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Objective: Independent and interactive e�ects of multiple metals levels in urine on

the risk of hyperuricemia (HUA) in the elderly were investigated.

Methods: A total of 6,508 individuals from the baseline population of the Shenzhen

aging-related disorder cohort were included in this study. We detected urinary

concentrations of 24 metals using inductively coupled plasma mass spectrometry,

fitted unconditional logistic regression models, and the least absolute shrinkage

and selection operator regression models for the selection of metals as well as

unconditional stepwise logistic regression models and restricted cubic spline logistic

regression models for assessing the associations of urinary metals and HUA risk, and

finally applied generalized linear models to determine the interaction with urinary

metals on the risk of HUA.

Results: Unconditional stepwise logistic regression models showed the association

between urinary vanadium, iron, nickel, zinc, or arsenic and HUA risk (all P < 0.05).

We revealed a negative linear dose–response relationship between urinary iron levels

and HUA risk (Poverall < 0.001, Pnonliner = 0.682), a positive linear dose–response

relationship between urinary zinc levels and HUA risk (Poverall < 0.001, Pnonliner =

0.513), and an additive interaction relationship between urinary low-iron and high-

zinc levels and HUA risk (RERI= 0.31, 95% CI: 0.03–0.59; AP= 0.18, 95%CI: 0.02–0.34;

S = 1.76, 95%CI: 1.69–3.49).

Conclusion: Urinary vanadium, iron, nickel, zinc, or arsenic levels were associated

with HUA risk, and the additive interaction of low-iron (<78.56 µg/L) and high-zinc

(≥385.39 µg/L) levels may lead to a higher risk of HUA.

KEYWORDS

urinary metal exposure, hyperuricemia, serum uric acid, interactions, dose-response

relationship

Introduction

Hyperuricemia (HUA) is the second most common metabolic disease in China; it has been

a concern because of its association with cardiovascular diseases and chronic kidney diseases

(1–3). HUA is defined as a serum uric acid (SUA) level of ≥ 7.0 mg/dl for men and ≥ 6.0 mg/dl

for women. A meta-analysis of 59 studies on HUA in China during 1995–2010 suggested that

the crude prevalence of HUA in the Chinese population was 13.3, 19.4% for men and 7.9% for
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women (3), and the age-standardized prevalence of HUA in the

Chinese population increased with age from 9.5% in individuals

aged 60–64 years to 21.9% in those aged 80+ years (4). Individuals

with higher SUA were at high risk for hypertension, metabolic

syndrome, acute myocardial infarction, and Alzheimer’s disease (5–

8). Moreover, a relationship between SUA levels and traditional

risk factors including gender, age, dietary habit, and body mass

index (BMI) was found (9); however, limited evidence of non-

traditional risk factors for elevated serum SUA levels is available in

the literature.

Multiple metals can enter the body through the inhalation of

air, tobacco smoking, ingestion of drinking water and food, and

skin contact, which may induce pathological responses as well as

many diseases, such as cardiovascular disease, cancer, and kidney

disease (10–13). Evidence indicated that environmental exposure to

metals is related to HUA in American and Chinese adults (14–17)

and multiple metals exposure can cause metabolic disorders and

cognitive impairment in elderly Chinese persons (18, 19). Based

on the data from the National Health and Nutrition Examination

Survey (NHANES) during the period from 2003 to 2010, Kuo

et al. found that HUA risk was 1.84 times higher in men with

total urinary arsenic (As) of ≤ 4.2 µg/L than those with total

urinary As of >17.3 µg/L (14). A recent cross-sectional study in

Shenzhen, China regarding routine physical examination data (n

= 1,406, ranging in age from 31 to 91 years) suggested a positive

dose–response relationship between plasma levels of zinc (Zn) or

As and HUA risk (15). Several studies in Changsha, China showed

that among 6,212 adults aged above 40 years, serum copper (Cu)

levels showed a positive relationship with HUA risk after adjusting

for potential confounders (age, gender, BMI, smoking, drinking,

education, occupation, hypertension, and diabetes) (16), and among

2,120 adults aged 20–75 years, only women with total blood lead (Pb,

>126 µg/L) had a 2.19-fold higher risk of HUA (17). Nevertheless,

literature regarding the adverse effects of multiple metals co-exposure

on HUA is limited.

Certain metals could show synergistic and antagonistic

interactions with other metals on human health by promoting

or inhibiting the absorption of other metals (20). The NHANES

(2011–2016) study revealed that whole-blood Pb showed a

synergistic interaction with blood manganese on the reduced bone

mineral density (21). A recent study (n = 2,882 individuals with

a mean age of 65.58 years) from the Dongfeng-Tongji cohort

indicated that higher plasma concentrations of selenium (Se)

with Zn decreased the positive association between plasma Cu

and C-reactive protein (22). However, many studies on plasma

or serum levels of metals indicated the differences in metal

concentrations in various biological samples and their biological

significance. For example, urinary cadmium (Cd) concentrations

reflect a long-term accumulation of Cd in the kidneys (23), while

blood Cd concentrations mainly reflect recent exposure to Cd

(24). Therefore, the relationship between metal concentrations in

humans and HUA risk cannot be fully explained by blood metal

concentrations. We measured urinary metal concentrations (25)

and SUA levels to explore the association between urinary levels

of multiple metals with hyperuricemia risk in elderly residents

in Shenzhen.

Materials and methods

Subjects

This cross-sectional study is based on the baseline data from the

Shenzhen aging-related disorder cohort (26). The baseline population

consisted of 9,411 elderly residents (≥ 60 years) with a Shenzhen

household registration from the 51 community rehabilitation centers

in a district of Shenzhen by random cluster samplingmethods, during

the period from July 2017 to November 2018. They participated in

a health questionnaire and physical examination. To investigate the

association between urinary metals levels and HUA risk, we first

excluded 36 individuals with self-reported kidney diseases and 1,022

individuals with an estimated glomerular filtration rate (eGFR) of

<60 ml/min per 1.73 m2 from the baseline population. Thereafter,

we excluded 1,845 individuals who missed data on educational

information (n = 75), marital status (n = 123), passive smoking

status (n = 71), drinking status (n = 16), hypertension (n = 14),

hyperlipidemia (n = 14), diabetes (n = 23), kidney diseases (n =

10), BMI (n = 88), and serum creatinine (n = 21), as well as 1,390

individuals without urinary metal values. Finally, 6,508 individuals

were included in this study. The research protocol was approved

by the Medical Ethics Research Committee of Shenzhen Center for

Disease Control and Prevention (approval numbers: R2017001 and

R2018020). Each participant signed an informed consent form before

engaging in the study.

