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It is of great practical and theoretical significance to identify driver fatigue

state in real time and accurately and provide active safety warning in

time. In this paper, a non-invasive and low-cost method of fatigue driving

state identification based on genetic algorithm optimization of generalized

regression neural network model is proposed. The specific work is as follows:

(1) design simulated driving experiment and real driving experiment, determine

the fatigue state of drivers according to the binary Karolinska Sleepiness

Scale (KSS), and establish the fatigue driving sample database. (2) Improved

Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face

detection. Dlib library was used to extract the coordinate values of face feature

points, collect the characteristic parameters of driver’s eyes and mouth, and

calculate the Euler Angle parameters of head posture. A fatigue identification

modelwas constructed by usingmultiple characteristic parameters. (3) Genetic

Algorithm (GA) was used to find the optimal smooth factor of Generalized

Regression Neural Network (GRNN) and construct GA-GRNN fatigue driving

identification model. Compared with K-Nearest Neighbor (KNN), Random

Forest (RF), and GRNN fatigue driving identification algorithms. GA-GRNN has

the best generalization ability and high stability, with an accuracy of 93.3%. This

study provides theoretical and technical support for the application of driver

fatigue identification.

KEYWORDS

fatigue driving, active safety warning system, machine vision, generalization

regression neural network, genetic algorithm

Introduction

Fatigue driving is often accompanied by drowsiness or decreased physical function.

Drivers who continue to drive under fatigue conditions are prone to road traffic

accidents. Fatigue is defined as a complex state, a transitional state from wakefulness to

sleep. However, there is still no unified definition of fatigue driving (1). In our study,

fatigue driving is defined as the driver’s decrease in alertness, mental function, and

physiological factors (2).
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Fatigue driving identification is mainly divided into two

methods: the subjective assessment method and the objective

detection method (3). Driver fatigue can be quantified with the

subjective assessment method through offline questionnaires,

including KSS (4), Pearson Sleepiness Scale (PSS), and the

Stanford Sleepiness Scale (SSS). Auxiliary tools or sensors are

used in the objective detection method to detect the driver’s

physiological information (5–9), vehicle dynamic parameters,

and facial features, which can determine whether the driver is

in a fatigued state. The facial features of driver including eyes,

mouth, head and expressions can be extracted in the fatigue

identification method based on facial features. The classification

of the methods is shown in Figure 1.

The fatigue driving identification method based on

physiological information usually requires the driver to wear

a variety of sensors or monitoring equipment, which is easy

to cause the driver to feel disgusted and uncomfortable. The

cost of human equipment is high, which is difficult to promote

and apply in driving assistance systems. The method based

on vehicle parameters is an indirect detection method, which

cannot intuitively express the driver’s fatigue state. Compared

with the other two identification methods, this method has

the advantages of non-invasiveness, not affected by the driver’s

driving habits, and good real-time performance.

Savas et al. (10) extracted the percentage of eyelid closure

(PERCLOS) and yawning frequency as feature parameters

to recognition the fatigue driving state. Berkati et al. (11)

extracted the driver’s blink rate, blink time, PERCLOS, and other

characteristic parameters. They constructed an RBF (Radial

Basis Function) neural network to identify the fatigue driving

state. Phan et al. (12) used the SSD-ResNet-10 model for face

detection and location. They pre-trained the adaptive ResNet-

50V2 neural network recognition model on the RMFD (Real-

World Masked Face Dataset) through transfer learning. The

self-built fatigue datasets was used to fine-tune the identified

model parameters to achieve higher model accuracy with

97.3%. Cheng et al. (13) extracted EAR (eye aspect ratio) and

MAR (mouth aspect ratio) parameters. The average accuracy

of the trained logistic regression model for fatigue driving

identification was 83.7%. You et al. (14) trained a SVM (Support

Vector Machine) model with the vertical and horizontal EAR

features to identify the fatigue driving state. The proposed

algorithm had an accuracy of 94.8% for the fatigue driving

identification. Li et al. (15) preprocessed the face image through

grayscale processing and gamma correction. The Dlib face

alignment model was used to intercept the driver’s eyes and

mouth areas, the LBP (Local Binary Patterns) algorithm was

used to extract feature vectors in the three areas. The model

was trained with the radial basis SVM model and achieved an

accuracy of 96.07%. Zhuang et al. (16) used Dlib face key points

to segment the eye image. A lightweight U-Net network was

used to perform pixel-level classification of the eye image, which

could accurately extract the driver’s pupil and iris features. After

training the eye characteristic with the decision network, the

fatigue driving recognition was finally realized based on the

PERCLOS criterion. Jia et al. (17) fused the parameters of ECR

(eye closure rate), MOR (mouth opening rate), and HNFR (head

non-frontal rate) to identify fatigue driving state. They achieved

a recognition rate of 97.5% on the self-made data set. Liu et al.

(18) proposed an Adaboost algorithm based on multi-block LBP

features to locate face feature points. The opening angles of

the eye and mouth could be calculated through the coordinate

values of the feature points on the image, and a fuzzy inference

system was used to detect driver fatigue.

However, the methods based on facial features can be

affected with the changing driving environment easily. It is

difficult to import it into a small-embedded system with the

large-scale model. The single evaluation criterion PERCLOS

or threshold method to judge fatigue driving has certain

limitations. Most scholars use open source fatigue driving data

sets or simulated driving experimental data sets to train the

fatigue driving state identification model, and rarely consider

combining the real vehicle driving experimental data and the

simulated driving experimental data to train the identification

model. The optimal parameter matrix utilization of the data is

not high. A non-invasive and low-cost method of fatigue driving

state identification based on genetic algorithm optimization of

generalized regression neural network model is proposed in

this paper, which uses the eye, mouth and head parameters.

