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2Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China,
3Community Health Service Center, Tianjin, China, 4Department of Epidemiology and Health
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Objectives: There is paucity of studies to investigate the association between

combined and long-term exposure to air pollution and the risk of incident

chronic kidney disease (CKD) in older adults.

Methods: A prospective cohort of 90,032 older adults who did not have CKD

at baseline were followed up from January 1, 2017, to December 31, 2019.

Various pollutant data, including particulate matter with diameters ≤ 2.5mm

(PM2.5), ≤ 10mm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), Ozone

(O3), and carbon monoxide (CO), from all monitoring stations in Binhai New

Area, Tianjin were considered in calculating the mean exposure concentration

of each pollutant over 2 years. By summing each pollutant concentration

weighted by the regression coe�cients, we developed an air pollution score

that assesses the combined exposure of these air pollutants. Due to the strong

correlation between air pollutants, Principal Component Analysis (PCA) score

was also developed. The association between air pollutants and incident CKD

in the elderly was analyzed.

Results: A total of 90,032 subjects participated in this study with a

median follow-up of 545 days. Among them, 22,336 (24.8%) developed

CKD. The HR (95% CI) for air pollution score and incidence of CKD was

1.062 (1.060-1.063) and p <0.001 after adjusting for all confounders. The

adjusted HRs for the quartile subgroups of combined air pollution score

were: Q2: 1.064 (1.013–1.117); Q3: 1.141 (1.088–1.198); and Q4: 3.623

(3.482–3.770), respectively (p for trend <0.001). The adjusted HRs for the

quartile subgroups of air quality index (AQI) were: Q2: 1.035 (0.985–1.086);

Q3: 1.145 (1.091–1.201); andQ4: 3.603 (3.463–3.748), respectively (p for trend

<0.001). When the risk score was over 86.9, it significantly rose in a steep curve.

The subgroup analysis showed that male, younger or exercise were more likely

to develop CKD.
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Conclusion: Combined air pollution score, AQI, and PCA score were

associated with an increased risk of CKD in an exposure-response relationship.

Our current results might also provide evidence for developing environmental

protection policies.

KEYWORDS

air pollution, chronic kidney disease, cohort study, risk score, PM2.5

GRAPHICAL ABSTRACT | The combined air pollutants score for incident chronic kidney disease.

Introduction

Air pollution is a serious health problem worldwide and has

become one of the major environmental problems in China (1).

Chronic kidney disease (CKD) is a long-term chronic decline

in kidney function and structural kidney damage, negatively

impacting the quality of life as it progresses (2, 3). The Global

Burden of Disease Study has revealed that CKD was the 16th

leading cause of life expectancy loss in 2017, with a 33.7%

Abbreviations: PM2.5, particulate matter with an aerodynamic diameter

lower than 2.5µm. NO2, nitrogen dioxide. PM10, particulate matter with

an aerodynamic diameter lower than 10µm. AQI, air quality index. NO2,

nitrogen oxide. SO2, sulfur dioxide. O3, Ozone. CO, carbon monoxide.

FBG, Fasting blood glucose. HGB, hemoglobin. PLT, platelet. WBC,

white blood cell. ALT, alanine transaminase. AST, aspartate transaminase.

TC, total cholesterol. TG, triglyceride. BMI, body mass index. WC,

waist circumference. SBP, systolic blood pressure. DBP, diastolic blood

pressure. eGFR, estimated glomerular filtration rate. CKD, chronic kidney

disease.

increase compared to 2007 (4). Furthermore, 17–20% of the

worldwide CKD burden could be attributed to PM2.5 and was

more likely in low- and middle-income countries (5). However,

research on the association between long-term exposure to air

pollution and the risk of incident CKD in developing countries

is still limited. In China, air pollution has become an increasingly

prominent problem that cannot be ignored and needs to be

addressed as soon as possible.

Several studies have shown that air pollution particles such

as particulate matter with diameters ≤ 2.5mm (PM2.5) (6–

17), ≤ 2.5mm (PM10) (11, 12), nitrogen dioxide (NO2) (10–

12, 14, 16), sulfur dioxide (SO2) (11, 12, 16), Ozone (O3) (12),

carbon monoxide (CO) (11, 12), and air quality complex index

(AQCI) (18) are associated with an increased risk of kidney

outcomes. However, these studies have focused on individual

air pollutants. Some studies also lacked variables such as the

Air Quality Index (AQI), O3, and NO2. Therefore, they could

not observe combined health effects (7). As individuals are often

exposed to a mixture of multiple pollutants, although there is a

high correlation between the pollutants, the synergism among
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pollutants are greater than the sum of the effects of individual

pollutants (19). For effective management of multi-pollutant air

quality, epidemiological research will be crucial to evaluating

pollutant synergism. However, cohort studies focusing on the

relationship between combined pollutants and CKD risk are

still limited. Moreover, some studies lacked data on dietary,

smoking, and drinking habits, which also substantially impact

the morbidity of patients (18). Some studies were cross-sectional

and, therefore, presented weak causal associations (13). The

relationship between variables is more easily observed in large

sample cohort studies and less convincing in studies conducted

with small samples (12). Additionally, the elderly are more

susceptible to decreased kidney function due to air pollutants.