Data collection

We collected data on the health questionnaire from the

participants through the trained investigators in face-to-face

interviews. The health questionnaire contained the following items:

general demographics, personal and family health histories, tobacco

smoking, and alcohol drinking. In this study, HUA was defined

as SUA of >420 µmol/L in male participants and >360 µmol/L

in female participants (27). Current smoking was defined as those

who smoked at least one cigarette per day for more than 6 months;

quit smoking was defined as those who had quit smoking at the

time of the survey; the rest were considered as never smoking.

Current drinking was defined as those who drank at least once

a week for over 6 months; quit drinking was defined as those

who had quit drinking at the time of the survey; the rest were

considered never drinking. Hypertension was defined as systolic

blood pressure (SBP) of≥140 mmHg, diastolic blood pressure (DBP)

of ≥90 mmHg, previously diagnosed patients with hypertension

patients, or antihypertensive drug use. Diabetes was defined as fasting

blood glucose concentration of ≥7.0 mmol/L, previously diagnosed

diabetes, or hypoglycemic drug use. Hyperlipidemia was defined as

total cholesterol of ≥5.18 mmol/L, triglyceride of ≥1.7 mmol/L,

low-density lipoprotein cholesterol of ≥3.37 mmol/L, high-density

lipoprotein cholesterol of ≤1.0 mmol/L, or previously diagnosed

hyperlipidemia or lipid-lowering drug use. eGFR was calculated

according to the formula recommended by the Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) (2009 edition) (28):

serum creatinine (Scr) ≤ 0.7 mg/dL, eGFR = 144 × (Scr/0.7)−0.329
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× (0.993) age; Scr > 0.7 mg/dL, eGFR = 144 × (Scr/0.7)−1.209 ×

(0.993) age for female participants; Scr ≤ 0.9 mg/dL, eGFR = 141

× (Scr/0.9)−0.411 × (0.993) age; Scr > 0.9 mg/dL, eGFR = 141

× (Scr/0.9)−1.209 × (0.993) age for male participants. Data were

expressed in ml/min per 1.73 m2.

Urinary metal concentrations

We measured 24 urinary metals in urine samples, including

lithium, beryllium (Be), aluminum (Al), titanium, vanadium (V),

chromium (Cr), manganese, iron (Fe), cobalt, nickel (Ni), Cu,

Zn, As, Se, rubidium, strontium, molybdenum (Mo), Cd, indium

(In), tin, antimony (Sb), barium, thallium (Tl), and Pb using

inductively coupled plasma-mass spectrometry (ICP-MS, NEXION

300X. PerkinElmer Inc. Waltham, Massachusetts, USA). Briefly,

urine samples were thawed at room temperature and then centrifuged

(4,200 rpm × 10min) at room temperature. Afterward, 0.5ml

of supernatant from each urine sample was added into a 15ml

polypropylene tube, and then 4.5ml of 2% nitric acid solution

(10 times the diluted urine sample) was added. To assess the

accuracy of the measurements, SeronomTM Trace Elements Urine

L-1 (Sero Incorporated Company. Billingstad, Norway), SeronomTM

Trace Elements Urine L-2 (Sero Incorporated Company. Billingstad,

Norway), and Trace Elements in Natural Water (SRM1640a)

(National Institute of Standards and Technology. Gaithersburg,

Maryland, USA) were added as quality control samples for each

batch. As shown in Supplementary Table 1, the range values of 66.04–

152.86% in urinary metals were considered acceptable for spike

recoveries. The limits of detection (LOD) ranged from 0 to 1.66 µg/L

for urinary Fe and from 0 to 0.13 µg/L for urinary Zn. The limits of

quantification (LOQ) ranged from 0.01 to 5.54 µg/L for urinary Fe

and from 0 to 0.44 µg/L for urinary Zn. Urinary concentrations of

Be, In, and Sb were excluded from further analysis because the values

of Be, In, and Sb in more than 80% of individuals were below the

corresponding LOD. Values of urinary metals below the LOQ were

replaced by LOQ/2.

Statistical analysis

A Student’s t-test, Mann-Whitney U-test, and Chi-square test

were correspondingly used to compare normally, non-normally

continuous (including eGFR, urine creatinine, and urinary metals

concentrations), and categorical variables (including age, gender,

education level, marital status, active smoking status, passive smoking

status, drinking status, hypertension, diabetes, hyperlipidemia, and

BMI) between the non-hyperuricemia and hyperuricemia groups.

Values of urinary metals were log10-transformed before analysis

to approximately normal distributions. Values of Spearman’s rank

correlations coefficient were calculated among the 21 urinary

metal concentrations.

We identified individual urinary metals by unconditional logistic

regression models or LASSO regression models for further analysis.

When constructing unconditional logistic regression models, the

participants were divided into four subgroups (i.e., ≤P25 as the

reference group, P25, P50, and P75) according to the quartile values

of urinary concentrations of individual metal, after adjusting for

potential confounders, including age (<67 or ≥67 years old), gender

(male or female), education level (<9, ≥9, or ≥13 years), marital

status (married or other marital status), active smoking status (never,

quit, or current), passive smoking status (yes or no), drinking status

(never, quit, or current), hypertension (yes or no), diabetes (yes

or no), hyperlipidemia (yes or no), BMI (<24 or ≥24 kg/m2),

estimated glomerular filtration rate (eGFR: mL/min per 1.73m2), and

urine creatinine (µmol/L). The median value in each metal quartile

(log10-transformed urinary metal value) was entered into the logistic

regression model as a continuous variable. In the LASSO regression

model, 10-fold cross-validation was used to select metals based on the

lambda (λ) parameter with minimum mean square error (minimum

MSE). Identified metals by both logistical regression models and

LASSO regression were included in unconditional stepwise logistic

regression models (enter = 0.05 and remove = 0.10). Herein,

we adjusted for the same potential confounders in both logistical

regression models and LASSO regression. RCS logistic regression

models were constructed to analyze the dose–response relationship

between urinary metals levels and HUA risk. The knots were set to

the 10th, 50th, and 90th percentiles of each metal value, and the 25th

percentiles of each metal were set as the corresponding reference

value. We also used multiple linear regression models to evaluate the

associations between urinary metals and SUA levels.

Generalized linearmodel (GLM)was used to evaluate the additive

interaction of urinary metals on the risk of HUA. Individuals were

classified into high (≥median) and low (< median) subgroups based

on urinary metals values. Relative excess risk due to interaction

(RERI), attributable proportion due to interaction (AP), and synergy

index (S) were used to assess the additive interaction between urinary

metals concentrations and HUA risk (29). A regression tree is a

machine-learning algorithm known to detect multiple interactions

between covariates (30).We used a regression tree to explore multiple

interactions between urinary metals and SUA levels.