The driver’s face area can be quickly detected and accurately

located with the improved MTCNN. The dlib library can

be used to locate the key points of the face, which can be

applied to extract the parameters of the eye and mouth. The

Euler angles of the head pose are calculated according to

the corresponding relationship between the two-dimensional

face key point coordinates and the three-dimensional face

coordinate system. The raw data is processed by fast Fourier

filtering algorithm and factor analysis, and the common factor

is extracted as the characteristic parameter to identify the

fatigue driving behavior. The processed feature parameters are

input into the optimized generalized regression neural network

identification model. Compared with KNN, RF, GRNN fatigue

driving identification algorithms, the results show that the

system has an accuracy rate of 93.3%, a recall rate of 91.4%, a

precision rate of 92.9%, and the F1 score of 92.1%.

Materials and methods

Participants

33 participants with regular physiological routines

participate in the experiment, including 21 males and 12

females. The participants of the experiment are all students

and faculty members, and some of them wear glasses. The age

distribution of the participants is between 21 and 52 years old
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FIGURE 1

The classification of the fatigue driving identification methods.

(mean age 33.27 years, standard deviation 2.83 years). Driving

experience is distributed between 1 and 13 years, with an

average driving experience of 5.7 years. All participants must

have at least 1 year of driving experience. Each participant is in

good health, has regular diet and sleep, and has no bad habits.

They will not be informed about the purpose of the experiment.

Apparatus

The experimental equipment used in this experiment

includes driving simulation system, Buick GL8 experimental

vehicle, infrared camera, Jetson Nano, and portable display

screen. The G29 simulation driving kits produced by Logitech

is selected in our study, including force feedback steering wheel,

gear shift lever, adjustable brake pedal, accelerator, driving seat,

etc. The Buick GL8 is used as the experimental car, and the

infrared camera is fixed on the upper left of the front windshield

of the car. The experimental equipment is shown in Figure 2.

Procedure

It is easy for the driver to enter a fatigued driving state on a

highway with a monotonous driving environment (2). The road

alignment changes are simple and the road environment lacks

changes and stimulation on the visual sense. A monotonous

driving environment is selected to carry out the real vehicle and

simulated driving experiments in this paper. The driving route

of the real vehicle experiment choose the section of Qingdao

Jiaozhou Bay Cross Sea Bridge (from Sifang Campus of Qingdao

University of Science and Technology to Huangdao East Toll

Station). The total length of the experimental road section is

36 km, and the road speed limit is 80 km/h. Most of the road

along the way is seawater, with a wide field of vision and a

single road environment, which is no significant difference. The

experimental route of the real vehicle is shown in Figure 3.

The experimental scene in simulated driving is written by

UC-win/Road5.0 software. In order to ensure that the driving

environment generated by the simulation software is similar

to the real vehicle driving traffic environment, the simulated

driving experimental scene in this paper adopts a circular two-

way four-lane road, which consists of straight sections and

multiple flat curve sections of different types. The total length

of the road is about 53 km. The width of the single lane is about

3.75 meters. The road surface is flat and open, and there is no

interference from pedestrians and other vehicles. In order to

make the simulated driving scene more realistic, trees and grass

are added on both sides of the road lane, and a separation zone

is set in the center of the road. This road segment is repeated

throughout the experiment until the end of the experiment.

The participants are required not to stay up late 1 day

before the experiment to ensure adequate sleep. They cannot

to take medicine, smoking, or drinking within 12 h before the

experiment, and not to drink functional drinks or coffee within

3 h before the experiment. The time of 12:30–17:00 pm and 0:30–

5:30 are selected for experiments. Considering the danger of

the real car driving experiment, the real car experiment is only

carried out in the time of 12:30–5:00 pm. Each participant needs

to complete the driving of the experimental route. The infrared
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FIGURE 2

Experiment equipments of simulated driving (A) and actual driving (B).

FIGURE 3

Experiment route for actual driving.

camera throughout the process can collect the facial video data

of the participants.

In the simulated driving experiment, it is necessary to ensure

that the participants must complete the two experiments in the

afternoon and the early morning. If the two experiments cannot

be completed at the same time, the video data of the tested driver

will not be retained. The average driving time of the driver in

the severe fatigue state in the simulated driving experiment is

3.9 h (19). Therefore, in this study, each participant conducted a

simulated driving experiment for at least 4 h. The acquisition of

video data is stopped 30min after the participants has the signs

of fatigue (20), and the experiment is ended. If the participant

still has no signs of fatigue driving after 4 h of simulated driving

experiment, the experiment will be terminated.

In order to avoid the invasiveness and the influence of

individual subjective differences caused by the self-assessment

method, the expert scoring method is adopted to determine the

driver’s fatigue level according to the KSS scale (4). Before the

driving experiment, the experimental assistant installs, connects

and debugs the experimental equipment. Participants should be
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trained before using the driving simulator andGL8 experimental

vehicle and have sufficient time to practice and become familiar

with them. During the experiment, the environment inside the

car should be kept quiet, and there should be no noise in the

car to disturb the driver. Three experts always pay attention to

the mental state and external performance of the experimental

subjects, evaluate the driver’s fatigue state every 5min (9), and

mark on the scale until the end of the experiment. In this paper,

when the KSS is <3, it is considered as a non-fatigue driving

state. When the KSS is >4, it is considered as a fatigue driving

state (1).

