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We investigate the e�ects of school reopening on the evolution of COVID-

19 infections during the second wave in Spain studying both regional and

age-group variation within an interrupted time-series design. Spain’s 17

Autonomous Communities reopened schools at di�erent moments in time

during September 2020. We find that in-person school reopening correlates

with a burst in infections in almost all those regions. Data from Spanish

regions gives a further leverage: in some cases, pre-secondary and secondary

education started at di�erent dates. The analysis of those cases does not allow

to conclude whether reopening one educational stage had an overall stronger

impact than the other. To provide a plausible mechanism connecting school

reopening with the burst in contagion, we study the Catalan case in more

detail, scrutinizing the interrupted time-series patterns of infections among

age-groups and the possible connections between them. The stark and sudden

increase in contagion among older children (10–19) just after in-person school

reopening appears to drag the evolution of other age-groups according to

Granger causality. This might be taken as an indirect indication of household

transmission from o�spring to parents with important societal implications for

the aggregate dynamics of infections.

KEYWORDS

COVID-19, SARS-CoV-2, in-person school reopening, non-pharmaceutical
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Highlights

- Interrupted time-series analyses show that in-person school reopening precedes and

correlates with a posterior growth in contagion in almost all Spanish regions that

reopened at different moments in time during September 2020 in Spain.

- A more granular analysis of the dynamics of age-groups in the Spanish region

of Catalonia indicates that infections among individuals aged 10–19 grew earlier

and faster than the rest just after school-reopening, driving the evolution of other

age-groups in a Granger causal process.
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Introduction

In many countries, several non-pharmacological

interventions (NPIs) to mitigate the spread of SARS-CoV-

2 in the community have been tested and proved effective, such

as online schooling, mandatory mask wearing or the closure

of bars and restaurants (1–8). Some published studies focus

on specific factors, like age (9–11), while others define more

general models to identify the effects of non-pharmacological

interventions (6), or the effects of the vaccination process on

the population (12). A study of the pandemic situation in

Catalonia proposes the use of a Digital Twin (13). In that study,

a combination of a simulation and an optimization model

through a continuous validation process allows understanding

the effects of the different NPIs on the population by analyzing

the change points brought about by new cases. Similarly, a study

applying Bayesian inference to a type of epidemiological SIR

model (14) analyzes the change points and infers the effects of

different interventions on the evolution of new cases.

During the first wave of the pandemic in Spain (47.3M

inhabitants), and as a part of the lockdown, in-person schooling

was shut down. Nonetheless, both the effectiveness and social

consequences of in-person school closure remain a controversial

issue. Different studies employing various approaches, for school

facilities (15–21) and specifically for child care facilities (22),

have tried to discern if schools are a vector for the propagation

of the infection and whether children have an impact on that

spread (23). Two other studies with a similar focus to ours

at trying to estimate the effect of in-person school reopening

arrived at opposing conclusions when analyzing the second

pandemic wave in Italy: one found a link between school

reopening and the resurgence of the virus (24), while the

other did not (25). For other similar diseases, like influenza

outbreaks, closure of in-person schooling has been an effective

non-pharmaceutical intervention (26, 27). Being the spread of

SARS-CoV-2 mainly airborne (28–30), knowing that to talk

increases the transmission risk (31), and that the risk raises

in poorly ventilated environments (32), it seems plausible

that online schooling will reduce community transmission

as compared to in-person schooling. Besides that, children

seem to have equivalent nasopharyngeal viral loads to adults

(16, 33–35), even though the youngest (ages 0–10) may have

had lower susceptibility (36) therefore some studies suggest

that the transmission is mainly in households (37), although

other suggest that although they have lower susceptibility,

the youngest ones are more infectious than older individuals

(38). Therefore, the spread on schools would remain high

if limited measures are applied to mitigate transmission (35,

39). These different evidences lead to the definition of several

official advices and reports with the purpose to lessen viral

outbreaks in schools in the context of in-person schooling (40,

41) with special focus on the Accumulated Incidence (AI) in

the community.

In this paper we analyze the role of in-person school

reopening in Spain on the evolution of infections. Using

an interrupted time-series perspective, we explore and model

the dynamics followed by the different Spanish regions,

Autonomous Communities, that reopened schools at varying

moments in time during September 2020. The impact of

school reopening is understood in the models as an external

shock or interruption to the series. The evidence points to a

correlation between school reopening and a posterior outbreak

in contagion across most ACs. We further provide a plausible

causal mechanism for that association by studying the Catalan

situation in more detail. For this case, we analyze actual

data on the evolution of infections among the different age-

groups and their interconnected dynamics, identifying some

key sociological patterns. A sudden burst in contagions among

school-age individuals (10–19) takes place just after in-person

school reopening and appears to drag the dynamics of other age-

groups. We argue that actual data may contain age-dependent

measurement error. Therefore, we replicate our interrupted

time-series analysis using corrections for measurement bias as

a robustness test. We weight the actual data by the levels of

prevalence by age-group as obtained from large-scale probability

sample surveys (42–45). This reanalysis confirms our main

findings, what constitutes a strong robustness test, and offers

further light into additional phenomena overlooked in the

official incidence rate records. The data sources we use are

provided by the Open Data service of the Catalonia regional

government (46), accessed through the Socrata connector (47),

and the National Statistics Institute INE (48).