Subgroup analyses of age, gender, BMI, hypertension, diabetes,

or hyperlipidemia were conducted. Individuals were divided into

high- and low-metal subgroups according to urinary median values

(log10-transformed) of urinary metals. The interaction was examined

by adding an interaction term between a specific metal and the

stratification variable and adjusted for the same confounders in

unconditional logistic regression models. All data were analyzed

using Statistical Program for Social Sciences 17.0 (SPSS Inc., Chicago,

Illinois, USA). LASSO regression analysis was performed with R 4.2

(Lucent Technologies, USA) “glmnet” package. RCS analysis was

conducted using SAS 9.2 (SAS Institute Inc., Cary, North Carolina,

USA) (RCS_Reg macro) (31). Statistical significance was defined as a

P-value of < 0.05 (two-tailed).

Results

Participants characteristics

As shown in Table 1, among the 6,508 participants, 2,731 were

men and 3,777 were women, and 4,147 were in the non-HUA

subgroup and 2,361 were in the HUA subgroup. When compared

with individuals in the non-HUA subgroup, those in the HUA

subgroup had lower urinary levels of lithium, V, Cr, Fe, Ni, strontium,

or Mo as well as higher urinary levels of Zn or As (all P < 0.05).

As shown in Supplementary Figure 1, Spearman correlation analysis
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TABLE 1 Characteristics and urinary metal concentrations of the study population.

Variable Non-hyperuricemia Hyperuricemia p-value

Age (<67/≥67 years, n %) 2,149/1,998 (51.8/48.2) 1,180/1,181 (50.0/50.0) >0.05a

Gender (male/female, n, %) 1,702/2,445 (41.0/59.0) 1,029/1,332 (43.6/56.4) <0.05a

Education level (years, n %) >0.05a

<9 1,808 (43.6) 1,039 (44.0)

9- 1,411 (34.0) 815 (34.5)

≥13 928 (22.4) 507 (21.5)

Marital status (married/others, n, %) 3,640/507(87.8/12.2) 2,081/280 (88.1/11.9) >0.05a

Active smoking status (n, %) <0.05a

Never 3,365 (81.1) 1,840 (77.9)

Quit 390 (9.4) 271 (11.5)

Current 392 (9.5) 250 (10.6)

Passive smoking status (yes/no, n, %) 464/3,683 (11.2/88.8) 265/2,096 (11.2/88.8) >0.05a

Drinking status (n, %) <0.05a

Never 3,586 (86.5) 1,970 (83.4)

Quit 109 (2.6) 59 (2.5)

Current 452 (10.9) 332 (14.1)

Hypertension (yes/no, n, %) 2,186/1,961 (52.7/47.3) 1,468/893 (62.2/37.8) <0.05a

Diabetes (yes/no, n, %) 845/3302 (20.4/79.6) 490/1,871 (20.8/79.2) <0.05a

Hyperlipidemia (yes, no) 3,014/1,133 (72.7/27.3) 1,915/446 (81.1/18.9) >0.05a

BMI (kg/m2 , n, %) <0.05a

<24 2,207 (53.2) 829 (35.1)

≥24 1,940 (46.8) 1,532 (64.9)

eGFR (mL/min per 1.73 m2 , mean± SD) 82.08± 10.5 77.63± 10.19 >0.05b

Urine creatinine (µmol/L, median, IQRs) 8,399 (4,840, 13,053) 8,209 (4,878, 13,002) >0.05c

Urinary metal concentration (µg/L, median, IQRs)

Lithium 18.78 (10.98, 29.15) 18.24 (10.53, 28.34) <0.05c

Aluminum 24.63 (12.62, 41.37) 24.09 (12.44, 41.10) >0.05c

Titanium 235.10 (136.62, 366.74) 237.97 (134.44, 359.33) >0.05c

Vanadium 2.90 (1.79, 4.15) 2.66 (1.62, 3.76) <0.05c

Chromium 1.57 (0.94, 2.31) 1.50 (0.88, 2.17) <0.05c

Manganese 0.52 (0.26, 0.93) 0.52 (0.26, 0.95) >0.05c

Iron 81.44 (50.90, 123.96) 72.51 (43.07, 110.72) <0.05c

Cobalt 0.21 (0.08, 0.38) 0.20 (0.08, 0.38) >0.05c

Nickel 2.41 (0.08, 0.38) 2.25 (1.23, 3.87) <0.05c

Copper 8.67 (4.84, 13.88) 8.61 (4.68, 13.82) >0.05c

Zinc 374.63 (190.48, 650.51) 408.70 (216.57, 689.45) <0.05c

Arsenic 46.94 (23.21, 90.76) 52.52 (25.59, 101.12) <0.05c

Selenium 31.15 (17.14, 49.94) 31.10 (17.52, 49.83) >0.05c

Rubidium 1,799.86 (1,040.79, 2,785.02) 1,755.76 (1,050.24, 2,687.16) >0.05c

Strontium 90.76 (45.71, 159.16) 82.12 (43.02, 148.68) <0.05c

(Continued)
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TABLE 1 (Continued)

Variable Non-hyperuricemia Hyperuricemia p-value

Molybdenum 47.79 (26.27, 77.69) 45.25 (24.67, 73.65) <0.05c

Cadmium 1.14 (0.56, 2.08) 1.17 (0.57, 2.09) >0.05c

Tin 9.96 (6.32, 15.16) 10.13 (6.40, 15.17) >0.05c

Barium 1.86 (0.99, 3.08) 1.85 (1.01, 3.09) >0.05c

Thallium 0.55 (0.28, 0.91) 0.57 (0.29, 0.91) >0.05c

Lead 1.01 (0.57, 1.64) 0.97 (0.55, 1.66) >0.05c

BMI, body mass index; eGFR, estimated glomerular filtration rate; SD, standard deviation; IQRs, interquartile ranges.
aChi-square test compares the differences in categorical variables’ distribution between groups;
bStudent’s t-test compares the differences between the two groups of means;
cMann-Whitney U-test is used for the rank sum test of two independent samples.

FIGURE 1

Association of an IQR increase in urinary metal concentrations of vanadium, iron, nickel, zinc, and arsenic with hyperuricemia risk (Odds ratio and 95%

confidence interval). Unconditional stepwise logistic regression models were performed and adjusted for age, gender, education level, marital status,

active smoking status, passive smoking status, drinking status, hypertension, diabetes, hyperlipidemia, BMI, eGFR, and urine creatinine.

revealed the correlations among 21 metals with each other (all P <

0.05), wherein Se showed a strong correlation with titanium, Zn, As,

rubidium, and Mo (the corresponding correlation coefficients: 0.76,

0.71, 0.76, 0.74, and 0.74, all P < 0.05). However, the correlation of V

with Al was weak (correlation coefficient: 0.13, P < 0.05).

