the CNN network to get the corresponding feature map. The derived feature map will be used to estimate region

proposals (candidate lesion regions in squared boxes), which will then be classified and predicted as di�erent disease categories. FC, fully

connected layers; DM, diabetes mellitus; DR, diabetic retinopathy; R-CNN, region-based convolutional neural network; ROI, region of interest.

included for discussion, providing more of a perspective and

opinion review.

AI’s impact on human ocular
diseases

Diabetic retinopathy

DR is a leading cause of blindness in working populations in

both developed and developing countries and is the most serious

eye complication of diabetes mellitus (DM). The International

Diabetes Federation estimates that by 2040, approximately 600

million people worldwide will have DM, one-third of whom will

eventually develop DR. According to a meta-analysis consisting

of 35 cohort studies with 22,869 subjects, the global prevalence

of DR is 34.6% and vision-threatening DR is 10.2%, accounting

for 51% of blindness cases worldwide (23).

Regular DR screening is important for the timely treatment

and prevention of vision loss (24). Time and financial

constraints are major issues for both ophthalmologists and

endocrinologists. The effectiveness of fundus photograph-

based screening is significantly impacted by the limited

number of registered ophthalmologists, particularly retinal

specialists. DR is the most common retinal vascular disease,

with typical fundus characteristics, including microaneurysms,

hemorrhages, exudates, and neovascularization. For automatic

screening of disease, these lesions must first be manually labeled

on fundus images, and then a preliminary diagnosis using ML

is made (Figure 1). In April 2018, the U.S. Food and Drug

Administration (U.S. FDA) approved the first AI-assisted DR

detection device, IDx-DR, for primary eye care, to aid physicians

in DR screening (25, 26).

Compared to humans, ML can detect DR in a faster

and more accurate manner (27). Furthermore, deep neural

networks offer significantly higher predictive performance for

DR screening using retinal images (28, 29). The AI-based

DR screening model is feasible and acceptable for patients in

endocrinology outpatient settings (30).

The performance of DL models relies heavily on the

availability of sufficient training datasets. However, owing to

complicated data acquisition procedures and ethical constraints,

it is challenging to acquire sufficient data in the real world.

To overcome this limitation, investigators have used migration

learning to train a neural network with a small fraction of

data and have used features from conventional methods. This

method provides comparable performance to human experts in

the classification of ARMD and diabetic macular edema (DME)

(31). Other researchers have developed a self-supervised training

scheme to train neural networks with many unlabeled medical

images (32).

Diabetic choroidal vasculopathy (DCV) has been a hot

research topic recently. Early detection of DCV could offer

warning information regarding the occurrence of DR in patients

with DR. However, automatic segmentation of the choroidal

layer remains a challenging task because of the low contrast,

inhomogeneous intensity, inconsistent texture, and blurred

boundaries between the choroid and sclera in the OCT images.

Currently used methods continue to emphasize manually or

semi-automatically segmenting areas of interest. The researchers
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proposed segmenting the Bruch’s membrane (BM) in OCT

images using a series of morphological operations, while the

choroidal layer was segmented using a DL approach (21).

Moreover, a segmentation method based on the adaptive

appearance and prior shape information was developed to

separate the retinal layers (33).

Recently, DL systems for detecting DR have developed

rapidly, with remarkable results (12, 13, 26, 34), greatly

improving the diagnostic performance of non-proliferative DR

(NPDR) and middle- and late-stage PDR (Table 1). Researchers

have also extended their research to the grading and prediction

of DR based on lesion identification. The International Clinical

Classification of Referable DR (rDR) defines DR as moderate,

severe non-proliferative DR (NPDR), proliferative DR (PDR),

and/or macular edema (ME). Abràmoff et al. showed that

AlexNet and VGG achieved 96.8% sensitivity, 87% specificity,

and 98% area under the curve (AUC), respectively (10). The

team defined mild and beyond classification DR (mtmDR)

as ETDRS grade 35 or higher, and/or DME in at least one

eye, based on the early treatment diabetic retinopathy study

severity scale (ETDRS) and diabetic macular edema (DME).

This AI system had a sensitivity of 87.2%, a specificity of

90.7%, and an imageability of 96.1% (34). Gulshan et al.