After the experiment, the staff organizes the experimental

instruments and related experimental equipment, and divides

the video according to the KSS score and time interval during

the experiment.

Data collection algorithm

Improved MTCNN face detection algorithm

The improved MTCNN network is used for face detection

and locates the driver’s face area in this paper. The algorithm

structure diagram is shown in Figure 4. The Dlib library is used

to extract the coordinate values of face feature points, and extract

the driver’s eye, mouth and head feature parameters. Changes

of characteristic parameters of blinking, eye opening degree,

yawning, mouth opening degree, abnormal head posture and

other phenomena in fatigue state are analyzed.

MTCNN is a face detection model based on the face

alignment method (21). Due to the slow convergence speed

and the long training time of the original MTCNN model,

it consumes too much computing resources. An improved

MTCNNmodel is proposed for face detection in this paper. The

batch normalization (BN) layer is added after the convolutional

layer in the original MTCNN, and the face bounding box

regression loss function is improved to speed up the convergence

of the face detection model to obtain higher model detection

accuracy. The network structures of the three sub-networks of

MTCNN, P-Net, R-Net, and O-Net, are shown in Figure 5.

In the face detection box regression task, the offset between

the candidate box and the ground-truth box is used for

prediction. In this paper, the value is added to the loss function.

The improved bounding box can be calculated as follows:

Lboxi = 1− IoU+
ρ2
(

bpb,bgt
)

c2
+

4
π2 (arctan

wgt

hgt
−arctanwpb

hpb
)
4

(1− IoU)

+
4

π2
(arctan

wgt

hgt
−arctan

wpb

hpb
)

2

IoU is the intersection ratio between the predicted face frame

and the real face frame. When IoU= 1, the predicted face frame

overlaps with the real face frame. ρ2
(

bpb, bgt
)

is the square of

the Euclidean distance between the predicted face frame and

the real face frame. c is the diagonal length of the minimum

bounding box formed by the predicted face frame bpb and the

real face frame bgt . wgt and hgt are the width and height of the

real face frame, wpb and hpb are the width and height of the

predicted face frame.

The improved MTCNN model training process is shown

in Figure 6. It can be seen from the figure that the face area

detection frame can be quickly filtered by the P-Net network,

and NMS (Non-Maximum Suppression) is used to eliminate

the wrong redundant area frame. The face area is further

processes with the O-Net network, and the face candidate frame

is further screened by NMS. The final face detection area is

filtered out through the O-Net network. The improvedMTCNN

face detection model starts to be trained until the data set used

for training, the loss function and related training parameters

are set.

In order to verify the performance of the improvedMTCNN

face detection model, the MTCNN model before and after

the improvement is compared on the Wider Face dataset and

the DCNN (Dynamic Convolution Neural Network) face key

point dataset. In order to reduce the influence of training

parameters on the model training results, the parameters as

other software and hardware, optimization algorithm, learning

rate, and optimization function are same as before except the

model. The training results are shown in Figure 7.

The training results of the model for 600 iterations can

be seen from Figure 7. As shown in Figure 7A, the final face

detection accuracy after the original MTCNN training is 0.938.

As shown in Figure 7B, the final face detection accuracy of

the improved MTCNN after training is 0.953. Compared with

before optimization, the face detection accuracy of the improved

MTCNN is improved by 1.5%.

The detection speed of the improvedMTCNN face detection

model proposed in this paper is faster than other models, and

the average detection time per frame is 34ms. Although it is

not as accurate as the SSD (Single Shot MultiBox Detector)

face detection model in the literature (22), the detection speed

is greatly reduced when the SSD is transplanted into the

Jetson Nano with limited computing power. It cannot meet the

requirements of real-time identification of fatigue driving state,

and it is difficult to apply in actual fatigue driving identification

scenarios with high real-time requirements. The improved

MTCNN face detection model proposed in this paper is more

suitable for transplantation to embedded systems.

Face key point location based on Dlib

After locating the driver’s face area, the driver’s facial

feature parameters in the face area will be extracted. The face

alignment model based on the packaged Dlib library is adopted

to locate the key points of the driver’s face. The algorithm is less

computationally time-consuming and more efficient, and can

locate the key points of the face in real time. The main task of
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FIGURE 4

The algorithm structure diagram.

FIGURE 5

The structure of P-Net (A), R-Net (B), O-Net (C).
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FIGURE 6

Training process of improved MTCNN.

FIGURE 7

The training results of MTCNN face detection model—Accuracy of original MTCNN (A) and improved MTCNN (B).
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face key point location is to perform key point calibration on

the image of the face area located by the face detection model,

and to judge the fatigue state by extracting the driver’s fatigue

characteristic parameters.

Feature extraction

Based on the location of key points on the face of Dlib,

the fatigue characterization parameters of the eyes and mouth

are extracted. Whether the driver is in a fatigued driving state

is characterized by extracting the blink frequency, EOA (eye

opening angle), EAV (eye aspect vector), and the eye closure area

parameters. The eye key point location is shown in Figure 8A.