Urinary levels of individual metals and HUA
risk

As shown in Supplementary Table 2, unconditional logistic

regression models suggested the association between urinary V

(OR = 0.67, 95%CI: 0.57–0.78), Cr (OR = 0.78, 95%CI: 0.66–

0.92), Fe (OR = 0.64, 95%CI: 0.55–0.75), Ni (OR = 0.81, 95%CI:

0.68–0.95), Zn (OR = 1.36, 95%CI: 1.14–1.63), and As levels (OR

= 1.46, 95%CI: 1.23–1.72) and HUA risk (all Ptrend < 0.05),

after adjusting for potential confounders (age, gender, education

level, marital status, active smoking status, passive smoking status,

drinking status, hypertension, diabetes, hyperlipidemia, BMI, eGFR,

and urine creatinine). As shown in Supplementary Figure 2, LASSO

regression determined the optimal λ (−4.50) through 10-fold cross-

validation based on the minimum MSE. After adjusting for the same

confounders in unconditional logistic regression models, urinary

metals, V, Fe, Ni, Zn, As, and Mo, were selected as optimal predictors

according to LASSO regression models. As shown in Figure 1, we
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FIGURE 2

Association of a 1-SD increase in log-transformed urinary metal

concentrations of vanadium, iron, nickel, zinc, and arsenic with SUA

levels (β and 95% confidence interval). Multiple linear regression

models were performed and adjusted for age, gender, education level,

marital status, active smoking status, passive smoking status, drinking

status, hypertension, diabetes, hyperlipidemia, BMI, eGFR, and

urine creatinine.

incorporated V, Cr, Fe, Ni, Zn, As, and Mo into the unconditional

stepwise logistic regression models, after adjusting for the same

confounders in unconditional logistic regression models and found

that urinary V (OR = 0.70, 95%CI: 0.58–0.84), Fe (OR = 0.56,

95%CI: 0.47–0.68), and Ni (OR = 0.71, 95%CI: 0.58–0.86) levels

were negatively associated with HUA risk (all Ptrend < 0.05), but

urinary Zn (OR = 1.92, 95%CI: 1.54–2.39) and As levels (OR =

1.75, 95%CI: 1.45–2.11) were positively associated with HUA risk

(all Ptrend < 0.05). As shown in Figure 2, multiple linear regression

models showed a lower SUA level of 34.27 (95%CI:−41.32 to−27.22)

for a 1-SD increment in log-transformed Fe and a higher SUA level

of 34.58 (27.67–41.48) for a 1-SD increment in log-transformed Zn

(P < 0.001).

As shown in Table 2, we found that Fe was negatively associated

with HUA risk in all subgroups (all Ptrend < 0.05). We also found

positive associations between the highest quartile (the 75th quartile)

of urinary Zn levels and HUA risk in the subgroups of gender,

age, BMI, hypertension, diabetes (no), and hyperlipidemia (yes) (all

Ptrend < 0.05).

Dose–response relationship of urinary
metals with HUA risk

As shown in Figure 3, after adjusting for the same confounders

in unconditional logistic regression models, RCS logistic regression

models showed that there was a negative non-linear dose–response

relationship between urinary V levels and HUA risk (Poverall < 0.001,

Pnonliner = 0.008), but a negative linear dose–response relationship

between both urinary Fe (Poverall < 0.001, Pnonliner = 0.682) and Ni

levels (Poverall = 0.009, Pnonliner = 0.953) and HUA risk. A positive

linear relationship was found between urinary Zn (Poverall < 0.001,

Pnonliner = 0.513), or As levels (Poverall < 0.001, Pnonliner = 0.743) and

HUA risk.

E�ect of additive interaction of Fe and Zn on
HUA risk

As shown in Table 3, GLM showed an additive interaction

between urinary low-Fe (< 78.56µg/L) and high-Zn (≥ 385.39µg/L)

levels on an increased risk of HUA (RERI = 0.31, 95%CI: 0.03–0.59;

AP= 0.18, 95%CI: 0.02–0.34; S= 1.76, 95%CI: 1.69–3.49). However,

no interaction between the other metals on HUA risk was found. As

shown in Figure 4, the regression tree showed urinary Zn levels of ≥

312.33 µg/L and urinary Fe levels of < 102.25 were likely to have the

highest concentrations of SUA (Node 7).

Discussion

We found that higher urinary V, Fe, and Ni levels were linked to

a lower risk of HUA in addition to the positive association of urinary

Zn and As levels with HUA risk. Moreover, the additive interaction

between low-iron (<78.56µg/L) and high-zinc (≥385.39µg/L) levels

greatly increased the risk of HUA in elderly adults.

We also found that the median urinary level of As was 48.92

µg/L, which was 5.9-fold higher than that of individuals aged >20

years (n = 5,632) from the NHANES 2003–2010 (14) and 3.2-fold

higher than that of individuals aged 44.9–56.0 years (n= 1,335) from

the Study of Women’s Health Across the Nation (32). In addition,

median urinary V levels (2.81 µg/L) of the individuals were 1.9-

fold higher than that of older adults aged >60 years (n = 3,814) in

Anhui province, China (33). In addition, median urinary levels of Fe

(78.56 µg/L) or Zn (385.39 µg/L) levels were higher than that (n =

3,272, 54.67 µg/L for Fe, 310.94 µg/L for Zn) of individuals from the

Wuhan-Zhuhai cohort (34). The reasons may be related to gender,

age, region, environmental exposure, lifestyle, and population size.

In the present study, older adults (aged ≥60 years) who have lived

in Shenzhen since the early stage of the city’s construction tend to

have had a longer exposure to metals in the environment and seafood

because Shenzhen is a coastal city in South China.

Previous studies revealed consistent results to support the

positive association between blood Fe concentrations and HUA

risk. For example, a cross-sectional and longitudinal study in the

employees of Zhenhai Refining and Chemical Company, Ningbo,

China (n = 10,074) (35) indicated that exposure to high serum

ferritin (SF) levels was linked to an increased risk of HUA (HR =

1.65, 95%CI: 1.38–1.96) after adjusting for age and gender. Results

from the 2009 China Health and Nutrition Study (n = 7,946) (36)

revealed that individuals with the highest quartile (the 75th quartile:

237.8 µg/L) of SF levels were at higher risk for HUA (OR = 3.09,

95%CI: 2.45–3.89), as compared with those in the lowest quartile

(the 25th quartile: 20.3 µg/L). A recent study conducted in Xiangya

Hospital, Central South University, Changsha, China (37) reported

a link between serum Fe (OR = 1.56, 95%CI: 1.14– 2.13) or SF

(OR = 2.25, 95%CI: 1.54–3.29) concentrations and the prevalence

of HUA in adults (n = 2,824, aged 52.2 ± 7.2 years); however, we

found a negative association between urinary Fe levels and HUA

risk, which may be due to a difference in biological significances

between urinary Fe and blood Fe concentrations. Because urinary
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TABLE 2 Subgroup analysis of urinary metal vanadium, iron, nickel, zinc, and arsenic with hyperuricemia risk (OR, 95% CI).