used CNN to classify the referable diabetic retinopathy (rDR)

as moderate or worse diabetic retinopathy, referable diabetic

macular edema, or both and achieved 97.05% sensitivity,

93.4% specificity, and 99.1% AUC (12). DL system from

Google AI Healthcare identified image features to grade fundus

lesions derived from 128,175 retinal images (labeled by 54

ophthalmologists) and discovered that these image features

could quickly identify DR and identify signs of DR. Ting

et al. reported a clinically acceptable diagnostic performance

with an AUC of 93.6%, sensitivity of 90.5%, and specificity of

91.6%, in detecting DR using a development dataset acquired

from Singapore integrated DR Program and several external

datasets from six different countries (13). In another study,

investigators from Aalto University trained a DL model based

on Inception-v3 and found that DL could accurately separate

DR and macular edema (35). Feng Li et al. optimized the

Inception-v4 algorithm with a multiple-improvement depth

ensemble to detect DR and DMO and achieved an AUC,

sensitivity, and specificity of 99.2%, 92.5%, and 96.1% (36),

respectively. Reguant et al. visualized the neural network

decision process and analyzed image features; discovered that

Inception-v3, recognition deep residual learning (ResNet) 50,

InceptionresNet50, and Xception achieved 89–95% accuracy

with AUC, sensitivity, and specificity of 95–98%, 74–86%,

and 93–97%, respectively, for disease classification of DR

(37). Ryu et al. proposed a convolutional neural network

(CNN) model for diagnosing DR based on optical coherence

tomography angiography (OCTA) images, achieving 91–98%

accuracy, 86–97% sensitivity, 94–99% specificity, and 91.9–

97.6% AUC (38).

Researchers from Shanghai Jiao Tong University proposed a

deep neural network-based AI algorithm for detecting early DR

and microaneurysms, which significantly improves the accuracy

of the automatic detection of early DR and STDR, including

proliferative DR and DME (39). A system for the automatic

diagnosis of diabetic fundus lesions has been developed to assist

in understanding the grading of fundus lesions and the severity

of the disease in patients. The investigators have also developed a

portable fundus photography device, which consists of a detector

lens, smartphone, and fixed holder, allowing users to take fundus

photographs anywhere. The fundus photographs obtained can

be transmitted to a server for diagnostic analysis, including

optic disc and macular localization, vascular segmentation,

lesion detection, and lesion grading. The diagnostic results of

this system were compared with those of ophthalmologists

and achieved an accuracy rate of 85% (16). Furthermore, the

researchers proposed an algorithm for optic disc and macular

region detection based on a kernel least squares classifier. This

algorithm uses several already labeled optic disc and macular

region images to complete optic disc boundary localization

and establish an accurate mapping from the image to the

region. Based on this, the researchers constructed a method to

accurately detect the optic disc region and locate the center

of the optic disc for color retinal images, which is based

on a kernel least-squares classifier to calculate the optic disc

area. The method is then based on multimodal information

to detect the site of vascular aggregation and obtain the optic

disc center with higher accuracy. Particularly, in terms of

optic disc localization, this method successfully detected 332

images out of 340 testing images, with a detection success

rate of 97.65%. For optic disc boundary detection, the method

achieved a success rate of 94.54% among all 112 images

in the digital retinal images for vessel extraction (DRIVE)

and structured analysis of the retina (STARE) databases; in

macular area detection, 330 images were detected on all 340

test images, achieving a detection success rate of 97.06%.

In the global finals of intelligent reading of fundus images

at the 2018 IEEE International Symposium on Biomedical

Imaging (ISBI), the optic disc detection and macular center

detection technologies developed independently by researchers

won first place worldwide (40). Furthermore, the detection and

analysis of blood vessels in fundus images are crucial for the

diagnosis of related diseases (41). Researchers have proposed

an automatic extraction algorithm for blood vessels in fundus

images based on direction-aware detectors, which constructs

an orientation-aware detector that can accurately extract blood

vessels from fundus images. The detector learns the orientation

and distribution characteristics of blood vessels using the energy

distribution of the Fourier transform and then extracts the blood

vessel morphology using a dual-scale segmentation method,

in which a linear operator is used for the large-scale, and a

Gabor filter bank is used for the small-scale, making the detector

more robust and structure-aware. According to the authoritative
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TABLE 1 Typical deep learning systems for NPDR and PDR.

References Year Modality Diseases Test set Number of

images in test

set

CNN AUC Sensitivity (%) Specificity (%)

Abràmoff et al. (10) 2016 CFP No DR, rDR, vtDR, ME Messidor-2 1,748 AlexNet/VGG 0.98 96.8 87.0

Gulshan et al. (12) 2016 CFP No DR, mild DR, moderate DR,

severe DR, PDR, rDME, rDR

EyePACS-1 9,963 — 0.991 97.5 93.4

Ting et al. (13) 2017 CFP DR, possible glaucoma, AMD SiDRP 14-15 71,896 VGG-19 0.936 90.5 91.6

Abràmoff et al. (34) 2018 OCT DR, DME Data from 10

clinical centers in

the United States

892 patients AlexNet/VGG — 87.2 90.7

Li et al. (36) 2021 CFP DR, DMO Messidor-2 8,739 Improved

Inception-v4

0.992 92.5 96.1

Reguant et al. (37) 2021 CFP No DR, mild NPDR, moderate

NPDR, severe NPDR, PDR

EyePACS and

DIARETDB1

35,122 CNNs 0.95–0.98 74–86 93–97

Ryu et al. (38) 2021 OCTA DR OCTA 240 ResNet101 0.919–0.976 86–97 94–99

Dai et al. (39) 2021 CFP No DR, mild NPDR, moderate

NPDR, severe NPDR, PDR, DME

NDSP/ EyePACS 27,948/88,702 DeepDR 0.944/0.943 — —

AI, Artificial intelligence; AlexNet, Deep Convolutional Neural Networks; AMD, age-related macular degeneration; AUC, area under the curve; CFP, Color fundus photography; CNN, convolutional neural network; DIARETDB1, Standard Diabetic