However, some studies have not included the elderly (18).

Herein, we used a large cohort population of older people

from Tianjin and combined data from air pollutant monitoring

sites. Then, we evaluated the association between pollutants

and incident CKD, as well as the association between PCA

score and air pollution score and CKD. Our current results

provided evidence for the environmental risk factors for CKD

in older adults based on a large samples and might facilitate the

generation of public health policies.

Methods

Study design and participants

The Binhai New Area is located in the eastern coastal

region of Tianjin. Data for this study were obtained from the

Tianjin Chronic Kidney Disease Cohort, including follow-up

information from different primary communities in the Binhai

New Area, Tianjin, China. About 300,000 people undergo

physical examinations each year in this area. Data were recorded

in the Tianjin Community Health Service Information System

from 2013 to 2019 and were available to downloaded.

Inclusion criteria: 1. Permanent residents living in the Binhai

New Area, Tianjin, for at least 6 months. 2. Able to received

regular follow-up visits. Exclusion criteria: 1. Age < 60 years.

2. Missing sociodemographic and clinical data. 3. History of

cancer. 4. Combined hematuria or urinary tract infection. 5.

Positive urine protein and estimated glomerular filtration rate

(eGFR) < 60 mL/min/1.73 m2 before January 1, 2017. 6. Self-

reported CKD or other kidney diseases before the study. 7. Did

not undergo annual physical examinations from January 1, 2017,

to December 31, 2019. A total of 89,503 subjects were excluded.

The details of the study process are presented in Figure 1.

A total of 90,032 participants were finally included in

the analysis. The study protocol was approved by the Ethics

Committee of the Chu Hsien-I Memorial Hospital of Tianjin

Medical University and was registered in the Chinese Clinical

Trial Registry (ChiCTR1900023701).

Definition of outcome and stages of
chronic kidney disease

Due to the lack of direct diagnostic data for CKD,

we evaluated the eGFR using Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPI) equation. We used the

eGFR as a direct indicator of renal function and proteinuria

as a sensitive indicator of renal function, according to the

Kidney Disease: Improving Global Outcomes (KDIGO) 2020

Guidelines (20). The outcomes were defined as follows: 1.

positive urine protein: daily excretion rate of ≥ 150 mg/24 h,

and other confounding factors, such as infection were excluded;

2. eGFR < 60 mL/min/1.73 m2. The survival time was defined

from baseline to the event occurrence or the end of the

investigation. According to international guidelines (20), stage

G1: eGFR ≥ 90 mL/min/1.73 m2. Stage G2: 60–89 mL/min/1.73

m2. Stage G3a: 45–59 mL/min/1.73 m2. Stage G3b: 30–44

mL/min/1.73 m2. Stage G4: 15–29 mL/min/1.73 m2. Stage

G5: < 15 mL/min/1.73 m2.

Measurement of air pollution variables

We used data from three ground-based environmental

testing sites located in the Binhai New Area, Tianjin between

2014 and 2019, where the surveyed participants had lived for

at least 1 year. Seven major air quality indicators, including

the AQI, PM2.5, PM10, NO2, SO2, O3, and CO, were obtained

from the national city air quality real-time release platform

(http://113.108.142.147:20035/emcpublish/) and the homepage

of Wang Xiaolei (https://quotsoft.net/air/). Urban air quality

monitoring stations obtain data on the pollutants present in the

air through fixed and continuous sampling. Furthermore, the

AQIwas used to quantitatively describe the air quality condition.

The pollutants included in the AQI are SO2, NO2, PM10, PM2.5,

O3, CO. According to the survey design, we calculated the

average daily exposure of patient for 2 years before the onset of

CKD or cessation of follow-up.

Definition of joint air pollution score and
PCA score

The coefficients for each pollutant were calculated using

a multivariable Cox proportional risk regression model.

Confounders were adjusted in the composite pollutant model,

and joint pollutant scores were calculated to analyze the

relationship between joint air pollution exposure and the risk

of incident CKD in the elderly. Similar to previous studies (21–

24), we used the β coefficients from the final COX model to

create the following formula: Air pollution score = 0.44 (β1) ∗

PM2.5 + 0.281 (β2) ∗ PM10 + 0.865 (β3) ∗ NO2 + 1.095 (β4) ∗
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FIGURE 1

Flow chart of the study.