Subgroup Quartiles of urinary metals levels (µg/L) p-trenda p-

interactionb

≤P25 P25- P50- P75-

Vanadium

Gender 0.278

Male (n= 2,731) 1.00 (ref) 0.85 (0.66, 1.10) 0.81 (0.62, 1.07) 0.60 (0.45, 0.80) 0.003

Female (n= 3,777) 1.00 (ref) 1.01 (0.81, 1.25) 0.94 (0.75, 1.18) 0.79 (0.62, 1.01) 0.142

Age (years) 0.583

<67 (n= 3,329) 1.00 (ref) 1.22 (0.96, 1.54) 1.23 (0.88, 1.44) 0.92 (0.71, 1.20) 0.062

≥ 67 (n= 3,179) 1.00 (ref) 0.72 (0.57, 0.90) 0.68 (0.53, 0.87) 0.53 (0.41, 0.70) 0.000

BMI (kg/m2) 0.610

<24 (n= 3,036) 1.00 (ref) 1.04 (0.81, 1.34) 0.92 (0.70, 1.20) 0.87 (0.65, 1.17) 0.544

≥ 24 (n= 3,472) 1.00 (ref) 0.85 (0.68, 1.06) 0.82 (0.65, 1.04) 0.59 (0.46, 0.76) 0.000

Hypertension 0.953

Yes (n= 3,654) 1.00 (ref) 1.05 (0.85, 1.30) 0.94 (0.75, 1.18) 0.71 (0.56, 0.91) 0.003

No (n= 2,854) 1.00 (ref) 0.76 (0.59, 0.99) 0.79 (0.59, 1.04) 0.67 (0.50, 0.90) 0.061

Diabetes 0.272

Yes (n= 1,335) 1.00 (ref) 1.01 (0.71, 1.42) 0.86 (0.59, 1.26) 0.67 (0.44, 1.01) 0.142

No (n= 5,173) 1.00 (ref) 0.91 (0.75, 1.09) 0.87 (0.72, 1.07) 0.71 (0.57, 0.87) 0.007

Hyperlipidemia 0.408

Yes (n= 4,929) 1.00 (ref) 1.05 (0.87, 1.26) 0.93 (0.77, 1.14) 0.72 (0.58, 0.89) 0.001

No (n= 1,579) 1.00 (ref) 0.61 (0.43, 0.87) 0.69 (0.47, 0.99) 0.62 (0.42, 0.92) 0.038

Iron

Gender 0.618

Male (n= 2,731) 1.00 (ref) 0.75 (0.60, 0.96) 0.74 (0.57, 0.96) 0.57 (0.43, 0.77) 0.003

Female (n= 3,777) 1.00 (ref) 0.68 (0.54, 0.85) 0.63 (0.50, 0.80) 0.56 (0.44, 0.72) 0.000

Age (years) 0.544

<67 (n= 3,329) 1.00 (ref) 0.62 (0.49, 0.77) 0.56 (0.44, 0.72) 0.53 (0.41, 0.70) 0.000

≥ 67 (n= 3,179) 1.00 (ref) 0.81 (0.64, 1.01) 0.81 (0.63, 1.03) 0.59 (0.45, 0.78) 0.002

BMI (kg/m2) 0.286

<24 (n= 3,036) 1.00 (ref) 0.72 (0.57, 0.93) 0.62 (0.47, 0.81) 0.50 (0.38, 0.68) 0.000

≥ 24 (n= 3,472) 1.00 (ref) 0.69 (0.56, 0.85) 0.71 (0.56, 0.89) 0.61 (0.48, 0.79) 0.001

Hypertension 0.305

Yes (n= 3,654) 1.00 (ref) 0.75 (0.61, 0.93) 0.74 (0.60, 0.93) 0.59 (0.46, 0.75) 0.000

No (n= 2,854) 1.00 (ref) 0.66 (0.51, 0.86) 0.59 (0.44, 0.78) 0.53 (0.40, 0.72) 0.000

Diabetes 0.932

Yes (n= 1,335) 1.00 (ref) 0.71 (0.50, 1.01) 0.78 (0.53, 1.14) 0.51 (0.34, 0.78) 0.013

No (n= 5,173) 1.00 (ref) 0.72 (0.60, 0.86) 0.65 (0.54, 0.79) 0.58 (0.47, 0.72) 0.000

Hyperlipidemia 0.816

Yes (n= 4,929) 1.00 (ref) 0.73 (0.61, 0.88) 0.69 (0.57, 0.84) 0.58 (0.47, 0.72) 0.000

No (n= 1,579) 1.00 (ref) 0.64 (0.46, 0.91) 0.65 (0.45, 0.93) 0.54 (0.36, 0.81) 0.017

(Continued)
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TABLE 2 (Continued)

Subgroup Quartiles of urinary metals levels (µg/L) p-trenda p-

interactionb

≤P25 P25- P50- P75-

Nickel

Gender 0.874

Male (n= 2,731) 1.00 (ref) 0.81 (0.62, 1.06) 0.80 (0.59, 1.07) 0.74 (0.54, 1.02) 0.299

Female (n= 3,777) 1.00 (ref) 0.87 (0.70, 1.08) 0.71 (0.56, 0.91) 0.70 (0.54, 0.90) 0.017

Age (years) 0.594

<67 (n= 3,329) 1.00 (ref) 0.67 (0.53, 0.85) 0.62 (0.48, 0.80) 0.67 (0.51, 0.89) 0.001

≥ 67 (n= 3,179) 1.00 (ref) 1.10 (0.86, 1.40) 0.89 (0.68, 1.16) 0.76 (0.57, 1.01) 0.022

BMI (kg/m2) 0.042

<24 (n= 3,036) 1.00 (ref) 0.89 (0.69, 1.16) 0.90 (0.68, 1.20) 0.81 (0.60, 1.01) 0.584

≥ 24 (n= 3,472) 1.00 (ref) 0.81 (0.65, 1.02) 0.62 (0.49, 0.79) 0.63 (0.49, 0.82) 0.001

Hypertension 0.516

Yes (n= 3,654) 1.00 (ref) 0.86 (0.69, 1.08) 0.72 (0.56, 0.91) 0.73 (0.56, 0.94) 0.036