Retinopathy Database Calibration level 1; DMO, diabetic macular edema; EyePACS, Kaggle EyePACS dataset; SiDRP, Singapore Integrated Diabetic Retinopathy Program; ME, macular edema; Messidor, Methods to evaluate segmentation and indexing

techniques in the field of retinal ophthalmology dataset; NDSP, Nicheng Diabetes Screening Project cohort; NPDR, Non-proliferative diabetic retinopathy; OCT, optical coherence tomography; OCTA, optical coherence tomography angiography; PDR,

Proliferative diabetic retinopathy; rDME, referable diabetic macular edema, rDR, referable diabetic retinopathy; ResNet, recognition deep residual learning; VGG, Very Deep Convolutional Networks; vtDR, vision-threatening diabetic retinopathy.
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FIGURE 2

Using deep residual network (ResNet) for cataract recognition and grading. The overall architecture of the ResNet consists of 16 residual blocks

and each residual block consists of three convolutional layers. The output of the ResNet includes: (A1) mode recognition - identify the capture

mode between mydriatic and non-mydriatic images, and between optical section and di�use slit lamp illimitation; (A2) cataract recognition -

the system could classify the images as normal (no cataract), cataractous, or postoperative intraocular lens (IOL); and (A3) severity evaluation -

classify the type and severity of the cataract (A–G), and assess the subsequent follow-up or referral arrangements for the patient. Conv,

convolutional layers.

standard connectivity, area, and length (CAL) proposed by

Gegndez-Arias, the algorithm achieved an accuracy of 80.82%

on the international public dataset DRIVE and 68.94% on the

STARE dataset. Experimental results show that the proposed

method outperforms the existing segmentationmethods and has

high accuracy and robustness. Furthermore, investigators added

a weakly supervised sensitive heat map (WSSH) to the CNN to

create a CNN-WSSHmodel, combining the automatic detection

of DR classification with a weakly supervised localization

method to address the localization challenge (42).

DL methods enable regular screening in various locations,

particularly in rural areas, making the early detection of

common chronic diseases easier. To address the lack of medical

resources, researchers have evaluated the role of automated

AI-based software in DR and STDR, providing an initial tool

for mass retinal screening for patients with diabetes using

smartphone devices to take fundus photos and validate them

against an ophthalmologist’s score (43). Furthermore, fundus

images acquired by patients using self-filming fundus imaging

(SFI) are comparable in image quality to those acquired by

trained specialists (44).

Through a prospective study of fundus images taken with

smartphones, the researchers concluded that DL models are

generalizable in identifying chronic kidney disease and type

2 diabetes, and feasible in predicting disease progression in a

longitudinal cohort (45).

We anticipate that AI algorithms will improve their ability

to predict the onset and progression of DR more effectively

and concisely.

Cataract

A cataract is a metabolic dysfunction disorder with variable

pathological factors, such as aging, genetics, local nutritional

disorders, immune and metabolic abnormalities, trauma,

poisoning, and radiation, resulting in protein denaturation in

the lens. Cataracts account for up to 18.4% of visual impairment

and 33.4% of blindness worldwide (46). It is critical to

screen people with diabetes for age-related cataracts to prevent

blindness. Slit lamp examination and iris projectionmethods are

mostly used in the examination of cataracts. However, compared

with these two methods, the non-dilated fundus photography

method has convenient and effective features.

AI algorithms are important for the automatic detection

and grading of cataracts based on slit lamp photographs or

color fundus photographs (Figure 2). Wu et al. (17) used a DL

system for the diagnosis and referral of cataracts based on slit-

lamp photographs. Three steps are performed sequentially in

this system: (i) identify the capture mode between mydriatic

and non-mydriatic images, and between optical section and

diffuse slit lamp imaging; (ii) classify the images as normal

(no cataract), cataractous, or postoperative intraocular lens

(IOL); and (iii) classify the type and severity of the cataract

or posterior capsular opacification and assess the subsequent

follow-up or referral arrangements for the patient. The AUC

of the CMAAI validation set was more than 99% for both

capture mode recognition and cataract detection. For cataract

severity evaluation, using mydriatic images with optical sections

achieved the best performance (AUC 0.99), whereas using
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nonmydriatic images with diffuse illumination was less effective

(AUC 0.9328).