The blink frequency refers to the ratio of the total number of

frames of blinking images to the total number of images within

a specified time window. Blinking is the movement of the eyes

from opening to closing to opening. The blinking frequency can

represent the driver’s fatigue state. During normal driving, the

driver blinks relatively fast, and the time consumed by each blink

is about 0.2–0.3 s. In the fatigue driving state, the driver’s eyes

are dull, the blink time becomes longer, the duration is more

than 1 s, and the blink frequency increases. Therefore, the blink

frequency can intuitively represent the driver’s fatigue state. The

formula for calculating the blink frequency is:

Fblink=

N
∑

i
f i

N

N
∑

i
f i is the number of images of the driver’s eyes closed in a unit

time, and N is the total number of images in a unit time.

The driver’s eye opening and closing degree can be calculated

according to the eye key point coordinates shown in Figure 8A.

In this paper, EOA is used to represent the eye opening

and closing degree parameter. The formula for calculating is

as follows:

EOA=arcsin





dis
(

P,P6P1

)

dis (P,P6)





Pi,i=1,2,· · ·,6 is the eye key point coordinate, and dis is the

Euclidean distance between two eye key points.

The EAV is roughly constant when the eyes are open (23).

When the driver blinks or closes the eyes, the EAV decreases

rapidly. When the driver completes the blinking action, the EAV

increases rapidly. The formula for calculating EAV is as follows:

EAV=

(
∥

∥p5−p4
∥

∥

∥

∥p6−p1
∥

∥

,

∥

∥p2−p3
∥

∥

∥

∥p6−p1
∥

∥

)

In order to simplify the calculation, the geometric shape

fitted by the human eye feature points is approximately regarded

as an ellipse in this paper. The driver’s eye state can be

characterized by the ratio of the ellipse area fitted by the key

points of the eyes at a certain moment to the maximum value

of the ellipse area fitted by the key points when the eyes are fully

opened. The eye closed area ratio can be calculated as follows:

Sar=
S
′

Smax
=

a
′
b
′
π

amaxbmaxπ

S
′
is the fitting area of the eye at a certain moment, Smax is the

maximum fitting area of the eye, amax is the maximum canthus

distance, a
′
is the eyelid distance at a certain moment, bmax is

the maximum eyelid distance, and b
′
is the eyelid distance at a

certain moment.

Figure 8C is drawn according to the driver’s blink. It can be

seen from the figure that in the state of eye opening and blinking,

the vertical and horizontal dimensions of the eye have obvious

cluster centers, which can distinguish the state of opening and

blinking. Therefore, EAV can effectively distinguish the driver’s

eye opening and blinking state.

In addition to characterization parameters based on eye

fatigue, yawning is also an important indicator for evaluating

driver fatigue. Yawning is a deep breathing activity, a

conditioned reflex in a state of fatigue. According to statistics,

the duration of a yawn is about 4 s. When the driver speaks,

the degree of mouth opening is constantly changing, but the

duration is short. When the driver is fatigued, he will yawn with

the characteristic of yawning. The mouth opening is obvious,

and the duration is longer. In the process of yawning, the corners

of the mouth will also have a significant change in opening and

closing. Therefore, the extraction of mouth feature parameters is

an effective supplement for judging fatigued driving.

There are obvious changes in the degree of mouth opening

when the driver and the passenger speak, talk and other

behaviors, which greatly interferes with the judgment of fatigue

level based on the characteristics of the mouth. In order to

distinguish the three state features of the driver yawning,

speaking andmouth closed, themouth state can be characterized

by MAV (Mouth Aspect Vector), mouth corner opening and

closing degree, and mouth opening area.

The frequency of yawning is defined as the number of image

frames in which the driver yawns in unit time, and its calculation

formula is as follows:

Fyawn=

N
∑

k

f k

N

N
∑

k

f k is the number of frames of yawning within a certain period

of time.

The calculation formula of MAV is as follows:

MAV=

(

‖M4−M6‖

‖M5−M1‖
,
‖M3−M7‖

‖M5−M1‖
,
‖M2−M8‖

‖M5−M1‖

)
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FIGURE 8

The feature of eye and mouth, including eye of key points positioning (A), mouth of key points positioning (B), EAV feature (C), and opening and

closing degrees of mouth (D).

Mi,i=1,2,· · ·,6 is the eye key point coordinate. In the formula,

the numerator is the distance vector between the key points

of the upper lip and the lower lip, and the denominator is the

distance vector of the key points of the corner of the mouth.

According to the coordinates of the key points of the mouth

shown in Figure 8B, the mouth opening and closing degree

of the driver can be calculated. In this paper, MOA (Mouth

Opening Angle) is used to represent the mouth opening and

closing degree parameters. It can be calculated as follows:

Smp=
∣

∣xM8−xM1

∣

∣ •

∣

∣

∣
yM7

−yM3

∣

∣

∣

xM8 , xM1 is the abscissa of the mouth key point of the

corresponding serial number in Figure 8B, and yM7
, yM3

is

its ordinate.

The features including the driver’s mouth closing, speaking

or talking, and yawning are selected for analysis. The changes of

mouth feature parameters are shown in Figure 8D. It can be seen

from Figure 8D that there is a yawning process and a language

conversation process. When yawning, the driver’s mouth will

quickly open to a certain angle and last for a long time. MOA

will show an obviously exaggerated peak over time. When the

driver speaks or talks, the changes of MOA is obviously different

from the fluctuations of the characteristic parameters with the

closed mouth or speaking.

Head pose estimation can more intuitively reflect the fatigue

driving state (24). When the driver is in a normal driving state,

there will be a slight change in the head posture. When in a

state of fatigue, the driver’s brain response ability is reduced. In

addition to the characteristics of long blink time, the control

and support ability of the head is reduced, and the head is

often accompanied by nodding, tilting and other characteristics.