No (n= 2,854) 1.00 (ref) 0.82 (0.64, 1.07) 0.76 (0.57, 1.01) 0.68 (0.50, 0.92) 0.092

Diabetes 0.865

Yes (n= 1,335) 1.00 (ref) 0.69 (0.47, 1.01) 0.67 (0.44, 1.01) 0.75 (0.49, 1.14) 0.206

No (n= 5,173) 1.00 (ref) 0.88 (0.73, 1.07) 0.75 (0.61, 0.93) 0.69 (0.55, 0.86) 0.006

Hyperlipidemia 0.062

Yes (n= 4,929) 1.00 (ref) 0.84 (0.70, 1.01) 0.68 (0.55, 0.84) 0.67 (0.53, 0.83) 0.001

No (n= 1,579) 1.00 (ref) 0.90 (0.61, 1.32) 0.91 (0.61, 1.36) 0.87 (0.56, 1.33) 0.926

Zinc

Gender 0.137

Male (n= 2,731) 1.00 (ref) 1.30 (0.95, 1.76) 1.50 (1.08, 2.07) 1.68 (1.17, 2.40) 0.038

Female (n= 3,777) 1.00 (ref) 1.45 (1.17, 1.80) 1.63 (1.28, 2.08) 2.02 (1.52, 2.70) 0.000

Age (years) 0.725

<67 (n= 3,329) 1.00 (ref) 1.30 (1.02, 1.66) 1.52 (1.16, 1.98) 1.92 (1.41, 2.62) 0.001

≥ 67 (n= 3,179) 1.00 (ref) 1.51 (1.18, 1.93) 1.75 (1.33, 2.30) 1.89 (1.38, 2.58) 0.000

BMI (kg/m2) 0.556

<24 (n= 3,036) 1.00 (ref) 1.40 (1.07, 1.83) 1.46 (1.08, 1.96) 1.61 (1.14, 2.27) 0.035

≥ 24 (n= 3,472) 1.00 (ref) 1.38 (1.10, 1.73) 1.74 (1.35, 2.24) 2.12 (1.60, 2.83) 0.000

Hypertension 0.077

Yes (n= 3,654) 1.00 (ref) 1.36 (1.08, 1.70) 1.76 (1.38, 2.25) 1.91 (1.44, 2.54) 0.000

No (n= 2,854) 1.00 (ref) 1.47 (1.12, 1.94) 1.45 (1.07, 1.97) 1.93 (1.36, 2.73) 0.003

Diabetes 0.114

Yes (n= 1,335) 1.00 (ref) 1.16 (0.74, 1.81) 1.40 (0.88, 2.22) 1.46 (0.89, 2.39) 0.432

No (n= 5,173) 1.00 (ref) 1.43 (1.19, 1.73) 1.59 (1.29, 1.97) 1.99 (1.56, 2.55) 0.000

Hyperlipidemia 0.973

Yes (n= 4,929) 1.00 (ref) 1.36 (1.13, 1.67) 1.66 (1.34, 2.06) 1.99 (1.56, 2.54) 0.000

No (n= 1,579) 1.00 (ref) 1.41 (0.96, 2.06) 1.40 (0.91, 2.14) 1.59 (0.97, 2.60) 0.267

(Continued)
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TABLE 2 (Continued)

Subgroup Quartiles of urinary metals levels (µg/L) p-trenda p-

interactionb

≤P25 P25- P50- P75-

Arsenic

Gender 0.741

Male (n= 2,731) 1.00 (ref) 1.23 (0.93, 1.61) 1.44 (1.08, 1.91) 1.84 (1.36, 2.49) 0.001

Female (n= 3,777) 1.00 (ref) 1.10 (0.89, 1.38) 1.52 (1.20, 1.93) 1.68 (1.32, 2.16) 0.000

Age (years) 0.177

<67 (n= 3,329) 1.00 (ref) 1.12 (0.88, 1.43) 1.35 (1.04, 1.75) 1.56 (1.20, 2.03) 0.005

≥ 67 (n= 3,179) 1.00 (ref) 1.17 (0.92, 1.49) 1.62 (1.25, 2.08) 2.00 (1.52, 2.63) 0.000

BMI (kg/m2) 0.442

<24 (n= 3,036) 1.00 (ref) 1.25 (0.96, 1.63) 1.33 (1.01, 1.76) 1.72 (1.29, 2.31) 0.003

≥ 24 (n= 3,472) 1.00 (ref) 1.10 (0.88, 1.38) 1.67 (1.31, 2.13) 1.82 (1.41, 2.34) 0.000

Hypertension 0.955

Yes (n= 3,654) 1.00 (ref) 1.13 (0.91, 1.41) 1.44 (1.14, 1.82) 1.60 (1.25, 2.05) 0.001

No (n= 2,854) 1.00 (ref) 1.16 (0.88, 1.52) 1.56 (1.18, 2.07) 2.02 (1.50, 2.72) 0.000

Diabetes 0.340

Yes (n= 1,335) 1.00 (ref) 1.17 (0.80, 1.71) 1.60 (1.08, 2.36) 1.53 (1.01, 2.31) 0.072

No (n= 5,173) 1.00 (ref) 1.16 (0.96, 1.41) 1.49 (1.21, 1.82) 1.84 (1.49, 2.29) 0.000

Hyperlipidemia 0.169

Yes (n= 4,929) 1.00 (ref) 1.07 (0.88, 1.29) 1.37 (1.12, 1.68) 1.64 (1.32, 2.02) 0.000

No (n= 1,579) 1.00 (ref) 1.47 (0.99, 2.16) 1.99 (1.33, 2.98) 2.26 (1.47, 2.47) 0.001

P25: 25th percentile; P50: 50th percentile; P75: 75th percentile. p-interaction, p-values for the interaction terms. Subgroup analysis was conducted using logistic regression, and adjusted for age,

gender, education level, marital status, active smoking status, passive smoking status, drinking status, hypertension, diabetes, hyperlipidemia, BMI, eGFR, and urine creatinine.
ap-values for the trend test were obtained from the logistic regression models using the median of each metal quartile (log10-transformed urinary metal concentrations) as a continuous variable.
bThe interaction was examined by adding an interaction term between a specific metal and the stratification variable as well as the metals and adjusted for age, gender, education level, marital status,

active smoking status, passive smoking status, drinking status, hypertension, diabetes, hyperlipidemia, BMI, eGFR, and urine creatinine.