A limited number of studies have been conducted on

automated cataract assessment systems using color fundus

photographs. Dong et al. (47) used a CNN for feature extraction

and a SoftMax function for cataract detection and severity

grading. Ran et al. (48) used a CNN and random forest for the

same task. Pratap and Kokil (49) performed transfer learning,

in which a pre-trained CNN was trained on natural images

(non-medical images), which were further refined with 400

fundus images. The training and test data used in this study

are available from open-source databases, including the high-

resolution fundus image database (HRF), STARE, standard

DR database calibration level 0 (DIARETDB0), methods to

evaluate segmentation and indexing techniques in the field

of retinal ophthalmology (MESSIDOR), DRIVE, fundus image

registration dataset (FIRE), digital retinal images for optic nerve

segmentation database (DRIONS_DB), and Indian diabetic

retinopathy image dataset (IDRiD). Li et al. (50) developed a

DL system using training data from the clinical database of the

Beijing Tongren Eye Center. ResNet-18 and ResNet-50 were

used for cataract detection and severity grading (non-cataracts,

mild, moderate, and severe cataracts). Therefore, explainable

attentionmaps can be used to illustrate the presence and severity

of cataract.

The treatment strategy for cataracts is surgical removal

accompanied by intraocular lens (IOL) implantation. AI has also

been used to calculate IOL power, which significantly improves

the prognosis and visual outcome of cataract surgery.

Glaucoma

Glaucoma is an optic nerve degenerative disease

characterized by typical pathological changes in the optic

nerve head, retinal nerve fiber layer (RNFL), and visual field.

Glaucoma is the second leading cause of irreversible blindness

worldwide, and approximately 50% of glaucoma cases remain

undiagnosed. Early diagnosis and intervention are essential

for preventing blindness. Glaucoma can be classified as open-

angle glaucoma or closure-angle glaucoma. Early diagnosis of

glaucoma requires a combination of several examination results,

including IOP, disc compression/decompression (C/D) ratio,

morphology, visual field, and RNFL changes. The C/D ratio is

a common index used to evaluate glaucomatous optic nerve

damage. The difficulty of the computerized automatic diagnosis

system is in segmenting the optic disc and optic cup areas from

the fundus image. There is also an association between diabetes

and the development of glaucoma, and screening for open-angle

and closed-angle glaucoma in the population with diabetes is

clinically and scientifically relevant.

The prerequisite for segmentation is localization.

Researchers have recently proposed a method for localizing

the optic disc based on vessel tracking, using a minimum

variance classifier based to predict the region containing the

optic disc. The connected partial markers and luminance

information are used to identify the fundus vessels, which

eventually assist to predict the optic disc (51). Other researchers

created a comprehensive dataset of retinal images containing

both normal and glaucomatous eyes, which were manually

segmented by several ophthalmologists to provide information

on other optic nerve head (ONH) regions, including disc rim

cuts (52). This dataset is openly accessible and is anticipated to

facilitate further research on glaucoma AI diagnosis.

Different imaging characteristics were thoroughly evaluated

to determine the most significant characteristics of glaucoma.

The researchers trained a multimodal model incorporating

multiple deep neural networks and used it for the early detection

of glaucoma by training macular volumes on OCT and color

fundus photographs and combining demographic and clinical

data. The accurate prediction of posttraumatic growth (PTG)

through interpretable analysis highlighted the variables that

change with the progression of glaucoma, including age and

lung function (53). Other investigators have demonstrated the

importance of the spatial structure of the thickness map data of

the retinal neural fiber layer in the diagnosis of glaucoma using

multiple ML models, including two traditional ML algorithms,

the support vector machine (SVM) and K-nearest neighbor

(KNN), as well as two CNNs, ResNet-18 and Glaucoma Net, to

detect glaucoma diagnostic accuracy and support further efforts

to optimize the use of these data (54).

Christopher (55) evaluated the ability of DL methods to

identify glaucomatous optic neuropathy (GON) using fundus

photographs. Two independent ophthalmologists evaluated a

large database of fundus photographs of a racially and ethnically

diverse group of individuals. The best DL model achieved an

AUC of 0.91 in distinguishing GON eyes from healthy eyes, 0.97

for identifying GON eyes with moderate-to-severe functional

loss, and 0.89 for GON eyes with mild functional loss. The

visualization results indicated that the DL model focused on

the anatomical features of the inferior and superior regions

of the optic disc. These results suggest that the DL-based

assessment of fundus images could be useful in the automation

of large-scale glaucoma detection and screening programs.