School reopening across Spanish
regions

In Figure 1 we present the number of daily COVID-19 cases

detected in each Autonomous Community (AC, from now on)

from the 1st of January until November 11th of 2020 (49). The

date of school reopening is indicated with a vertical red line, and

a dotted red line shows the 14th day after reopening. This range

of time corresponds to the most likely incubation period for a

child who contracted the virus on the 1st day of reopening and

used as the official quarantine period. Schools were scheduled to

open in different dates during September depending on what the

government of each AC had arranged. In the cases in which pre-

secondary and secondary education did not start the same day,

we used the opening of secondary education as older children

are assumed to have a stronger capacity to infect others. The

figure includes the cases of Ceuta and Melilla which are Spanish

autonomous cities in the North of Africa.

In all but two cases we observe an exponential growth in

contagion 14 days after school reopened in September. The

two exceptions are the Madrid Community and the Canary

Islands. In these two cases, the peak of the second wave
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FIGURE 1

Evolution of the number of COVID-19 cases per day in each Autonomous Community of Spain.

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.990277
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tormos et al. 10.3389/fpubh.2022.990277

FIGURE 2

E�ect of school reopening in each ACs. Estimates are incidence-rate ratios from Poisson regressions corrected for over dispersion. 95% CI.

**p < 0.01, *p < 0.05.

occurred before school reopening and containment measures

were already applied previously. In the remaining 15 cases

along with the two autonomous cities, the pattern is of an

exponential growth. In six ACs the upsurge came after the

second wave was being successfully contained, leading to a third

wave: Cantabria, Castile-La Mancha, Extremadura, Balearic

Islands, Basque Country, Region of Murcia, Navarra, Rioja, and

Valencian Community. In four cases, the exponential growth

came after a stationary situation: Andalusia, Aragon, Catalonia,

and Galicia. In the four remaining cases, the number of daily

contagions was already increasing before, but school reopening

established the point where it definitively bursted.

Next, we perform a set of interrupted time-series Poisson

regression models corrected for over dispersion, one for each

AC, using the incidence rate as a dependent variable and having

as predictors a linear trend (time) and a dummy variable

representing an external shock to the series: in-person school

reopening (the intervention), where 1 is the time-period with

in-person classes and 0 otherwise. Therefore, in the models, the

incidence rate (r) is assumed to be given by:

r= log−1 (α0 + β1 (time) + β2 (intervention))

= eα0+β1(time)+β2(intervention) (1)

Full results of those regressions are presented in

Supplementary Table 1. According to this modeling strategy

and looking at the incidence-rate ratios (the change in the

incidence rate due to the intervention) in Figure 2, school

reopening implied a clear raise in the risk of contagion for

the general population in all but three ACs (84% of ACs).

The exceptions were Aragon (AR), Cantabria (CN), and

the Balearic Islands (IB). Asturias was the most affected

AC. Reopening face-to-face classes increased 4.7 times the

rate of infection in this region as compared to the period

when schools were closed. In seven other ACs the rate of

infection tripled (or almost) after the reopening: Extremadura,

Navarra, Ceuta, Rioja, Castile-La Mancha, Melilla, and

Castile and Leon. In other four cases the rate doubled or

nearly: Galicia, Catalonia, Madrid, and Andalusia. In the

remaining four ACs, the impact of reopening was still

relevant implying an increase in cases in between 20 and

10% (Valencian Community, Cantabria, Murcia, and the

Basque Country).

Next, we provide an estimate of the average effect of school

reopening across ACs (rij) by using the pooled dataset of all ACs.

We employ a panel data approach that conveniently accounts for

the clustering of cases in geographical units (see Table 1).We run

a random effects Poisson regression considering entity-specific

intercepts for Autonomous Communities. The model contains a

dummy variable for school reopening and a time trend, as shown

in the following equation:

rit = eα0+β1(timeit)+β2(interventionit)+ui (2)

For i = 1, . . . , 19 ACs and t = 1, . . . , 320 days observed. The

random effects ui are assumed to be normally distributed with

mean 0 and variance σ 2
u .

On average, school reopening has a sizeable and significant

statistical effect. Estimates for school reopening indicate a robust

mean impact of school reopening on the incidence of daily
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TABLE 1 Random e�ects Poisson regressions with entity-specific

intercepts (ACs).