Fe concentrations generally represent the levels of Fe in the mucosal

cells of the urinary tract and the circulating Fe (transfer Fe protein)

(38). When blood Fe concentration is too high, oxidative damage

to the renal tubules can be induced, resulting in decreased renal

tubular reabsorption of transferrin and UA, increased excretions of

UA and urinary iron, and decreased SUA levels (39, 40). A recent

study on multiple metals (13 blood metals) exposure and HUA risk

from Shenzhen city, China (n= 1,406, aged from 31 to 91 years) (15)

reported that there was no association between plasma Fe levels and

HUA risk (median of plasma Fe level: non-HUA = 1,697.50 µmol/L,

HUA = 1,697.48 µmol/L). The reason may be that the interactions

of multiple metals may weaken the effect of plasma Fe on HUA.

The association between Fe exposure and HUA was related to several

factors, including detected concentrations of Fe in different biological

samples, regions, and species.

Some controversial results about the relationship between Zn

levels (plasma Zn or dietary Zn intake) and HUA risk have been

reported in previous studies (15, 41, 42). We found a positive linear

dose–response relationship between urinary Zn levels with HUA risk,

which is inconsistent with the previous findings that dietary Zn intake

was inversely linked to HUA risk (41, 42). In the individuals (n =

24,975, aged ≥ 20 years) from the NHANES 2001–2014, dietary Zn

intake was found to be inversely correlated with HUA risk (41), the

same finding was found in adults (n = 5,168, aged ≥ 40 years) from

the Department of Health Examination Center, Xiangya Hospital,

Changsha, China (42). We note the consistent finding of a positive

correlation between Zn exposure and HUA risk after comparing the

findings in a multiple-metal exposure study (n = 1,406, mean age:

58.89 ± 9.54 years) on plasma Zn (15) and this study; both studies

were conducted in older adults in Shenzhen, China. Nevertheless,

there were differences in the types of metals (13 metals vs. 21 metals),

biological samples (plasma or urinary), and measurement methods

for Zn concentrations in the individuals. Lack of zinc will lead

to cardiovascular disease, growth restriction, and increased cancer

susceptibility (43), while excessive zinc can produce toxic effects

(44, 45). We suppose that if there is an appropriate dose of zinc

concentrations, deficiency or excess will be caused varying degrees of

hazards. The elderly in coastal cities from southern China may have

excessive zinc due to environmental exposure and seafood diets. In

addition, the interactions of multiple metals may enhance the risk of

Zn to HUA. Overall, the relationship between Zn andHUA risk is still

inconclusive, and further studies are needed to validate this finding.

Subgroup analysis suggested that individuals with BMI (≥24),

hyperlipidemia (yes), and urinary Zn (≥385.39 µg/L) were at higher

risk of HUA. The reasons for this may be that Zn transporters are

differentially expressed in various tissues of the body, and obesity

and other diseases can increase the accumulation of Zn in adipose

tissue (one of the most important Zn sources) and can reduce the
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FIGURE 3

A restricted cubic spline regression model with three knots (the 10th, 50th, and 90th percentile) for urinary metals levels and hyperuricemia risk. (A) V

(vanadium); (B) Fe (iron); (C) Ni (nickel); (D) Zn (zinc); (E) As (arsenic). The X-axis indicates the log10-transformed urinary metal concentrations. Odds

ratios (OR) and 95% confidence intervals were estimated, and metal concentrations (log10-transformed) at the 25th percentile were used as the

reference value. All of the restricted cubic spline regression models were constructed after adjusting for age, gender, education level, marital status, active

smoking status, passive smoking status, drinking status, hypertension, diabetes, hyperlipidemia, BMI, eGFR, and urine creatinine.

Zn concentration in blood (46). A recent study at Yaroslavl State

University, Yaroslavl, Russia (n = 395, aged from 20 to 60 years)

(47) indicated that urine Zn levels in obese individuals (n = 196)

were 18% higher than that in lean individuals (n = 199). In obese

individuals, the internal balance of plasma Zn and the process of

muscle metabolism may be changed, leading to increased excretion

of Zn by urine (48).

We revealed the additive interaction between urinary low-Fe

(<78.56 µg/L) and high-Zn (≥385.39 µg/L) levels on the risk of

HUA, but previous studies on this were very limited. The interaction

between Fe and Zn in the human body absorption process has been

widely studied, but the results were inconsistent. Previous studies

suggested that the absorptions of Fe and Zn exhibit a competitive

inhibition (49, 50). Solomons and Jacob performed a study on

assessing iron–zinc interaction with the increasing proportion of

Fe and Zn in cola beverage (the ratios of Fe:Zn were 1:1, 2:1, and

3:1) (49), and the results showed that plasma Zn concentrations

were decreased. A community-based randomized controlled trial in

Indonesia explored the interactions between Fe and Zn in infants

(50), and they found that the combination of iron–zinc supplements

was not as effective as a single supplement. Additional studies have

found a positive interaction between Fe and Zn in human absorption

(51–53). A 6-month randomized, double-blind trial investigated the

effect of Zn supplementation on the biochemical status of Fe in

individuals aged 55–75 (n = 188) and 70–85 (n = 199) years old

(51), suggesting that 15 or 30 mg/d Zn supplementation significantly

increased serum Zn levels and urinary Zn excretion, but had no effect

on Fe status. A randomized single-blind placebo-controlled trial of

pregnant women in the United Kingdom (52) indicated that dietary

Fe supplementation (100mg Fe/d) had no detectable adverse effect

on Zn metabolism and increased Zn absorption efficiency in late

pregnancy. A randomized controlled trial in Bangladesh reported

that the combination of Fe and Zn had the same effect as single

administration on reducing diarrhea, hospitalization, or improving

Fe status (53). Animal experiments indicated that the interactions

between Fe and Zn may depend on their ratios. For instance, no

significant inhibition of Zn absorption was found in the digestion

and absorption of Zn sulfate (100 µmol/L) in rats (ranging from 0

to 1,000 µmol Fe/L) in the presence of Fe gluconate when the ratio of

Fe to Zn was <2:1, and dose-dependent inhibition of Zn absorption

between 2:1 and 5:1 reached a plateau beyond this ratio (54). Based

on urinary Zn levels, we have two hypotheses. One is Zn deficiency

(55): the absorption of Fe in the body also inhibits the absorption of

Zn, and the content of Zn excreted in urine increases. In addition,

the study population was over 60 years old, and the reduction of

Fe accumulation and Zn absorption due to aging may be associated

with HUA risk (56). The other hypothesis is that there was excess Zn

(57). The study population is located in the coastal areas, the intake

of zinc-rich seafood is higher, and the antagonism of the Fe and Zn

interaction is much smaller with the increased Zn intake. However,

the current research on the iron–zinc interaction and the risk of HUA

is very limited, further mechanistic studies are needed regarding the

effect of iron-zinc interaction on HUA risk.