Shibata et al. (56) also developed a deep residual learning

algorithm to screen for glaucoma using fundus photography

and measured its diagnostic performance compared with that

of ophthalmology residents. The DL algorithm achieved a

significantly higher diagnostic performance than residents in

ophthalmology. Berchuck et al. (57) developed a DL algorithm

to improve the estimation of the rate of progression of glaucoma

vision loss and the prediction of future patterns. A low-

dimensional representation of the standard automatic visual

field (SAP) was learned by training a generalized variational self-

encoder (VAE) using 29161 visual fields from 3,832 patients. The

VAE was trained with 90% of the data sample and randomized

at the patient level. Using the remaining 10%, progression

rates and predictions were generated and compared to SAP
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mean deviation (MD) rates and point-by-point (PW) regression

predictions, respectively. Longitudinal rates of change through

the VAE latent space detected significantly higher rates of

progression than MD at 2 and 4 years after baseline. Deep VAE

can be used to assess the incidence and trajectory of glaucoma

and has an added benefit as a generative technique that can

predict future patterns of visual field damage. Wu et al. (58)

evaluated the effect of five glaucoma treatments (medication,

laser, non-laser surgery (NLS), laser + medication, and NLS +

medication) on a 1-year IOP change, which provides important

evidence of clinical outcomes for glaucoma patients. Li et al.

(59) developed and evaluated the performance of “iGlaucoma,”

a smartphone application-based DL system in detecting visual

field (VF) changes in glaucoma. In this study, which was

divided into two phases, 1,614,808 data points from 10,784 VF

(5 542 patients) from seven centers in China were included.

The first phase involves training, validating, and testing the

diagnostic performance of the DL system. In the second phase,

the iGlaucoma cloud-based application was further tested with

33,748 data points from 649 VFs from 437 patients from

three glaucoma clinics. In the second stage, the accuracy of

iGlaucoma for identifying different patterns in the probability

plot region of pattern deviation was 0.99, and the corresponding

AUC, sensitivity, and specificity were 0.966 (0.953–0.979), 0.954

(0.930–0.977), and 0.873 (0.838–0.908), respectively.

A longitudinal dataset combining VF and clinical data was

used to evaluate the performance of the convolutional long

short-term memory (LSTM) neural network. Models trained

on VF and clinical data (AUC, 0.89–0.93) performed better

than models trained on VF results only (AUC, 0.79–0.82;

P < 0.001), demonstrating that supplementing VF results with

clinical data improves the ability of themodel to assess glaucoma

progression (60). Furthermore, the investigator validated the

traditional artificial neural networks and discovered that they

can perform well in detecting spinal field defects in glaucoma

cohorts and in detecting visual field defects caused by pituitary

disease in a glaucoma population (60). Other researchers have

developed hybrid deep learning model (HDLM) algorithms

that can quantitatively predict the thickness of the macular

ganglion intracellular reticular layer (mGCIPL) from non-

red retinal neurofibrillary layer photographs (RNFLPs) with

good performance (61). Researchers developed a DL algorithm

called image ResNet to discriminate glaucoma and obtained

test data with an area under the curve (ROC) of 96.5 (95%

confidence interval [CI]: 93.5–99.6), indicating that the DL

algorithm outperformed ophthalmology residents in diagnosis

(56). The investigators evaluated the external validity of the

dynamic structure–function (DSF) model through studies tested

in an independent dataset (intraocular pressure treatment study-

focal scanning laser fundoscopy [OHTS-CSLO]-assisted study;

N = 178 eyes) and the Glaucoma Diagnostic Innovations

Study or the African Descent and Glaucoma Assessment Study

(DIGS/ADAGES) dataset, demonstrating the external validity of

the DSFmodel and its potential to develop it into a useful clinical

tool (62). Some investigators have demonstrated the value of

ML models in predicting trabeculectomy outcomes in patients

with refractory glaucoma using models of random forests,

SVMs, artificial neural networks, and multivariate logistic

regression to predict the surgical outcome of trabeculectomy

(63). A Bayesian deep multi-source learning (BDMSL) model

is proposed, which introduces an information-centric multi-

source learning framework to integrate multi-source data while

employing Bayesian DL to obtain uncertainty information of the

model and achieve better performance than other methods (64).

The CNN was trained using OCT images and adjusted by the

Humphrey field analyzer (HFA) 24–2 to establish a prediction

model of the 10-degree central field of VF for glaucoma

patients (65). The researchers have also used the DL model

that uses fundus photographs to detect superficial anterior

chamber depth (ACD) as a screening tool for angle-closure

glaucoma (ACG). The cycle generative adversarial network

(cycle GAN)—based feature maps show hidden features of

superficial ACD that are undetectable by traditional techniques

and ophthalmologists and help detect early ACD (66). Some

investigators have analyzed multiple features and introduced

new cross-sectional ONH features fromOCT images to facilitate

the current diagnostic evaluation of glaucoma, demonstrating

that selected features and cross-sectional ONH cup areas trained

using DL have great potential as preliminary screening tools

for glaucoma (67). These results will help clinicians make more

accurate decisions in the future.