SO2 + 17.33 (β5) ∗ CO + (-0.521) (β6) ∗ O3. The air pollution

score ranged between 80.85 and 110.77. Then, we distributed the

patients into four groups based on the quartiles of the scores.

In order to address the problem of high covariance

between air pollutants and their potential interaction,

Principal Component Analysis (PCA) was used to analyze

these pollutants. The formula of the PCA socre is: PCA

score= (0.9603 ∗ f1+ 0.0227 ∗ f2+ 0.0099 ∗ f3)/0.9929. The

details are shown in Supplementary Tables 1, 2.

Measurements of covariates

Baseline data included demographic characteristics

(age, gender), behavioral health habits (smoking, alcohol,

exercise frequency, diet), history of diseases (diabetes,

hypertension), physical examination [body mass index (BMI),

waist circumference (WC), systolic and diastolic blood pressure

(SBP and DBP)], and laboratory tests [white blood cell (WBC),

platelet (PLT), fasting blood glucose (FBG), serum creatinine,

eGFR, aspartate transaminase (AST), alanine transaminase

(ALT), total cholesterol (TC), and triglyceride (TG)]. The eGFR

was calculated using serum creatinine according to the modified

MDRD formula. Urine protein was determined using the

immunoturbidimetric method. Briefly, urine was collected after

cleaning the urethral orifice and vulva before urine retention

while avoiding contamination by mixing menstrual blood,

leukorrhea, semen, or feces. The first 200mL of urine was

collected early in the morning, and the specimen was delivered

within half an hour, with the maximum time not exceeding

2 h. All study personnel were highly trained, and strict quality

control procedures were carried out.

Statistical methods

Indicators with continuous normal distribution are

expressed as means (standard deviations - SDs), and a t-test was

used to compare their differences. Indicators with continuous

non-normal distribution are expressed as medians (25th−75th),

and the Mann-Whitney U-test was used to assess their

differences. Categorical indicators were expressed as counts
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(%), and the χ2 test was used to compare them. The HR and

95% confidence intervals (CIs) were estimated using the Cox

proportional risk regression model in which several potential

confounders were adjusted. Potential confounders were

screened by univariate COX analysis. For sensitivity analysis,

the HRs (95% CI) was calculated when CKD stages 3–5 were

considered as outcome, which indicates a significant decrease

in eGFR and <60 mL/min/1.73 m2. Restricted cubic splines

provide a powerful way to represent non-linear relationships for

continuous independent variables by dividing the observation

range of X variables by 3–5 knot points. Thus, we used restricted

spline regression to estimate the dose-response relationships

between individual pollutants and these scores (AQI, PCA score

and the air pollution score) and CKD, which has the flexibility

to display non-linear relationships (25). We calculated the

inflection point of the cubic splines. Additionally, we conducted

a stratified analysis according to gender (male, female), age

(60–64, 65–69, 70–74, 75–79, ≥80 years), CKD stages (G1–G5),

BMI (<25, ≥25 kg/m2), smoking (yes or no), drinking (yes or

no), exercise (yes or no), diabetes (yes or no) and hypertension

(yes or no) at baseline, and their effect relationships were

examined based on interactions effect. The discrimination of

these scores was assessed using receiver operating characteristic

curve (ROC) and area under the curve (AUC). Calibration was

assessed with calibration curves. All analyses were performed

using R software (v 4.1.0) and results are expressed by HR and

95% CI. The p-values for all tests were two-sided, and a p <0.05

was considered statistically significant.

Results

Baseline characteristics of the study
population

During a median follow-up of 558 d, a total of 22,336

patients developed CKD among the 90,032 elderly without CKD

at baseline. Of these, 4,530 patients had CKD at or above stage

3. The baseline characteristics of the participants according to

incident CKD are shown in Table 1. The patients who developed

CKD were older (69.07 vs. 68.23 years), females (64.4 vs. 47.3%),

and had a higher BMI (25.49 vs. 25.03 kg/m2) compared to

patients that did not developed CKD. Patients with diabetes

and hypertension at baseline were more likely to develop CKD.

In the CKD group, the means (SDs) of PM2.5, PM10, AQI,

NO2, SO2, O3, and CO were 58.2 (4.20), 95.0 (6.29), 89.3

(3.95), 47.9 (1.95), 13.8 (1.68), 63.8 (3.25) µg/m3, and 1.20

(0.10) mg/m3, respectively. In the control group, the means

(SDs) were 54.8 (3.12), 90.0 (5.15), 86.1 (3.02), 46.4 (1.50), 12.5

(1.19), 66.1 (2.09) µg/m3, and 1.12 (0.07) mg/m3, respectively.