When the driver frequently nods or tilts his head, it indicates

that the fatigue state has reached a dangerous level, which is very

likely to cause traffic accidents (25). Therefore, abnormal head

posture is one of the important basis for judging the driver’s

fatigue driving.

Considering that the infrared camera is relatively fixed, the

driver’s head is abstracted into an intangible rigid object to

facilitate the estimation of the characteristic state of the driver’s

head. The characteristic of the rigid body is that the relative

position of its internal feature points does not change. When the

rigid body is in motion, the shape and size of the object itself

does not change, and the object itself only performs rotation and

translation transformations.

Head pose estimation can be performed using the EPnP

(26) method, which is based on MTCNN to identify five 2D

landmarks on the face. Through the rotation matrix of the

camera, the three-dimensional point distribution in the world

coordinate system can be mapped to the two-dimensional image

feature point distribution, and the rotation matrix can be

converted into the Euler angle feature parameters of the head

pose. EPnP is a high precision and fast pose estimation method
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with strong anti-interference ability. The effects of extracting

the driver’s head feature parameters in the simulated driving

environment and the real vehicle environment are shown in

Figure 9.

The light blue rectangle represents the driver’s face area, and

the orange rectangle represents the driver’s face orientation. The

Euler angle solution results are displayed at the upper left of the

image for easy information acquisition. The results show that

the algorithm can estimate the heads of different postures in

the real vehicle-driving environment and the simulated driving

environment, and has a good anti-interference ability against

day, night and abnormal lighting.

Results and discussions

Data

The study found that most drivers’ fatigue index data could

be observed for 60 s or more to obtain reasonable signs of

driver fatigue (27). Therefore, the experts screened 1-min time

segments with typical fatigue characterization phenomena in the

segmented data, and constructed a fatigue driving dataset. If

there is no obvious fatigue feature in the frequency data after

5min segmentation, the 1min data is selected as the normal

driving data set. In order to improve the quality and reliability

of the fatigue label data, the experts revised the scores through

the playback of the video process and confirmed their final

scores. Due to the physical strength of the subjects and the

irregular driving posture, the experimental data of nine drivers

were excluded. Thirty-eight groups of valid video data were

selected to construct a fatigue-driving database, including 23

groups of normal driving experimental data and 15 groups of

fatigue driving experimental data.

Eleven features such as eyes, mouth and head in the driver’s

driving behavior are considered as candidate feature parameters.

During data collection, due to the irregular driving behavior

of experimental equipment or experimenters, noise, errors and

other data are introduced in the data collection process. These

data will have a great impact on the model during the model

training process, and some even directly affect the effect of

the model. Data cleaning refers to straightening out the messy

original data. It is the process of changing ‘dirty data’ into

‘clean data’ and correcting errors in the original data. It is the

cornerstone of the entire data analysis process. In order to avoid

“dirty data” being directly input into the model for training and

verification, which affects the recognition effect of the model, it

is necessary to perform data cleaning operations on these data.

There are many good methods to do this well (28–31). The

Fast Fourier Transform (FFT) algorithm is used to denoise the

data (32).

X (k)=

N - 1
∑

n=0

a (n) e−j 2πkN n, 0 ≤ k ≤ N− 1

a (n) is a discrete finite-length sequence of length M, e−j 2πkN n is

the twiddle factor, X (k) is the N-point DFT of a (n), andN is the

transform length, N ≥ M.

Divide a (n) into two groups according to the parity of

the serial number n, and rewrite the Fourier transform of

equation as:

X (k) =

N
2 −1
∑

n=0

a(2n)e−j 2πkN 2n
+

N
2 −1
∑

n=0

a(2n+1)e−j 2πkN (2n+1)

n=0,1,· · ·,
N

2
−1

In specific applications, the size of the filtering window affects

the final effect of data smoothing. If the window is too large, the

curve is flat, and the filtered data differs greatly from the original

data, which may lead to unrealistic data. If the window is too

small, there may be overfitting. Combined with the amount of

self-built fatigue driving data, two filter window lengths N=10

and N=5 are selected for comparison, as shown in Figure 10.

The curve is smooth in Figure 10B, but the peak value is

not obvious enough. The difference with the original data is

too large. It is not easy to extract features. The filtering curve

in Figure 10A is ideal, and it is easy to select feature points

from it. The amount of experimental data is small, and the filter

data changes significantly when N=5 in this paper. This makes

it possible to express the fluctuation of the original data well,

and the difference with the original data is small. Therefore,

an FFT filter with a filter window length of 5 is chosen in

this paper.

The experimental data is preprocessed according to the

above method, and 18835 groups of simulated driving

experimental data are obtained, of which 16612 groups are

valid data. According to the time series, 9113 sets of data are

selected from the driving data to form the original database

for model calibration and training. 3275 sets of data are used

for model testing, and the remaining 4224 sets of data are

used for model validation. Factor analysis is used to extract

the main factors of the reaction fatigue identification model

to the greatest extent. A factor analysis model is constructed

based on the analysis of the preprocessed experimental data to

achieve the purpose of dimensionality reduction and avoid the

dimensional “disaster.”