The investigators developed and evaluated the performance

of a DL system based on a smartphone app through efficient

glaucoma diagnostic workers based on VFs, providing keening

to detect visual field changes in glaucoma with smartphones

(67). Glaucoma is a disease associated with the loss of retinal

ganglion cells (RGCs). The main research efforts are currently

being conducted with the help of rodent models, making a tool

that reliably quantifies the survival of RGCs. Therefore, some

researchers have designed software called RGCode (DL-based

quantification of RGCs), which is capable of fully automated

RGC quantification in the entire mouse retina (68). Researchers

have developed a non-species specificity, which can be extended

to the tools of glaucoma AxoNet. It can be calculated from

various animal models of glaucoma RGC axons in the optic

nerve (ON) organization image, and use the depth study to

return to the pixel-level counting axon density estimation and

then integrate it into the image area to determine the axon

count (68).

Age-related macular degeneration

ARMD is an acquired and complex macular degenerative

disease that is the leading cause of blindness in the elderly

worldwide. The prevalence increases exponentially every decade

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.971943
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sheng et al. 10.3389/fpubh.2022.971943

FIGURE 3

Conventional framework for ARMD detection from fundus images. (1) Preprocessing – image preprocessing is performed on the input fundus

image to reduce noise and enhance image quality. (2) Feature Extraction – image features such as texture, entropy and color features will be

extracted from the preprocessed images. (3) Feature Selection – feature selection will be conducted on the extracted image features to select

the best representative features of an image. (4) Training – at the training phase, a model such as support vector machine (SVM) will be built that

tries to separate the training data into di�erent categories e.g., ARMD and non-ARMD. (5) Testing – testing phase will apply the trained model to

unseen fundus images and classify them to the known categories e.g., ARMD and non-ARMD.

after the age of 50 (69). Aging, smoking, genetic susceptibility,

dysregulated lipid metabolism, oxidative stress, cardiovascular

disease, female sex, white race, obesity hyperopia, and other

risk factors contribute to ARMD development. The clinical

characteristics include the presence of drusen, retinal pigment

epithelium (RPE) abnormalities, geographical atrophy, and

neovascular derangement. ARMD can be classified into early

ARMD [characterized by numerous small (< 63 microns,

hard) or intermediate (≥63 microns but <125 microns, soft)

drusen]; intermediate ARMD [defined by extensive drusen

with small or intermediate size, or any large drusen (≥125

microns)]; and advanced ARMD (characterized by a choroidal

neovascular membrane or geographic atrophy). ARMD can

be categorized into two subtypes: dry (presence of drusen,

RPE abnormalities, or geographical atrophy) or wet (macular

neovascularization). The diagnosis of ARMD frequently relies

on various examinations, such as fundus photography, fundus

fluorescein angiography, indocyanine green angiography, OCT,

and OCTA. Early- and mid-stage ARMD can be asymptomatic,

leading to easy underdiagnosis, while advanced ARMD

progresses faster and has a greater impact on vision, with limited

treatment options available (Figure 3). AI can be an essential

tool for the early identification of macular lesions that can assist

ophthalmologists in the early intervention of the disease.

Recent studies have proposed DL algorithms based on

fundus color photography to identify drusen or retinal pigment

epithelium (RPE) abnormalities in ARMD. Researchers from

Johns Hopkins University achieved an accuracy of 88.1–91.6%

for the identification of drusen, which is competitive with

manual interpretation (13, 15, 16). AI based on convolutional

neural networks (CNNs) has also been used for telemedicine.

In this study, an annotated dataset consists of 35,900 ARMD

OCT images (acquired from two types of OCT devices including

Zeiss Cirrus HD-OCT 4000 and Optovue RTVue-XR Avanti)

was used for AI algorithm training and validation groups,

respectively, and the CNN architectures named ResNet 50,

Inception V3, and VGG 16 were used for image recognition.

The detection accuracy of the AI-based system achieved the

same image discrimination rate as that of retinal specialists

(92.73 vs. 91.9%, p = 0.99) and generally higher than that of

medical students (69.4 and 68.9%) (70). However, the testing

performance of current AI algorithms is still largely dependent

on different clinical datasets; therefore, their generalization

performance among external clinical datasets is limited. Future

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.971943
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sheng et al. 10.3389/fpubh.2022.971943

FIGURE 4

Age-related macular degeneration (ARMD) lesions segmentation based on U-Net. U-Net is one of the most widely used segmentation

architectures for biomedical images and stemmed from the fully convolutional network. The U-Net model consists of a downsampling path and

upsampling path, where downsampling path has convolutional and max-pooling layers to extract high-level abstract information while the

upsampling path has convolutional and deconvolutional layers that upsample the feature maps to output the segmentation outcomes. For

ARMD segmentation, U-Net will take OCT images as the input and progressively extract semantic features that allow to separate the lesions

from the surrounding background and output the lesion segmentation results.

work on the applicability and portability of these algorithms

remains challenging.