IRRs

School reopening 1.760***

(0.005)

Time (linear trend) 1.009***

(0.000)

Constant 36.167***

−8.699

Ln Alpha 0.15

Alpha 1.162

Log likelihood −538,910.76

Observations 5,966

The estimates of Poisson models are incidence-rate ratios (IRRs).

Standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.

infections across ACs1. The incidence-rate ratio associated to

school reopening implies a 76% average increase in risk for the

population of becoming infected when comparing before and

after reopening. Of course, with observational evidence, third

variables temporally coinciding with school reopening, such as

the return to work, could confound the association. Correlation

does not imply causation, but neither precludes it.

Secondary and pre-secondary education (kindergarten and

primary school) started at different moments in time in

eight ACs. We can benefit from these naturally occurring

phenomenon and use it to test whether the opening of any

of the two educational stages had a stronger aggregate impact

than the other. We run two separate Poisson regression models

for each of these eight ACs, one using time and the date of

pre-secondary education reopening as a predictor variable and

the other employing the date of secondary education reopening

instead. Detailed results are shown in Supplementary Table 3.

In Figure 3, we present the ratio of the effects of opening

secondary education with respect to pre-secondary (the ratio

of the incidence rate ratio). In five out of eight cases (63%),

there are almost no differences between coefficients. In the

remaining three cases the opening of pre-secondary education

had a stronger impact than the start of secondary education.

Indirect evidence of household
transmission

To gain further insight as to which mechanisms may drive

the outbreak of infections coinciding with in-person school

1 The estimates of an equivalent fixed e�ects model adjusting for time-

invariant unobserved heterogeneity portrays the exact same estimates as

the random e�ects model (see Supplementary Table 2).

FIGURE 3

Ratio of the incidence-rate ratios of opening secondary

education with respect to pre-secondary.

reopening, we study the Catalan case with more detailed data

on age-groups (46). We explore the rate of infections per

day within each age-group. Our hypothesis is that contagion

inside family units with children might have been crucially

boosted due to the school reopening. In aggregate terms,

the return to in-person classes would have fostered a silent

spread of the virus through the community with visible societal

consequences 2 weeks later. Lacking direct measures on family

units, we study the aggregate dynamics of infection in age-

groups that might be involved. Individuals in their forties

(40–49) are more likely to have children between the ages of

10 and 19 and live together with them (50). Using aggregate

time series data, in the following analysis we show how

these two age groups evolve similarly over time during the

second wave of the pandemic, and that school reopening

might be one main driver of the exponential growth in

infections among children aged 10–19, dragging the evolution

of older adults.

In Figure 4 we present the detailed development of the daily

number of cases in Catalonia across the two pandemic waves

observed. Again, we marked with a red line the moment of the

reopening of schools, and with a dotted red line the passing of

14 days of the reopening.

In the first pandemic wave the number of cases observed

per day was clearly less than the actual cases due to a lack

of testing and plenty underreporting. A remarkable contention

of the virus followed the strict lockdown that spanned from

mid-March to June the 21st. Infections dropped to a minimum

throughout July. During the end of June, cases started raising

again but stabilized in a sort of plateau. A plausible explanation

for this growth is a concurrent raise in testing during that

period, instead of an actual increase in the number of cases (see

Supplementary Figure 3).

Besides the growth in testing efforts, the surge in infections

that lead to the summer plateau could also be connected to

the reopening of bars and restaurants, a share of employees
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FIGURE 4

Evolution of the number of COVID-19 cases per day in

Catalonia.

going back to work, and friends and family gatherings. In any

case, during that plateau the dynamics was stationary (unit root

DF test = −5.187 with a p-value = 0.000 for the period). The

reopening of schools happened on September 15th and 14 days

later a clear exponential growth in the number of cases took

place. The co-occurrence in time of two phenomena does not

prove causation. The increase in cases could have just temporally

coincided with school reopening and be motivated by other

factors instead. In any event, school reopening as a cause fulfills

one of the rules of causality, that causes must temporally precede

effects. Besides that, we already observed a similar pattern across

many other ACs. In what follows, we analyze a plausible causal

mechanism connecting in-person school reopening with the

exponential surge in infections by studying the coevolution of

age-groups involved in the process.

We implement a smoothing transformation of the time-

series data for each age-group with a non-parametric procedure

using locally weighted regressions2, (see Supplementary Figure 1

to inspect the graphs with the original incidence count data).

Figure 5 presents these estimates for all age-groups together,

which help to visualize the patterns emerging from the data. The

10–19 age-group is the first experiencing an exponential growth

just after school reopening following the plateau phase, and the

one with a faster and larger increase in the rate of cases.