The percentage of squared and variance of the loading and

the information content of each factor are shown in Tables 1,

2. The analysis results show that the cumulative variance

contribution rate of the first six factors is 95.867%, which is

more than 90%. It represents most of the information of all

parameters. Considering the information content of each factor

and the bending point of the gravel diagram, the first six

common factors are selected as the main features of fatigue

driving state identification.
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FIGURE 9

Head pose estimation results of simulated experiment (A) and real vehicle experiment (B).

FIGURE 10

Filtering results—FFT with filter windows of 5 (A) and 10 (B).

Model

In order to improve the learning efficiency and identification

accuracy of the GRNN identification model, a generalized

neural network model optimized by genetic algorithm GA-

GRNN neural network model is proposed in this paper. The

optimal fitness value and the hidden layer smooth factor σ

of the generalized regression neural network are found in the

search space through GA, which avoids the influence of manual

adjustment of the smooth factor and improves the performance

of the neural network. The GA-GRNNmodel training process is

shown in Figure 11.

Generalized Regression Neural Network is a RBF Radial

Basis Neural Network proposed by Professor D.F. Specht. The

output function of the network is yA, and the calculation

formula is as follows:

yA=

∑n
i=1 Y

A
i exp

[

−

(

X -XA
i

)T(
X -XA

i

)

2σ 2

]

∑n
i=1 exp

[

−

(

X -XA
i

)T(
X -XA

i

)

2σ 2

]

XA
i is the i-th data in data set A, YA

i is the label corresponding

to the i-th data in dataset A. yA is the output function of the

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.991350
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.991350

TABLE 1 Total explained variance.

ComponentEigenvalues Percent of extracted Cumulative

loading squared and amount of

variance (%) information (%)

1 3.698 33.617 33.617

2 2.598 23.615 57.232

3 1.466 13.331 70.563

4 1.251 11.376 81.939

5 0.903 8.212 90.152

6 0.629 5.716 95.867

7 0.271 2.462 98.329

8 0.098 0.890 99.219

9 0.051 0.468 99.687

10 0.023 0.207 99.894

11 0.012 0.106 100.000

network, which is the estimated value of YA
i by the weighted

average operation.

The genetic algorithm is selected to optimize the generalized

regression neural network model to improve the identification

accuracy and generalization ability of the model. The evolution

process of the genetic algorithm population mainly includes

initializing the population, selection, crossover and mutation.

The optimization process is shown in Figure 12.

The specific optimization process is as follows:

Step 1: Initialize basic parameters. The number of

chromosomes in the population is 80, the crossover

probability is 0.7, the mutation probability is 0.25, and

the maximum number of evolutionary times is 200,

σ ∈[0,2].

Step 2: Define the fitness function. The mean square error

between the output value of the GA-GRNN neural

network and the actual value of the data is defined as

the population fitness function. The smooth factor σ is

mapped to the fitness function, and the GRNN fatigue

driving state identification model is constructed. The

calculation formula of the fitness function is as follows:

MSE (σ )=
1

n

n
∑

i=1

(

yA
(

σ ,XA
i

)

−YA
i

)2

Step 3: Train the GRNN network. Since the fatigue driving state

is based on the continuity of the fatigue representation

phenomenon in the time series, it is unreasonable to

determine the fatigue driving only from the recognition

results of a single data or image frame. Therefore, t the

sliding window algorithm is used to train the model.

The training samples and label data are input into the

GRNN to train the model. The length of the sliding

window is a key parameter that affects the accuracy

of the identification model. If the window length is

too short, the obtained time series may not fully cover

the fatigue state. If the time window is too long, the

sequence will contain too much redundant information,

which will reduce the recognition accuracy of themodel.

Considering the accuracy and calculation speed of the

balanced identification model, after many experiments,

the final window size is 900 and the sliding step is 80.

Step 4: Determine whether the fitness value and iteration

conditions are satisfied. It is reasonable to take

the fitness threshold (0.01, 0.0533) according to the

references (33) and (34). Therefore, set the fitness value

of 0.03 as the judgment condition. If the average fitness

value of the population is <0.03 and the number of

iterations of the population reaches 200, the GA GRNN

fatigue driving identification model can be output.

Otherwise, the population is updated and iterated until

the judgment condition is met.

Step 5: Population evolution. Update the population, update

chromosomes or genes through evolutionary methods

of selection, crossover, and mutation, and select

excellent individuals that are superior to the previous

generation until the optimal individual is selected.

Step 6: GA optimization ends. Output the optimized GRNN

model, save the trainedGA-GRNN identificationmodel,

and output the best smooth factor.

Model training, test, validation and
evaluation

The 12,423 sets of driving data processed by FFT are used for

model calibration and training, and the remaining 4,189 sets of

data are used for model validation. The optimal smooth factor

can be found through the genetic algorithm to obtain the best

fitness value. When the GA iteration reaches 125, the population

is no longer updated. At this time, the average fitness value

is 0.2385. When the iteration reaches 136 times, the optimal

fitness value is reached, which is 0.0429. When the GA-GRNN

identification model reaches the iterative condition, the optimal

smoothing factor is 0.134. The identification accuracy of the

GRNN model optimized by the genetic algorithm is 95.7%, and

the identification accuracy of the original GRNN model after

manual parameter adjustment is 88.9%, which is 6.8% higher

than that of the GRNN identificationmodel before optimization.

It compares the GRNN identification model before and after

optimization on the training data set through 10 rounds of

K-fold cross validation, where the original GRNN model uses

manual intervention to adjust the smoothing factor.

In order to test the accuracy of the GRNN identification

model optimized by the GA algorithm, 3275 sets of test data

and labels are used to test the GA-GRNN model, and 10
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TABLE 2 Loadings matrix of rotated factor.