Moreover, the proportion of CKD increased with aging, and

the percentage of people with stage G2 was the highest (48,836,

54.24%) (Figure 2). Additionally, most patients had only a mild

decrease in kidney function.

The relationship between air pollutants
and risk of incident CKD

The Spearman correlation analysis suggested a strong

relationship between these pollutants (Figure 3). The HR and

95% CI were calculated separately for each pollutant quartile

group and are presented in Table 2. As the quartiles increased,

the risk of developing CKD significantly increased with the Q1

group as the control. The univariable Cox regression results

showed that PM2.5, PM10, SO2, and CO were associated with

an increased risk of incident CKD. Additionally, the correlation

between each pollutant and the risk of incident CKD remained

significant in model 2 and 3 after adjusting for confounding

factors (Table 2).

Association between the AQI, PCA score
and combined score and risk of incident
CKD

Based on the results of the multivariable analysis and PCA

analysis, we developed air pollution score and PCA score. Then,

we evaluated the relationship between the scores and CKD

risk. For each one-point increase in the air pollution score,

the adjusted HR corresponding to CKD risk was 1.062 (1.060–

1.063) (Table 3). The quartile grouping of air pollution scores

revealed that the HRs (95% CI) for the Q2, Q3, and Q4 groups

were 1.064 (1.013–1.117), 1.141 (1.088–1.198), and 3.623 (3.482–

3.770), respectively (p for trend <0.001). In addition, when the

outcome was CKD stage 3–5, the HRs (95% CI) for the Q2, Q3,

and Q4 groups of were 1.035 (0.932–1.149), 1.117 (1.010–1.236),

3.464 (3.191–3.760), respectively (p for trend <0.001) (Table 3).

Next, we investigated the relationship between the AQI and

CKD (Table 3). For every one increase in the AQI, the HR (95%

CI) was 1.170 (1.166–1.174) (p <0.001). The quartile grouping

of AQI revealed that the HRs (95% CI) for the Q2, Q3, and

Q4 groups were 1.035 (0.985–1.086), 1.145 (1.091–1.201), and

3.603 (3.463–3.748), respectively (p for trend <0.001). Then we

investigated the relationship between the PCA score and CKD

(Table 3). For every one increase, the HR (95% CI) was 1.264

(1.258–1.270) (p <0.001). The quartile grouping of PCA score

showed that the adjusted HRs (95% CI) for the Q2, Q3, and Q4

groups were 1.064 (1.013–1.117), 1.141 (1.088–1.198), and 3.623

(3.482–3.770), respectively (p for trend <0.001). Furthermore,

both the PCA score and AQI showed significant trends of HR

when using CKD stage 3–5 as outcomes (Table 3).

After adjusting for potential confounders, we calculated the

non-linear relationship between these scores and CKD risk using
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TABLE 1 Baseline characteristics of participants in this study.

Characteristics Incident chronic kidney disease p value

No (N = 67,696) Yes (N = 22,336)

Age, years 68.23 (6.22) 69.07 (6.42) <0.001a

60–65 28,151 (77.86%) 8,003 (22.14%) <0.001a

66–70 19,320 (74.92%) 6,468 (25.08%)

71–75 10,785 (72.89%) 4,011 (27.11%)

76–80 5,817 (71.35%) 2,336 (28.65%)

≥81 3,623 (70.47%) 1,518 (29.53%)

Gender

Female 32,042 (47.3%) 14,376 (64.4%) <0.001b

Male 35,654 (52.7%) 7,960 (35.6%)