We focus on studying people in their forties (40–49 years

old) as they are in a stage of the life cycle likely to have school

children at home between the ages of 10 and 193. After school

reopening, in households where 40-year-olds and their offspring

live together, contagion risk would be higher than in other family

units. Ever since, not only parents could potentially infect their

children but also vice versa. First, we compare the coevolution

2 Using the lowess command in Stata.

3 According to o�cial statistics (INE), in Catalonia the average age for

a woman to have a child during the period from 2000 to 2019 was 31.13

years, the highest in Europe (48).

of youths between 10 and 19 years of age with people in their

forties as well as with individuals in their thirties and fifties

(Figure 6)4. Overall, these three older age-groups are somehow

similar in terms of lifestyle and habits. They all loosely belong

to the middle-aged category of the human life cycle, clearly

differentiated from other life stages such as childhood, youth, or

old age. They also portray a similar dynamic.

Our hypothesis regarding the mechanism that connects

the evolution of the middle-aged with the 10- to 19-year-old

individuals is that they live together in the same households, and

the transmission from offspring to adults may have substantially

increased due to in-person school reopening. If we compare

the development of these two age segments over the period,

we see that during the first wave of the pandemic both

dynamics were uncorrelated. Middle-aged people got infected,

but there were almost no cases (detected) among youths.

Besides underreporting and a higher level of asymptomatic

cases, schools were closed during the first wave. In the phase

after the lockdown, cases among this younger group started

to increase, but always remained at a lower level than middle-

aged individuals. We consider people in their forties as clearly

representative of the middle life stage of the life cycle and the

age-group most likely to parent youngster in between 10 and

19 years of age. The plateau phase implied a stationary state

for both groups (unit root DF test = −5.323 and −4.963,

respectively, with a p-value = 0.000). At this stage, the higher

level of infections among individuals in their forties could be

related to going back to work, and other sort of gatherings. It

could well be that, inside the household, contagion from parents

to offspring was predominant at that moment. The opening of

schools brings a stark increase in youth infections. Cases among

younger people (10–19 years old) start rising before the growth

among older adults (e.g., 40–49). If we compare a critical range

of time, that between September 11th and the 7th of October,

infections among youths were increasing faster than among their

elders. OLS regressions with deterministic time trends yield a

slope of 7.73 in the case of the young age-group and of 5.66 in

the older one (full results not shown for simplicity). In fact, the

steepest exponential growth of all age-groups takes place among

individuals between 10 and 19 years (see Table 2).

The smoothing procedure helped us at visually appreciating

how the increase in cases among young people aged 10–19 years

preceded the subsequent increase in the group aged 40 to 49

and was larger in magnitude. With the aim of testing the role of

the 10–19 age-group, after in-person school reopening, to drive

the evolution of the pandemic during the second wave through

their impact on people of other age-groups, especially middle-

aged people, we now perform a set of time series tests using

actual incidence rates. As a robustness check, we additionally

4 Analyses including the other middle-aged groups are included in the

Supplementary Figure 1.
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FIGURE 5

Smoothed estimates using locally weighted regression of the evolution of the rate of COVID-19 cases per day in Catalonia by age-groups.

Notice that the age-group 90+ is not represented for clarity purposes, due to its large incidence levels during the first wave.

FIGURE 6

Smoothed estimates using locally weighted regression of the

evolution of the number of COVID-19 cases per day in

Catalonia by specific age-groups.

perform the same tests on a weighted version of the time-series

data adjusted for prevalence levels in each age-group.

Granger causality test

The Granger causality test (51) is a time-series procedure

to verify if the evolution of one time series is able to predict

TABLE 2 Fitting deterministic linear and exponential time trends to

the evolution of the di�erent age-groups over the second pandemic

wave in Catalonia.

R-squared

Linear Exponential Ratio

0–9 years old 0.49 0.62 1.25

10–19 years old 0.45 0.76 1.69

20–29 years old 0.49 0.60 1.23

30–39 years old 0.49 0.59 1.21

40–49 years old 0.47 0.57 1.22

50–59 years old 0.46 0.54 1.18

60–69 years old 0.46 0.55 1.21

70–79 years old 0.44 0.54 1.23

80–89 years old 0.37 0.42 1.13

another time series. Table 3 shows a group of Granger causality

tests to evaluate the effect of the 10–19 age-group series on the

40–49 age-group series. It presents a set of nested OLS regression

models with the 40–49 age-group series as the dependent

variable and the lagged dependent variable (with up to 10 lags)

and the 10–19 age-group variable (also with up to 10 lags) as

independent variables. This specification can be expressed using
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the following equation:

yt=α0+(β1yt−1+· · ·+β10yt−10)+ (β11xt−1+· · ·

+β20xt−10)+ut (3)

where the level of infections in the 40–49 age-group y at time

t is a function of a constant α0; the lagged dependent variable,

in up to 10 consecutive lags (β1yt−1 , . . . , β10yt−10); and the

lagged independent variable: the level of infections in the 10–19

age-group in up to 10 consecutive lags (β11xt−1 , . . . , β20xt−10).