Owing to the high reliance on OCT images for the diagnosis

of the wet form of ARMD (Figure 4), the recognition of ML

is no longer limited to color fundus photography. AI research

is beginning to focus on large databases of multimodal images

and is expected to uncover more adequate information. Several

intelligent decision systems based on OCT technology have

been developed using ML (41). Meanwhile, the DL technique

has achieved higher accuracy in distinguishing a healthy

fundus from exudative ARMD (71). Related AI research teams

have developed algorithms for the simultaneous recognition

of multiple disease types, including macular edema, ARMD,

and central serous choroidal retinopathy, which can not only

discriminate the presence of retinopathy in the subject but

also further indicate the type of retinopathy with satisfactory

accuracy (72). This suggests that OCT is a natural fit for AI

in the detection of macular diseases. Progression to exudative

“wet” age-related macular degeneration (wARMD) is a major

cause of visual impairment. For patients with unilateral eye

wARMD, Yim et al. (73) introduced an AI system to predict

the progression to wARMD of another eye using OCT images

and corresponding automatic tissue maps. This system predicts

conversion to exARMD within a clinically actionable 6-month

time window and demonstrates the potential of using AI to

predict disease progression.

Other studies have combined multimodal data to predict

ARMD progression. Banerjee et al. (74) proposed a hybrid

sequential prediction model called “Deep Sequence” that

integrates radionics-based imaging features, demographic, and

visual factors, with a recurrent neural network (RNN) model

to predict the risk of exudation within a future time frame

in non-exudative ARMD eyes. The proposed model provides

scores associated with the risk of exudation in the short term

(within 3 months) and long term (within 21 months), which

allows for addressing challenges related to the variability of

OCT scan characteristics and the size of the training cohort.

Thakoor et al. (75) proposed a DL approach for multi-class

detection of non-ARMD vs. non-neovascular (NNV) ARMD

vs. NV ARMD from a combination of OCTA, OCT structure,

2D B-scan flow images, and high-definition (HD) 5-line b-

scan cubes. DL also detects ocular biomarkers indicative

of ARMD risk. Choroidal neovascularization and geographic

atrophy were found to be significant biomarkers for ARMD

detection by both CNNs and clinical experts. Detection of

ARMD and its biomarkers from OCTA images via CNNs has

tremendous potential to expedite the screening of patients

with early and late-stage ARMD. Yeh et al. (76) proposed a

heterogeneous data fusion network (HDF-Net) to predict visual

acuity (VA) and to evaluate the prognosis and risk of progression

of neovascular age-related macular degeneration (nARMD).

The clinical decision-making process was simulated using a

mixture of pre-processed information from raw OCT images

and digital data, and HDF-Net performed well in predicting

individualized treatment outcomes. This new approach is an

important step toward personalized treatment strategies for

typical nARMD.

Genetic and environmental factors influence the etiology

of ARMD. Genome-wide association studies (GWAS) for

late-stage ARMD have identified 52 independent genetic

variants with genome-wide significance at 34 genomic loci.

Yan et al. (77) used the Age-Related Eye Disease Study

(AREDS) dataset and a modified CNN with genotype and

fundus images to predict whether an eye had progressed

to advanced ARMD, showing that the CNN with fundus

images plus genotype achieved a mean AUC of 0.85 in
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predicting the progression of advanced ARMD, while the

CNN with fundus images only achieved a mean AUC of

0.81. Strunz et al. (78) conducted a transcriptome-wide

association study (TWAS) that predicted the impact of

ARMD-associated genetic variants on gene expression, which

addressed the shortcomings of current GWAS analyses

that rarely identify functional variants associated with

specific genes in the disease process. This study further

highlights the fact that the expression of genes associated

with ARMD is not restricted to retinal issues but is a

systemic pathology.

Other ocular diseases

In addition to the common ocular diseases discussed above,

AI has shown promise in the diagnosis of the epidermal

membrane (ERM), chronic central serous chorioretinopathy

(CSC), bacterial keratitis (BK), pathological myopia, and

macular edema (ME). Furthermore, ophthalmic image for

AI analysis is not limited to color fundus photography but

covers various ophthalmic images, including anterior segment

photography, corneal topography, anterior or posterior segment

OCT, and ultrasound biomicroscopy (UBM) (79).

A deep neural network-based AI model has been applied for

epidermal membrane (ERM) detection based on color fundus

photographs (80, 81). A random forest-based regression model

was used to infer local retinal sensitivity from the retinal

structure and the model was applied to the CSC patients for

personalized treatment (81). Yoon et al. (82) used convolutional

neural networks and achieved performance of 93.8, 90.0,

99.1, and 98.9% in accuracy, sensitivity, specificity, and AUC

for the diagnosis of CSC. Kuo et al. (83) evaluated various

DL algorithms, including ResNet50, ResNeXt50, DenseNet121,

SE-ResNet50, EfficientNets, and DeepLab framework, and

identified that DL algorithms could accurately diagnose BK

based on eye anterior segment photographs (84). Besides, the

DL algorithm has also been applied to ultra-wide-field fundus

(UWF) images for the detection of ME and retinal exudates (85).