BMI, kg/m2 25.03 (3.35) 25.49 (4.21) <0.001a

WC, cm 86.00 (8.28) 86.70 (8.77) <0.001a

SBP, mmHg 126.95 (12.3) 128.82 (13.4) <0.001a

DBP, mmHg 77.99 (6.96) 78.12 (7.44) 0.017a

Smoking (Yes) 13,773 (20.3%) 3,910 (17.5%) <0.001b

Alcohol (Yes) 12,825 (18.9%) 3,256 (14.6%) <0.001b

Exercise (Yes) 52,209 (77.1%) 17,363 (77.7%) 0.059b

Laboratory tests

WBC, 109/L 6.03 (1.50) 6.09 (1.57) <0.001a

FBG, mmol/L 5.68 (1.21) 5.94 (1.47) <0.001a

HGB, g/L 140.32 (14.83) 139.06 (14.68) <0.001a

PLT, 109/L 219.53 (54.43) 221.81 (55.45) <0.001a

TC, mmol/L 5.23 (1.20) 5.38 (1.29) <0.001a

TG, mmol/L 1.82 (1.07) 1.91 (1.19) <0.001a

AST, U/L 20.70 (17.00, 25.60) 20.60 (17.00, 25.10) 0.574c

ALT, U/L 20.00 (15.00, 26.00) 19.90 (15.00, 26.00) <0.001c

Comorbidities

Diabetes (Yes) 9,146 (13.5%) 4,346 (19.5%) <0.001b

Hypertension (Yes) 25,952 (38.3%) 10,462 (46.8%) <0.001b

Air Pollutants

PM2.5 (µg/m
3) 54.82 (3.12) 58.20 (4.20) <0.001a

PM10 (µg/m
3) 90.05 (5.15) 95.03 (6.29) <0.001a

NO2 (µg/m
3) 46.38 (1.50) 47.92 (1.95) <0.001a

SO2 (µg/m
3) 12.48 (1.19) 13.81 (1.68) <0.001a

O3 (µg/m
3) 66.10 (2.09) 63.75 (3.25) <0.001a

CO (mg/m3) 1.12 (0.07) 1.20 (0.10) <0.001a

AQI 86.12 (3.02) 89.30 (3.95) <0.001a

aIndependent-samples T-test.
bChi-square test.
cMann-Whitney U-test.

Normally distributed data are expressed as mean and SD, non-normally distributed data are expressed as median and quartiles, the rest are expressed as counts and percentages. WC, waist

circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; PM2.5 , particular matter with aerodynamic diameter ≤2.5mm; PM10 , particular matter with an aerodynamic

diameter ≤10mm; NO2 , nitrogen dioxide; SO2 , sulfur dioxide; O3 , Ozone; CO, carbon monoxide; FBG, Fasting blood glucose; HGB, Hemoglobin; PLT, Platelet; WBC, White blood cell;

AST, Aspartate transaminase; ALT, Alanine transaminase; TC, Total cholesterol; TG, Triglyceride.

restricted spline regression. No significant change in the HR

was detected when the score was ≤ 86.9 (Figure 4). Thus, the

inflection point for the restricted spline regression was 86.9.

The risk of CKD would rapidly increase when the score was

over 86.9. Similarly, the inflection point for the PCA score

and AQI were 1.5 and 85.9, respectively. Altogether, these

results indicated an exposure-response relationship between

these scores and the risk of incident CKD. The AUC of
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FIGURE 2

Subgroups of patients based on age and CKD stages. (A)

Incidence and proportion of CKD patients in di�erent age

groups. (B) The number and proportion of patients in di�erent

CKD stages. Stage G1: eGFR ≥90 ml/min/1.73 m2. Stage G2:

60–89 ml/min/1.73 m2. Stage G3a: 45–59 ml/min/1.73 m2.

Stage G3b: 30–44 ml/min/1.73 m2.

FIGURE 3

Spearman correlation between air pollutants.

AQI, PCA score and combined score were 0.713, 0.715, and

0.715, respectively. Their calibration curves are also similar

(Supplementary Figure 1).

Stratified analyses

Furthermore, we conducted stratified analyses for age,

gender, BMI, hypertension, diabetes, behavioral habits

(smoking, drinking, exercise). For air pollution score and PCA

score, The subgroup analysis and interaction effect analyses

revealed that male, exercise or younger had a higher risk of

incident CKD at the same exposure levels (p <0.05). For AQI,

The subgroup analysis indicated that male and younger had a

higher risk of incident CKD (p <0.05) (Figure 5).

Discussion

Herein, we conducted a large cohort study in northern

China and found that long-term exposure to PM2.5, PM10, SO2,

and CO were associated with an increased risk of CKD after

adjusting for all potential confounding factors. We developed

an air pollution score for assessing CKD risk by calculating

Cox regression coefficients after adjusting for all potential

confounding factors. In addition, due to the strong correlation

between air pollutants, PCA score was used to analyze these

pollutants. The results revealed no significant change in CKD

risk when these scores was below the inflection point. On the

other hand, when the risk score was higher, the CKD risk

would significantly rise in a steep curve. These results indicated

a dose-response relationship between AQI, PCA score and

air pollution score and CKD risk, independent of traditional

risk factors. Altogether, these results suggested that the

prevalence of environmental pollution can significantly effect

the kidney health of the elderly population. Our current results

provided evidence for further developing public environmental

protection policies and encouraging people to make efforts to

protect the environment.