The term ut is the error term of the time-series regression.

We are interested in the F-statistic of the models that will

eventually allow us to reject the null hypothesis. We reject

the null in eight of the 10 models. Only with lags one and

two the F-statistic is below the critical threshold. This has a

substantive meaning: it takes longer than one or two single lags

for the dynamics of the 10–19 age-group series to influence

the 40–49 series. In the remaining models with more lags, the

p-value associated to the F-statistic is always under 0.05 (p <

0.000) indicating that we can reject the null hypothesis that all

coefficients of lag of the independent variable (10–19 age group

series) are equal to 0. Therefore, we can state that the 10–19

age-group Granger causes the 40–49 age-group series.

Instead of this stream of causality from children to adults,

could the level of parental infections be driving the level of

infections of their offspring? To test it, we reverted the former

Granger causality analysis so that the 10–19 age-group series

is now the dependent variable (yt) and the 40–49 series the

independent variable (xt−n). This would allow us checking

whether there is a sort of reverse process by which the 40-year-

olds are those who cause youths to get infected. As shown in

Table 4, there is also evidence of this line of causation, but it is

substantially weaker. In only three of the 10 models, we observe

a Granger causal process. In any case, a bidirectional association

among both series is consistent with the notion of a feedback

relationship due to cohabitation of these age-groups in the same

family units within households.

Chow test

In addition, we may want to verify when this relationship

between the two time-series appears. We perform a test to

check whether the opening of schools, as an external shock,

implies a key disruption in the series under study here (Table 5).

The Chow test is calculated after an OLS regression with the

lagged dependent variable and the lagged independent variable

as regressors together with the interaction of school reopening

with both age-group series. The equation can be portrayed

as follows:

yt=α0+β1yt−1+β2xt−1+β3z+β4(yt−1·z)+β5(xt−1·z)+ut (4)

where the level of infections in the 40–49 age-group y at time

t is a function of a constant α0, the lagged dependent variable

β1yt−1), the lagged independent variable (the level of infection

of the 10–19 age-group expressed by β2xt−1), a dummy variable

representing school reopening β3z, the interaction of school

reopening with the lagged dependent variable β4(yt−1·z) and the

lagged independent variable β5(xt−1·z). The term ut is the error

term of the time-series regression.

The null hypothesis for the Chow test means no break. If the

p-value is <0.05, we can reject the null in favor of the alternative

that there is a break. Our results indicate that the null hypothesis

can be rejected, and we can conclude that school reopening

caused a break in the regression coefficients.

Weighting by prevalence as a
robustness check

The use of actual incidence records involves assuming that

measurement error does not substantially distort our inferences.

The proportion of asymptomatic cases is a key aspect to

understand the pattern of the SARS-CoV-2 spread. Previous

research (52) establishes that almost 60% of infected people

report no symptomatology during an early stage of the disease,

although symptoms can appear later as a result of being tested

in the presymptomatic phase (53). This serves as a basis to

discuss regarding the proportionality of the diagnostic effort

done in all the age-groups, and if this can affect the analysis.

Some studies suggested that the age range from 0 to 20 is

highly asymptomatic (54). Moreover, other analyses seem to

show that the prevalence on children is higher than previously

thought (55), being prevalence a good estimator for capturing

the true incidence on the population. Therefore, raw incidence

data certainly contains statistical biases due to non-random

factors such as the degree of asymptomatic individuals, which

vary by age-group, or differences in diagnosis efforts on each

age-segment of the population. In contrast to official incidence

records, prevalence studies are implemented using random

sampling, which allows obtaining more representative and

realistic incidence estimates by age-groups. When data does not

come from a random sample, as in the official records of infected

individuals, it is susceptible of containing systematic error

from the self-selection of symptomatic infected individuals that

correlates with aging, or to over represent certain population

segments for whom public diagnosis efforts are higher, such

as younger individuals, but using less representative sampling

procedures. The number of tests done for the age group from

10 to 19 is huge as compared to those performed on other age

groups (see Supplementary Figure 3). However, this does not

imply an improvement in detection, since it depends on the

method used to perform the testing, and on whether the samples

are correctly selected. As an example, the tests performed in a

classroom typically composed of 25 students due to the detection

of a positive index case will result in largely negative tests

results. This is because only about 8% of infective individuals are
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TABLE 3 Granger causality test for the 40–49 age-group series as dependent variable.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

40–49 40–49 40–49 40–49 40–49 40–49 40–49 40–49 40–49 40–49

L1.40–49 0.674*** 0.579*** 0.2 0.255* 0.342*** 0.209* 0.152 0.307*** 0.344*** 0.213*

(0.115) (0.142) (0.134) (0.141) (0.129) (0.122) (0.113) (0.11) (0.11) (0.115)