Challenges of artificial intelligence in the
medical field

Although the application of AI technology in the medical

field, particularly in ophthalmology, is becoming more

widespread, many problems need to be solved with the

application of AI technology in current clinical practice. OCT

is an indispensable component of healthcare in ophthalmology

and plays a significant role in the diagnosis, grading, and

assessment of treatment responses in eye diseases. These

challenges can be attributed to the fact that eye diseases have

various imaging characteristics, such as size and shape, fuzzy

boundaries, low contrast to the surrounding background,

and heterogeneity. These challenges have motivated the

development of numerous AI-aided systems that can assist

clinicians in image interpretation and offer opportunities to

enhance clinical analytics and decision-making.

Data quality control

Because the use of AI technology is predicated on a large

amount of treatment data, the corresponding labels and data

quality directly determine the performance of the model to an

extent. Data quality may have the following problems: (i) poor

quality of the data itself, such as blurred pictures and artifacts;

(ii) poor quality of the data labels, such as incorrect labels; and

(iii) insufficient data, where only a small portion of data has

been labeled.

Privacy protection

Cloud-based data management and storage platforms are

commonly used to facilitate data acquisition across multiple

cohorts, such as multiple hospitals. Data security in AI

algorithms presents a significant challenge.

Establishment of laws and regulations

The application of AI in ocular diseases remains a big

challenge. Erroneous predictions by AI algorithms e.g., due

to poor data quality, are unavoidable, which can lead to

liability issues for physicians. Therefore, the role of physicians

in the perspective of AI diagnosis and treatment process

needs to be further refined in future medical regulations.

In addition, the compliance of different AI algorithms for

the diagnosis of various ocular diseases would also require

dedicated regulations. In July 2019, to strengthen the guidance

of the registration declaration of AI medical devices and

further improve the quality of the review, the State Drug

Administration Medical Device Technical Review Center in

China organized the development of “DL-assisted decision-

making medical device software review points.” On January 15,

2020, the State Drug Administration reviewed and approved

the first artificial intelligence Class III medical device ”Coronary

Blood Flow Reserve Fraction Calculation Software“ in China.

The product is based on coronary CT vessel images and

consists of an installation CD and encryption lock. The

functional modules include basic image operations, vessel

segmentation, and reconstruction based on DL technology,

vessel centerline extraction, and blood flow reserve fraction

calculation based on DL technology, which pioneered the

application of domestic artificial intelligence-aided diagnosis
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and treatment software in clinical practice. Internationally, the

U.S. FDA approved IDx’s Idx-DRDR screening software in April

2018, which detects the severity of glucose retinal symptoms

in adult patients with diabetes based on fundus photographs,

and provides recommendations on whether a referral for

examination is needed. This is the first product approved

by the U.S. FDA using a new generation of AI technology

for glucose retinal screening software, and the review and

approval of its products will help further promote the approval

and supervision of AI-aided diagnostic software for diabetic

fundus disease in China. Existing silicon-based intelligence,

somatotropic technology, Shanggong Medical Information,

Deep et al. (39), and many other diabetes AI-aided diagnostic

products have been actively involved in registration declarations.

The means and efficiency of DR screening and auxiliary

diagnosis are expected to become more efficient and accurate in

the future.

Lack of clinical context

AI programs are driven by data interpretation, and

frequently lack consideration of the underlying clinical

context. In particular, AI programs have difficulty holistically

processing clinical scenarios, nor can they fully account for

the psychological and social aspects of human nature that

skilled physicians would normally consider (86). Cabitza et al.

discussed the importance of clinical settings and provided an

example of an ML prognostic model that, although technically

valid, led to the interpretation of clinical data for treating

patients with pneumonia. The AI program, which targeted 14

199 patients with pneumonia, showed that those with asthma

had a lower risk of dying of pneumonia than those without

concurrent asthma. The correctly coded program predicted

asthma as a protective feature because asthma patients are

frequently admitted to the intensive care unit (ICU) to prevent

complications; however, mortality in ICU patients was 50%

lower than in patients with pneumonia alone, and patients with

asthma and pneumonia had a better prognosis than those with

pneumonia alone (86, 87).

Future directions

AI technology has made significant progress not only

in treating ophthalmic diseases but also in other systemic

diseases with initial results. The direct observation of retinal

vessels in the fundus, combined with several physiological

and biochemical indicators of the entire body supplemented

with AI algorithms for learning and analysis, provides a

new method for evaluating risk factors for cardiovascular

diseases. In the management of patients with diabetes, it can

also be used to predict the risk factors for diabetes-related

complications (diabetic nephropathy, cardiovascular disease,

diabetic peripheral neuropathy, etc.). Establishing a model

to identify complicated eye diseases (DR complicated with

glaucoma or cataract) with multiple imaging modalities, such

as OCT, OCTA, and fundus photography, is highly desirable.

Although there are still some challenges in current clinical

practice, the promising developments demonstrated with AI

technology in the above applications suggest that it will be of

great clinical significance in the future.
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