Several previous cohort studies have shown that PM2.5 (6–

10, 13, 15–17, 26), PM10 (10, 26–28), SO2 (15, 26, 27), NO2(14,

26, 27), AQI (18), CO (26, 27) are associated with an increased

risk of CKD, consistent with our current findings. Besides, a

meta-analysis showed that PM2.5, PM10, NO2, SO2 and CO are

associated with CKD (28). Some studies have shown that PM2.5

and CO are associated with death in CKD patients (11, 17). Li

et al. have shown that short- or medium-term NO2 exposure are

associated with kidney damage (12).

According to the subgroup analyses, we showed that

the incidence is higher in women, however, male were

more vulnerable to combined air pollution exposure than

female. A meta-analysis shows increased risk of progression

in men compared with women (29). The EQUAL study

also demonstrate faster declines in renal function in men

compared with women, even after adjustment for multiple

groups ofmediators, whichmay explain whymale receivedmore

effects (30). Further researches may be needed to explain this

pathogenesis. In the current study, patient who are obesity (BMI
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TABLE 2 HR and 95% CI for air pollution concentrations with the risk of incident CKD in the study.

Air pollution concentrations (quartiles) p for trend

Q1 Q2 Q3 Q4

PM2.5 Model 1 1 1.056 (1.005–1.109) 1.192 (1.137–1.250) 3.870 (3.721–4.026) <0.001

Model 2 1.037 (0.987–1.089) 1.176 (1.121–1.233) 3.713 (3.569–3.863) <0.001

Model 3 1.027 (0.978–1.079) 1.143 (1.090–1.200) 3.601 (3.461–3.746) <0.001

PM10 Model 1 1 1.089 (1.038–1.144) 1.193 (1.137–1.251) 3.901 (3.750–4.058) <0.001

Model 2 1.070 (1.019–1.123) 1.177 (1.121–1.235) 3.744 (3.599–3.895) <0.001

Model 3 1.054 (1.004–1.106) 1.140 (3.477–3.764) 3.618 (3.477–3.764) <0.001

NO2 Model 1 1 0.984 (0.938–1.033) 1.125 (1.073–1.179) 3.697 (3.558–3.841) <0.001

Model 2 0.979 (0.933–1.028) 1.117 (1.066–1.171) 3.572 (3.438–3.712) <0.001

Model 3 0.975 (0.929–1.024) 1.089 (1.039–1.141) 3.472 (3.341–3.608) <0.001

SO2 Model 1 1 1.019 (0.970–1.070) 1.160 (1.107–1.216) 3.772 (3.627–3.922) <0.001

Model 2 1.015 (0.966–1.066) 1.152 (1.099–1.208) 3.645 (3.505–3.790) <0.001

Model 3 1.009 (0.960–1.059) 1.124 (1.072–1.178) 3.539 (3.403–3.680) <0.001

O3 Model 1 1 0.305 (0.294–0.316) 0.282 (0.271–0.293) 0.255 (0.245–0.265) <0.001

Model 2 0.314 (0.302–0.325) 0.288 (0.278–0.300) 0.266 (0.256–0.277) <0.001

Model 3 0.315 (0.303–0.326) 0.295 (0.284–0.307) 0.275 (0.264–0.286) <0.001

CO Model 1 1 1.089 (1.036–1.143) 1.200 (1.144–1.259) 3.900 (3.748–4.058) <0.001

Model 2 1.069 (1.017–1.123) 1.184 (1.128–1.242) 3.742 (3.596–3.894) <0.001

Model 3 1.052 (1.002–1.105) 1.148 (1.095–1.205) 3.615 (3.474–3.762) <0.001

CI, confidence interval; HR, hazard ratio; PM2.5 , particular matter with aerodynamic diameter ≤2.5mm; PM10 , particular matter with an aerodynamic diameter ≤10mm; NO2 , nitrogen

dioxide; SO2 , sulfur dioxide; O3 , Ozone; CO, carbon monoxide.

Model 1: Univariable Cox regression for air pollutants. Model 2: Adjusted for age and gender. Model 3: Adjusted for age, gender, BMI, smoking, drinking, exercise, history of diabetes,

history of hypertension, WC, FBG, SBP, DBP, WBC, HGB, PLT, TC, TG, ALT, eGFR at baseline.

≥ 25 kg/m2) are more susceptible to the effects of air pollution.

The association between increased air pollutant concentrations

and CKD prevalence is stronger in the visceral obesity group

than normal group (27). According to our findings, people

who do not drink alcohol or exercise are more susceptible to

the effects of air pollution. As reported by Cui Guo et al., in

comparison to no exercise, exposure to equivalent PM2.5 levels

is associated with a greater risk of death (31), which means that

people who exercise are more susceptible than those who do

not exercise. Additionally, younger patients had a higher risk of

developing CKD due to air pollution (p < 0.001), a potential

explanation for this is an imbalance in the aging population,

with people of higher ages dying from other events. There are

no reports onwhether alcohol consumption or aging impacts the

relationship between air pollution andCKD. It is only reasonable

to conclude that non-drinkers and younger are more likely to be

affected by air pollution than drinkers.