Parameter Component

1 2 3 4 5 6 7 8 9 10 11

EAV 0.968 0.031 – 0.200 – 0.054 0.018 – 0.015 – 0.002 0.023 – 0.002 – 0.089 – 0.104

MAV 0.080 0.955 – 0.053 – 0.122 0.017 – 0.011 – 0.060 0.090 – 0.226 0.002 0.000

Sar 0.961 0.038 – 0.196 – 0.126 0.036 – 0.025 0.023 0.017 0.000 – 0.081 0.110

Smp 0.007 0.614 – 0.089 – 0.204 – 0.016 – 0.031 0.003 0.756 0.001 – 0.002 0.000

Pitch 0.091 – 0.135 0.027 0.237 0.109 – 0.014 0.951 0.001 – 0.002 0.003 0.000

Yaw – 0.022 – 0.080 0.009 0.961 0.000 0.062 0.233 – 0.105 0.006 0.006 – 0.001

Roll 0.065 0.087 0.007 0.001 0.988 0.049 0.097 – 0.007 0.003 0.001 0.000

EOA 0.936 0.042 – 0.188 0.171 0.051 – 0.003 0.113 – 0.031 – 0.004 0.201 – 0.003

MOA 0.017 0.949 – 0.053 0.055 0.108 0.022 – 0.111 0.125 0.232 – 0.001 0.000

Fblink – 0.244 – 0.059 0.964 0.007 0.004 0.017 0.015 – 0.031 – 0.001 – 0.002 – 0.001

Fyawn – 0.027 0.002 0.025 0.055 0.048 0.996 – 0.012 −0.015 0.001 0.000 0.000

FIGURE 11

Training flowchart of GA optimizes GRNN network.
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FIGURE 12

Optimization process of genetic algorithm.

rounds of 5-fold cross-validation are used to test the GA-

GRNN and the manually adjusted GRNN model. The results

show that the accuracy rate of GRNN identification model is

88.7%, and the average identification accuracy of GA-GRNN

model is only 94.1% after 10 rounds of 5-fold cross-validation

test. The reason is that most of the states in the test set can

be correctly detected, but the accuracy of the identification

of abnormal head posture data is low. This is because in

the test set, there are some data under the characteristics of

bowing, tilting, etc. Also labeled as fatigue state data, this

situation is difficult to identify relative to the GA-GRNN

identification model.

Considering the objective and multi-dimensional

measurement model indicators, this paper uses simulated

driving data and real vehicle driving data to verify the

trained GA-GRNN model. In order to verify the superiority

of the optimized recognition algorithm, at the same time,

the random forest, K-nearest neighbor algorithm and the

GA-GRNN model are introduced for comparison. Random

Forest is a representative bagging method, which is a kind of

ensemble algorithm. The base evaluator of random forest is a

decision tree model. The core idea of the bagging method is

to construct multiple independent base evaluators, and decide

the classification result of the final integrated evaluator through

the principle of voting or majority voting. This model reduces

the problem of easy overfitting of decision tree models to a

certain extent. At the same time, the principle is simple and

the operation is easy, so it is widely used in data analysis,

processing, and other fields. K-nearest neighbors is a supervised

learning model. The data can be predicted with majority voting,

and it can be judged that it belongs to K categories closest

to the data. The two most important factors of the KNN

algorithm are the choice of the K value and the calculation

of the distance. KNN has the advantages of simple principle

and good classification effect, and is widely used in feature

classification tasks.

The four evaluation indicators of accuracy, recall, precision

and F1-score were used to evaluate GA-GRNN, GRNN, RF and

KNN. The performance of the nearest neighbormodel. Accuracy

is the percentage of correctly identifying fatigue and non-fatigue

driving behaviors in the total number of experimental data

behaviors or the probability of correct identification. It can be

calculated as follows:

Accuracy=
TP+TN

FP+FN+TP+TN
×100%

TP is the number of true positive samples. TN is the number of

true negative samples. FP is the number of false positive samples.

FN is the number of false negative samples.

Recall is the ratio of the number of correctly classified

positive samples to the total number of positive samples. There is

a trade-off between recall and precision, and the balance between

the two represents a balance between the need to capture the

minority class and the need to avoid misjudging the majority

class. It can be calculated as follows:

Recall=
TP

TP+FN
×100%

Precision is the ratio of the number of correctly classified

positive samples to the total samples predicted by the model to

driver normally. Precision represents a measure of the cost of

misjudging the majority class. It can be calculated as follows:

Precision=
TP

TP+FP
×100%

F1-score is used to reconciling the balance between precision

and recall. The value range of F1-score is [0, 1]. The higher the

score, the better the performance. It can be calculated as follows:

F1− score=
2× Pre× Rec

Pre+Rec
×100%

The remaining 4,224 sets of data and labels are used for the

validation of the trained GA-GRNN model. The experimental

results are shown in Table 3.

The verification results of the four types of identification

model experiments are organized, and the comparison results
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TABLE 3 Validation results of the model.