L2.40–49 0.221 0.674*** 0.717*** 0.53*** 0.603*** 0.431*** 0.361*** 0.396*** 0.34***

(0.137) (0.136) (0.143) (0.136) (0.126) (0.116) (0.1) (0.112) (0.115)

L3.40–49 0.04 −0.029 −0.042 −0.203 −0.131 −0.022 −0.024 0.219*

(0.123) (0.147) (0.139) (0.131) (0.12) (0.104) (0.098) (0.115)

L4.40-49 −0.051 0.471*** 0.289** 0.148 0.045 0.108 0.133

(0.124) (0.134) (0.129) (0.119) (0.103) (0.098) (0.096)

L5.40–49 −0.514*** −0.142 −0.331*** −0.163 −0.223** −0.215**

(0.114) (0.127) (0.118) (0.103) (0.098) (0.096)

L6.40–49 0.051 −0.02 0.173* 0.221** 0.217**

(0.118) (0.117) (0.103) (0.098) (0.096)

L7.40–49 0.664*** 0.513*** 0.632*** 0.645***

(0.108) (0.1) (0.098) (0.096)

L8.40–49 −0.349*** −0.448*** −0.274**

(0.106) (0.113) (0.121)

L9.40–49 −0.16 −0.08

(0.106) (0.116)

L10.40–49 −0.407***

(0.105)

L1.10–19 0.089 0.11 0.408*** 0.397*** 0.34*** 0.348*** 0.292*** 0.314*** 0.102 0.185*

(0.075) (0.111) (0.104) (0.105) (0.096) (0.095) (0.093) (0.086) (0.096) (0.096)

L2.10–19 −0.096 −0.822*** −0.876*** −0.858*** −0.825*** −0.58*** −0.435*** −0.236** −0.256**

(0.102) (0.12) (0.127) (0.116) (0.108) (0.103) (0.091) (0.104) (0.114)

L3.10–19 0.413*** 0.525*** 0.638*** 0.563*** 0.411*** 0.279*** 0.281*** 0.183*

(0.089) (0.131) (0.127) (0.118) (0.109) (0.095) (0.09) (0.104)

L4.10–19 −0.038 −0.625*** −0.314** −0.222** −0.161* −0.186** −0.201**

(0.094) (0.123) (0.123) (0.112) (0.096) (0.091) (0.089)

L5.10–19 0.603*** 0.036 0.207* 0.199** 0.214** 0.198**

(0.086) (0.12) (0.113) (0.097) (0.092) (0.09)

L6.10–19 0.295*** 0.157 −0.113 −0.083 −0.075

(0.092) (0.109) (0.098) (0.093) (0.09)

L7.10–19 −0.224** 0.166* 0.021 0.021

(0.091) (0.095) (0.093) (0.091)

L8.10–19 −0.186** 0.166 0.048

(0.085) (0.113) (0.116)

L9.10–19 −0.213** −0.192

(0.094) (0.122)

L10.10–19 0.189**

(0.094)

Constant 3.897*** 3.037*** 1.546 1.734 2.126** 1.903** 1.26 1.416* 1.558** 1.921***

(1.057) (1.169) (1.051) (1.082) (1.009) (0.949) (0.871) (0.754) (0.721) (0.713)

Observations 259 258 257 256 255 254 253 252 251 250

R–squared 0.648 0.652 0.743 0.744 0.79 0.822 0.856 0.895 0.907 0.913

Granger test

F 1.41 0.56 16.50 12.13 21.93 15.33 6.89 4.94 3.67 3.47

Sig. 0.236 0.572 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 4 Granger causality test for the 10–19 age–group series as dependent variable.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

10–19 10–19 10–19 10–19 10–19 10–19 10–19 10–19 10–19 10–19

L1.10–19 0.726*** 0.808*** 1.119*** 1.097*** 0.992*** 0.943*** 0.771*** 0.943*** 0.782*** 0.845***

(0.096) (0.143) (0.14) (0.141) (0.124) (0.115) (0.118) (0.099) (0.115) (0.117)

L2.10–19 −0.041 −0.878*** −0.962*** −0.944*** −0.862*** −0.631*** −0.374*** −0.203 −0.178

(0.132) (0.16) (0.17) (0.149) (0.131) (0.131) (0.104) (0.125) (0.139)

L3.10–19 0.528*** 0.624*** 0.691*** 0.541*** 0.41*** 0.212* 0.225** 0.1

(0.119) (0.176) (0.163) (0.143) (0.138) (0.108) (0.108) (0.127)

L4.10–19 0.045 −0.727*** −0.231 −0.178 −0.086 −0.104 −0.125

(0.125) (0.159) (0.149) (0.142) (0.11) (0.109) (0.109)