Although some studies based on satellite spatio-temporal

models can accurately predict ground-level PM2.5, the

measurements of other pollutants, such as SO2, NO2, PM10,

AQI, and CO, are missing and cannot be directly determined

(8, 9, 14, 27). In this present study, we used measurement

data from surface monitoring sites, which comprehends more

reliable data than satellite-based assessment. The current

literature on SO2, NO2, PM10, AQI, and CO exposure in

CKD studies remains limited. Thus, we explored all variables

described above. Based on these significant indicators, we

established a joint risk score and PCA score, which was more

reliable than a single indicator. Besides, this was a longitudinal

cohort study, starting with non-CKD patients who were

observed for nearly 2 years. In this period, some patients

developed CKD, with stronger causal associations compared to

those cross-sectional studies (13, 14).

The findings on the relationship between PM2.5 exposure

and CKD have been inconsistent, with a small number of studies

not supporting the conclusion that the exposure increases

CKD risk. In a retrospective cohort study (32), the results

showed that long-term exposure to air pollution was unlikely

to increase CKD risk. Moreover, after unit conversion, the

average concentrations of PM10 and CO were 61.7 and 775

µg/m3, respectively. However, in our current study, the mean

concentrations of PM10 and CO was 95.03 and 1,200 µg/m3,

respectively. Thus, the concentration of PM10 was 1.54 times,

and CO was 1.55 times higher than in the study of Hwang

et al. Additionally, in the study by Hwang et al., 71.9% of the

population was under 60 years old, while all patients were over
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TABLE 3 Hazard ratios and 95% confidence interval for the risk of incident CKD in the study.

HR (95% CI) p-value Q1 Q2 Q3 Q4 p for trend

HRONIC IDNEY ISEASE

Air pollution score

Model 1 1.065 (1.063–1.065) <0.001 1 1.099 (1.047–1.154) 1.193 (1.137–1.252) 3.906 (3.755–4.064) <0.001

Model 2 1.063 (1.061–1.064) <0.001 1 1.080 (1.028–1.134) 1.178 (1.123–1.235) 3.749 (3.604–3.901) <0.001

Model 3 1.062 (1.060–1.063) <0.001 1 1.064 (1.013–1.117) 1.141 (1.088–1.198) 3.623 (3.482–3.770) <0.001

Air quality index

Model 1 1.178 (1.174–1.182) <0.001 1 1.072 (1.021–1.125) 1.196 (1.140–1.254) 3.885 (3.735–4.041) <0.001

Model 2 1.173 (1.169–1.177) <0.001 1 1.049 (0.999–1.101) 1.179 (1.124–1.237) 3.722 (3.578–3.872) <0.001

Model 3 1.170 (1.166–1.174) <0.001 1 1.035 (0.985–1.086) 1.145 (1.091–1.201) 3.603 (3.463–3.748) <0.001

PCA score

Model 1 1.277 (1.271–1.284) <0.001 1 1.099 (1.047–1.154) 1.193 (1.137–1.252) 3.906 (3.755–4.064) <0.001

Model 2 1.269 (1.263–1.276) <0.001 1 1.080 (1.028–1.134) 1.178 (1.123–1.236) 3.749 (3.604–3.901) <0.001

Model 3 1.264 (1.258–1.270) <0.001 1 1.064 (1.013–1.117) 1.141 (1.088–1.198) 3.623 (3.482–3.770) <0.001

CKD TAGE 3–5

Air pollution score

Model 1 1.114 (1.110–1.118) <0.001 1 0.999 (0.900–1.109) 1.190 (1.176–1.316) 4.502 (4.149–4.885) <0.001

Model 2 1.095 (1.091–1.098) <0.001 1 1.085 (0.978–1.205) 1.384 (1.251–1.531) 4.508 (4.154–4.892) <0.001

Model 3 1.100 (1.096–1.104) <0.001 1 1.035 (0.932–1.149) 1.117 (1.010–1.236) 3.464 (3.191–3.760) <0.001

Air quality index

Model 1 1.202 (1.194–1.211) <0.001 1 0.964 (0.869–1.070) 1.185 (1.072–1.310) 4.450 (4.103–4.827) <0.001

Model 2 1.191 (1.183–1.199) <0.001 1 1.050 (0.946–1.165) 1.374 (1.243–1.520) 4.452 (4.104–4.829) <0.001