There are several strengths in this study. First, we explored the

association between urinary multi-metal levels and HUA risk in

a large sample size (n = 6,508) after adjusting for the traditional

confounding factors such as gender, age, BMI, hypertension, and

diabetes. Second, we used both LASSO regression and logistics

regression for metal selection and RCS logistic regression and

GLM for assessing the dose–response relationship and interactions

between urinary metals and HUA risk. However, there are still

some limitations in this study. First, we did not assess the dietary

exposure of individuals, whereas dietary intake is an important

factor related to metal exposure in the body. Second, we only
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TABLE 3 Combined associations of urinary metals with hyperuricemia risk (OR, 95% CI).

Variablea Adjusted ORb RERI (95% CI)c AP (95% CI)c S (95% CI)c

V-Fe −0.26 (−0.57, 0.04) −0.18 (−0.40,−0.03) 0.62 (0.38, 1.01)

High V+High Fe 1.00 (ref)

High V+ Low Fe 1.33 (1.13, 1.57)

Low V+High Fe 1.35 (1.15, 1.59)

Low V+ Low Fe 1.42 (1.24, 1.62)

V-Ni −0.20 (−0.47, 0.07) −0.15 (−0.35, 0.051) 0.63 (0.37, 1.07)

High V+High Ni 1.00 (ref)

High V+ Low Ni 1.20 (1.03, 1.40)

Low V+High Ni 1.34 (1.16, 1.56)

Low V+ Low Ni 1.34 (1.18, 1.53)

V-Zn 0.25 (−0.03, 0.52) 0.15 (−0.01, 0.31) 1.59 (0.84, 3.03)

High V+ Low Zn 1.00 (ref)

Low V+ Low Zn 1.18 (0.99, 1.40)

High V+High Zn 1.24 (1.06, 1.45)

Low V+High Zn 1.67 (1.39, 2.00)

V-As 0.20 (−0.11, 0.50) 0.10 (−0.05, 0.26) 1.29 (0.84, 1.98)

High V+ Low As 1.00 (ref)

Low V+ Low As 1.37 (1.17, 1.62)

High V+High As 1.31 (1.12, 1.54)

Low V+High As 1.88 (1.58, 2.25)

Fe-Ni −0.04 (−0.31, 0.23) −0.03 (−0.22, 0.17) 0.91 (0.47, 1.78)

High Fe+High Ni 1.00 (ref)

High Fe+ Low Ni 1.15 (0.98, 1.36)

Low Fe+High Ni 1.26 (1.07, 1.48)

Low Fe+ Low Ni 1.37 (1.19, 1.58)

Fe-Zn 0.31 (0.03, 0.59) 0.18 (0.02, 0.34) 1.76 (1.69, 3.49)

High Fe+ Low Zn 1.00 (ref)

Low Fe+ Low Zn 1.18 (0.99, 1.40)

High Fe+High Zn 1.23 (1.04, 1.44)

Low Fe+High Zn 1.71 (1.41, 2.07)

Fe-As 0.08 (−0.25, 0.41) 0.04 (−0.12, 0.21) 1.09 (0.76, 1.59)

High Fe+ Low As 1.00 (ref)

Low Fe+ Low As 1.23 (1.04, 1.44)

High Fe+High As 1.35 (1.15, 1.58)

Low Fe+High As 1.39 (1.20, 1.60)

Ni-Zn

High Ni+ Low Zn 1.00 (ref) 0.01 (−0.31, 0.33) 0.01 (−0.19, 0.20) 1.01 (0.62, 1.67)

Low Ni+ Low Zn 1.32 (1.10, 1.58)

High Ni+High Zn 1.31 (1.10, 1.57)

Low Ni+High Zn 1.64 (1.34, 2.02)

(Continued)
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TABLE 3 (Continued)

Variablea Adjusted ORb RERI (95% CI)c AP (95% CI)c S (95% CI)c

Ni-As 0.14 (−0.17, 0.45) 0.08 (−0.09, 0.25) 1.21 (0.76, 1.92)

High Ni+ Low As 1.00 (ref)

Low Ni+ Low As 1.39 (1.17, 1.64)

High Ni+High As 1.27 (1.07, 1.50)

Low Ni+High As 1.79 (1.47, 2.15)

Zn-As 0.11 (−0.17, 0.38) 0.07 (−0.11, 0.26) 1.32 (0.59, 2.94)

Low Zn+ Low As 1.00 (ref)

High Zn+ Low As 1.26 (1.07, 1.48)

Low Zn+High As 1.07 (0.91, 1.27)

High Zn+High As 1.44 (1.24, 1.68)

V, Vanadium; Fe, Iron; Ni, Nickel; As, Arsenic; Zn, Zinc; RERI, recommended relative excess risk due to interaction; AP, attributable proportion due to interaction; S, synergy index; OR: odd ratios;

95% CI: 95% confidence interval. aLow V <2.81 µg/L, High V ≥ 2.81 µg/L; Low Fe < 78.56 µg/L, High Fe ≥ 78.56 µg/L; Low Ni < 2.36 µg/L, High Ni ≥ 2.36 µg/L; Low Zn < 385.39 µg/L, High

Zn ≥ 385.39 µg/L; Low As < 48.92 µg/L, High As ≥ 48.92 µg/L.
bGeneralized linear model was used to analyze combined associations between urinary metals with hyperuricemia risk after adjusted for age, gender, education level, marital status, active smoking

status, passive smoking status, drinking status, hypertension, diabetes, hyperlipidemia, BMI, eGFR, and urine creatinine.
cWhen the 95% CI of RERI and AP does not contain 0 and the 95% CI of S does not contain 1, the interaction between the two is considered to be statistically significant.

FIGURE 4

Combined associations between urinary metal levels and SUA concentrations performed with regression tree.

detected urinary metal concentrations, which is a limitation in

assessing metal exposure of the body, because day-to-day variability

of urinary metals concentrations and creatinine excretion of the

body can result in measurement errors. But, it cannot deny the role

of urinary sample, because of the high amount of metal excretion

via urine, and non-invasive and convenience in collection of urine

sample. Finally, the cross-sectional study is unable to identify the

causal relationship between multiple metals exposure levels of the

body and HUA. Further prospective studies are needed to validate

the findings.
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Conclusion

We found a negative association between higher levels of urinary

V, Fe, andNi andHUA risk and a positive association between urinary

Zn and As and HUA risk. Additive interaction of low-Fe (<78.56

µg/L) and high-Zn (≥385.39 µg/L) levels are related to a higher risk

of HUA. The findings indicated the potential importance of Zn and

Fe exposure in the body in the prevention of elevated SUA levels and

HUA risk.
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