L5.10–19 0.966*** −0.022 0.192 0.195* 0.208* 0.201*

(0.111) (0.145) (0.143) (0.111) (0.11) (0.11)

L6.10–19 0.636*** 0.291** −0.111 −0.091 −0.091

(0.112) (0.138) (0.112) (0.111) (0.11)

L7.10–19 0.12 0.847*** 0.765*** 0.764***

(0.115) (0.109) (0.112) (0.111)

L8.10–19 −0.636*** −0.375*** −0.458***

(0.098) (0.136) (0.142)

L9.10–19 −0.223** −0.272*

(0.112) (0.149)

L10.10–19 0.23**

(0.115)

L1.40–49 0.225 0.205 −0.19 −0.117 0.027 −0.153 −0.126 −0.108 −0.044 −0.134

(0.147) (0.183) (0.18) (0.188) (0.166) (0.148) (0.143) (0.125) (0.132) (0.14)

L2.40–49 −0.061 0.488*** 0.573*** 0.368** 0.498*** 0.322** 0.199* 0.149 0.072

(0.176) (0.182) (0.191) (0.175) (0.152) (0.148) (0.115) (0.134) (0.141)

L3.40–49 −0.056 −0.08 0.002 −0.253 −0.146 0.051 0.038 0.263*

(0.165) (0.196) (0.18) (0.158) (0.151) (0.119) (0.118) (0.14)

L4.40–49 −0.193 0.568*** 0.317** 0.145 −0.038 0.009 0.035

(0.166) (0.173) (0.155) (0.151) (0.118) (0.118) (0.117)

L5.40–49 −1.001*** −0.308** −0.451*** −0.176 −0.22* −0.227*

(0.147) (0.154) (0.149) (0.118) (0.118) (0.118)

L6.40–49 −0.141 −0.032 0.193 0.225* 0.234**

(0.142) (0.148) (0.118) (0.118) (0.118)

L7.40–49 0.309** −0.063 −0.012 −0.01

(0.137) (0.115) (0.118) (0.117)

L8.40–49 −0.082 −0.197 −0.068

(0.122) (0.136) (0.147)

L9.40–49 0.027 0.137

(0.127) (0.142)

L10.40–49 −0.377***

(0.128)

Constant 0.564 1.252 −0.273 0.127 1.131 0.987 0.635 0.733 0.768 1.086

(1.354) (1.503) (1.407) (1.447) (1.301) (1.147) (1.104) (0.864) (0.865) (0.869)

Observations 259 258 257 256 255 254 253 252 251 250

R–squared 0.753 0.754 0.804 0.806 0.852 0.89 0.902 0.942 0.944 0.946

Granger tests

F 2.34 0.67 2.59 2.41 10.89 4.04 2.91 1.10 1.20 1.93

Sig. 0.127 0.510 0.053 0.050 0.000 0.001 0.001 0.366 0.295 0.043

Standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 5 Chow test of school reopening.

Coef. SE

Constant 2.71* 1.196

40–49 years old

Lag 1 0.721** 0.151

10–19 years old

Lag 1 0.028 0.151

School opening 10.42** 2.732

School * 40–49 0.104 0.261

School * 10–19 −0.161 0.213

Observations 259

R-squared 0.676

Chow test

F 7.230

P-value 0.000

**p < 0.01, *p < 0.05.

responsible for 60% of the cases (56), and highly asymptomatic

individuals are less infectious (57).

As a robustness test of our main analysis, we use data

from large scale prevalence studies in Spain (42–45) to weight

the actual incidence records and try compensating for the

aforementioned biases. This robustness test implies weighting

each age-group’s time-series by their specific percentual level of

detection before reanalyzing the data (see the explanation of the

calculation procedure on the Supplementary material).

In Figure 7 we present the smoothed estimates of the

incidence rates weighted by prevalence. Again, we can clearly

identify how the 10–19 series grows exponentially faster and

more intensely than the middle-aged series just after school

reopening during the second wave. The increase among the 50-

year-old individuals becomes now the second in importance.

Furthermore, weighted data allows appreciating a more realistic

estimate of the true overall magnitude of the first wave, which

was far wider than the second. In any case, incidence among

youths (10–19) during the first wave was rather low coinciding

with a period when in-person school was closed.

The 10–19 age-group moves from being the second least

infected group during the first wave (just after children between

0 and 9 years of age as shown in Supplementary Figure 5) to be

leading the levels of contagion during the second wave, both in

terms of the timing an intensity of its growth. The key exogenous

contextual element that varies between these two waves and

may be responsible for this difference is in-person schooling.