Model 3 1.165 (1.157–1.174) <0.001 1 1.019 (0.918–1.132) 1.125 (1.017–1.244) 3.461 (3.190–3.756) <0.001

PCA score

Model 1 1.313 (1.299–1.326) <0.001 1 0.999 (0.900–1.109) 1.190 (1.076–1.316) 4.502 (4.149–4.885) <0.001

Model 2 1.297 (1.284–1.311) <0.001 1 1.085 (0.978–1.205) 1.384 (1.251–1.531) 4.508 (4.154–4.892) <0.001

Model 3 1.247 (1.234–1.260) <0.001 1 1.035 (0.932–1.149) 1.117 (1.010–1.236) 3.464 (3.191–3.760) <0.001

CI, confidence interval; HR, hazard ratio. Model 1: Unadjusted. Model 2: Adjusted for age and gender. Model 3: Adjusted for age, gender, BMI, smoking, drinking, exercise, history of

diabetes, history of hypertension, WC, FBG, SBP, DBP, WBC, HGB, PLT, TC, TG, ALT, eGFR at baseline.

60 years old in our current research. Hence, we considered that

these different results were derived from the different average age

of the surveyed population and the concentrations of pollutants.

Accordingly, people over 60 years old can have CKD due to

greater sensitivity to air pollution. These contradictory results

emphasized the necessity to increase the studies in areas with

high air pollution.

To the best of our knowledge, this was the first study to

assess the risk of CKD in older adults from air pollution exposure

using score models based on a large cohort. Additionally,

the results were still robust after adjusting for confounders.

Moreover, it is possible that certain components play a major

role, we are exposed to the air as a whole and cannot be

exposed to one specific component alone, while our calculations

showed that most component was significant, so it makes

sense to assess the overall pollution score. Moreover, this

study suggested an inflection score of 86.9 that can be

used as a control target. Nevertheless, we believe that this

inflection point only applies to Han-Chinese people over

60 years.

Our current study also has some limitations. First, it

lacked measurement data for assessing indoor air pollution,

older adults are exposed to indoor air for more extended

period. There is a significant difference in the concentration of

pollutants between indoor and outdoor air, indoor air quality

is influenced by the use of air purifiers, hoods, home structure,

fuel, ventilation (33). Thus, the effects of these critical factors

might be overlooked, next researches should investigate the

relationship between indoor air and older adults’ health. Second,

due to the extensive range of individual activities, we did

not precisely estimate the exposure level of each individual

but only averaged the pollution values of the Binhai New

Area to roughly estimate the exposure level of each patient.

Additionally, the follow-up period of this study was short

(2 years), and the lifetime-risk still needs to be studied. In

the elderly cohort, bias may exist due to unequal numbers
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FIGURE 4

The relationships between air pollution indicators and incident CKD by restriction spline regression. (A) PM2.5. (B) PM10. (C) SO2. (D) O3. (E) NO2.

(F) CO. (G) Air Quality Index (AQI). (H) combined score of all pollutants. (I). PCA score.

of age groups, with the older groups have risk of death. In

our study, participants were required to participate at two

follow-up visits. Essentially, this means that the dead individual

has been removed. Next, we will consider the effects of

death and use a competitive risk model to assess potential

risk factors for CKD. Moreover, More confounding factors

might need to be adjusted, such as consumption of alcohol,

amount and duration of smoking, and type and duration

of exercise. Finally, our current study showed the incidence

rate was 24.8%, which maybe overestimated. However, when

we use the CKD stage 3–5 as the outcome, a similar trend

has been observed. CKD is common in older people and its

prevalence increases in parallel with age (34). The prevalence

of CKD in China and the United States were 34.6% and

31.5–32.9% (60–89 years) (35, 36). The population in the

current study was based on adults over 60 years in China,

they might be more susceptible to air pollution exposure.

Hence, our results do not suitable for people under 60 years

and non-Chinese.

Conclusion

In summary, we demonstrated that both single and

combined exposure to air pollutants was associated

with an increased risk of CKD in the elderly. The air

pollution score, PCA score and AQI were associated

with risk of incident CKD in a dose-response
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FIGURE 5

Subgroup analysis and HR (95% CI) for air pollution score, air quality score and PCA score and CKD. All subgroup analyses adjusted for age,

gender, BMI, smoking, drinking, exercise, history of diabetes, history of hypertension,WC, FBG, SBP, DBP, WBC, HGB, PLT, TC, TG, ALT, eGFR at

baseline.

relationship. This study would provide evidence for the

development of environmental protection policies and

emphasis the importance of persistent efforts to control

air pollution.
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