Model predictions Real data results

GRNN KNN RF GA-GRNN

Normal Fatigue Normal Fatigue Normal Fatigue Normal Fatigue

driving driving driving driving driving driving driving driving

Normal driving 1629 241 1705 254 1797 193 1671 157

Fatigue driving 214 2117 228 2037 154 2080 127 2269

are shown in Supplementary Figure 5. The verification results

show that the GRNNmodel has the lowest recognition accuracy

of fatigue driving and the worst generalization ability. The

accuracy of KNN model is 90.4%, the recall is 87.0%, the

precision is 88.2%, and the F1-score is 87.6%, which is not as

good as the performance of GA-GRNN model. The accuracy

of RF model is 93.0%, the precision is 92.1%, the F1-score is

91.2%, but the recall is only 90.3%, and the overall performance

of the model is unstable. The accuracy of GA-GRNN model

is 93.3%, the recall is 91.4%, the precision is 92.9%, and

the F1-score is 92.1%. Compared with GRNN, KNN, and RF

identification models, the algorithm proposed in this study

improves the accuracy of fatigue driving state identification.

Compared with before optimization, the recognition accuracy

of GA-GRNN model is increased by 4.7%, the recall rate is

increased by 4.7%, the precision rate is increased by 5.2%,

and the F1-score value is increased by 4.9%. From the

confusion matrix of the identification results in Table 3, it can

be seen that in the identification results of the four models,

the number of results misjudging normal driving as fatigue

driving is more than that of fatigue driving being misjudged as

normal driving, which may be related to our assumption. It is

related to the specified fatigue detection threshold. We divided

the experimental data set with the expert scoring method.

When performing manual annotation, the driver’s relatively

awake state is also identified as fatigue driving. Nevertheless,

the driver’s fatigue characteristics are usually not particularly

obvious in this state. A driver with even the slightest sign

or characteristic of fatigue is judged as fatigue driving. In

the identification results of KNN and GRNN models, the

misjudgements of both normal driving and fatigue driving are

more than the RF and GA-GRNN models, and the fatigue

detection performance in this study is poor. Although the

RF model can accurately predict the state of normal driving,

it has certain defects. For example, many fatigue driving are

misjudged as normal driving, and many fatigue driving results

are misjudged by normal driving. The number of correctly

predicted fatigue driving results is less than that of GA-GRNN

model, so the overall performance of RF model is not as good

as GA-GRNN model. The number of fatigue results correctly

identified by GA-GRNN model is the largest, and the number

of identification results of the fatigue driving and the normal

driving also shows the superiority of GA-GRNN model in

fatigue identification.

Conclusions

Fatigue driving poses a serious threat to the safety of

pedestrians and drivers. Fatigue driving identification has

become a key research topic at home and abroad. A fatigue

driving state identification method based on GA-GRNN is

proposed in this paper. Firstly, the trend changes of the traffic

environment and travel safety and the hazards caused by

fatigue driving are expounded, which leads to the urgent need

and importance of developing a real-time monitoring, high

precision, non-invasive fatigue identification model. Secondly,

the definition of fatigue driving and the characterization

phenomenon when fatigue occurs are introduced. Thirdly,

focusing on the construction method of the fatigue driving

state identification model, this paper introduces the research

status and achievements of domestic and foreign scholars in this

field. Through the review of previous studies, the advantages

and disadvantages of different fatigue identification methods

are analyzed. Finally, the research ideas, methods and technical

routes of this system are proposed. The main work of this paper

includes the following aspects:

1) Design and organize simulated driving experiments and

real vehicle driving experiments. 33 participants are

recruited to collect the experimental data of normal

driving and fatigue driving. After the experiment, the

experts determined the driver’s fatigue level according

to the KSS scale and recorded the driver’s label data in

different states. Based on this, a fatigue driving sample

database is established, which is used for the analysis of

fatigue characterization parameters, the construction and

calibration of fatigue identification model.

2) The architecture of the improved MTCNN face detection

model is introduced, and the performance advantages of

the MTCNN model before and after the improvement

are compared. The improved MTCNN network is applied

to face detection and localizes the driver’s face region.

The Dlib library is used to extract the coordinate values
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of 68 key points of the face, which are used to collect

the characteristic parameters of the driver’s eyes and

mouth. These parameters include blink frequency, eye

angle opening and closing, eye vertical and horizontal

amount, eye closed area, yawn frequency, mouth opening

and closing degree, mouth vertical and horizontal amount,

and mouth open area. According to the correspondence

between the coordinates of the 2D facial key points and

the 3D face model coordinate system, the Euler angle

parameters of the head pose are calculated. Abnormal

head postures are divided into nodding and tilting,

which were used as fatigue characterization parameters

in this paper. By converting image information into

data information, the data fluctuation changes of each

characteristic parameter when fatigue driving behavior

occurs are analyzed. The problem of poor stability and

robustness of a single parameter identification model due

to individual differences is compensated by the extraction

of multi-feature parameters.

3) The raw experimental data are pre-processed using

the Fast Fourier algorithm. A factor analysis model is

constructed from the processed data. The main factors

satisfying the conditions are extracted as the main

features when the model is built to reduce the data

dimension. Generalized regression neural network has the

advantages of strong nonlinear mapping and strong fault

tolerance. The genetic optimization algorithm can help

the generalized regression neural network to converge

quickly, improve the learning speed of the model, and

find the optimal smooth factor. A GA-GRNN fatigue

driving identification model is constructed combining the

two algorithms. Compared with KNN, RF, and GRNN

fatigue driving identification models, the performance and

generalization ability of the model are verified in multiple

dimensions on the verification data set. The verification

results show that the GA GRNN identification model

has the best generalization ability and high stability. This

research demonstrates the feasibility of machine vision

technology for fatigue driving detection, and provides new

methods and technical support for real-time and accurate

identification of fatigue driving state.
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