Contagion among youths related to in-person classes does not

necessarily translate into a life-threatening health risk for this

age-group, however, it increases the danger in aggregate terms

for the transmission to individuals of older age-groups across

society at large, and especially within the multigenerational

households where these young people live. Figure 7 further

allows appreciating an overlooked increased in contagion of

youths taking place after the first wave, when containment

FIGURE 7

Evolution of the rate of COVID-19 cases per day in Catalonia by

age-group with data corrected by the level of prevalence.

measures were slightly relaxed. This growth finally went down

during the summer months. If we rerun the Granger causality

tests specified with the 40–49 series as determined by the 10–

19 and up to 10 lags, we obtain evidence of Granger causality

processes in three of its lags (see Supplementary Table 3). All in

all, the replication of the analysis on the weighted time-series

increases our confidence in the validity of our main results.

Discussion

In-person school reopening taking place at different dates

during September 2020 precedes and correlates with a posterior

growth in contagion in almost all Spanish regions. The time-

series analysis of Catalan age-groups indicates that contagion

among young individuals aged 10–19 after school-reopening

grows earlier and faster than the rest, Granger causing the

evolution of other age-groups. The lack of public awareness

of this phenomenon might be due to a collective cognitive

confusion regarding the actual role of school reopening.

Different studies at the individual level show that children

become less infected and are less infectious than older

individuals (58). From this fact many conclude that it was

rather safe to keep schools opened. This inference could actually

be a sort of fallacy. Even if children are less infectious and

get less infected (some estimates say by half), it has been

proven they are infectious and infect. Moreover, even a smaller

proportion of infected individuals can imply a large number

of actual cases when the target population is very large: the

whole school children population. As a result, the aggregate role

of opening schools for the expansion of the pandemic can be

collectively underestimated.

Like almost all the statistical tests, there is strong evidence

for the correlation of the different effects presented here, but the

causation if hidden. Granger causality is a statistical hypothesis

test for determining whether one time series can forecast another

one. Notice that it is only capable of testing the temporal
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relation between the two time-series, since the true causation

is a complex philosophical issue, here we can only assess if one

time-series forecasts another time-series.

To test the robustness of our findings we implemented a

weighting procedure based on prevalence studies to estimate

the actual percent of detection. This allows us to generate a

new time-series that represents the real cases. Reproducing

our analysis with this corrected data yield equivalent results,

enforcing our confidence in the findings.

Other studies have also analyzed the impact of

school closures together with other non-pharmacological

interventions. These studies employed large datasets that

included multiple countries and various non-pharmacological

interventions, and in all of them it was observed that the

closure of schools provided a reduction in the Rt (6–8, 59).

School reopening seems to have an impact on the Rt when

this non-pharmaceutical intervention is lifted and applied, and

coherently with the mortality (21), as is described on (60).

Furthermore, another study (61), using a methodology

similar to that employed in our research, observed that parental

exposure to open schools is associated with a somewhat higher

rate of PCR-confirmed SARS-CoV-2 infection OR 1.17; CI 95%

1.03–1.32. It was also higher among teachers, PCR-confirmed

SARS-CoV-2 infection OR 2.01; CI 95% 1.52–2.67.

In addition, a different research (62) robustly estimated

that the closure of schools, like other interventions to

reduce contacts in large groups, is one of the most effective

interventions to contain the spread of COVID-19 by reducing

the daily incidence.

While previous research has identified the overall impact

of different non-pharmacological interventions in the reduction

of SAR-CoV-2 spread, our study focuses more in depth on

one of those interventions (school closure/reopening), in a

specific context (Spain and Catalonia), at a particular moment

in time (the second wave) and using an interrupted time-

series approach. Our method can be easily reproduced in other

countries to eventually find comparable patterns.

From our analysis we can contemplate the possibility that

school reopening may generate a retro-feedback with parents’

return to work and social activity, leading to an exponential

growth, as observed in Catalonia and other Spanish ACs during

September and October of 2020.

Despite its cost, online or hybrid schooling could have been

a cost-effective option considering the potential role of schools

as drivers of the virus in the community. The spread of the

virus may imply higher expenses when medical, economic, and

social costs of closing economic activities due to the arrival of a

new viral wave are contemplated altogether. This understanding

could help policy makers to find suitable solutions to limit

the spread of the virus in the community such as using tele-

education while keeping onsite schools for parents that need

it, improving the ventilation of classes with HEPA filters, or

reducing the ratios for onsite school.

Posterior virus variants, such as the B.1.1.7 detected in the

UK, seem to increase the transmission rate among children. If

this is confirmed, new analysis should be performed to assess

how it will amplify the transmission rate in the community.

The estimated effects of school reopening would constitute a

downward estimation of the real impact in a context where new

variants are widespread.

All in all, the findings presented here are consequential

not only for the particular case of study, but more generally.

Heated debates about the adequacy and safety of in-person

school reopening have been held around the world. Different

considerations regarding its costs and benefits have been casted,

however, the full implications of its costs might not been

weighted accurately enough. We believe our findings constitute

a contribution in this direction.
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