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Background: Precise public health and clinical interventions for the COVID-19

pandemic has spurred a global rush on SARS-CoV-2 variant tracking, but current

approaches to variant tracking are challenged by the flood of viral genome

sequences leading to a loss of timeliness, accuracy, and reliability. Here, we

devised a new co-mutation network framework, aiming to tackle these di�culties

in variant surveillance.

Methods: To avoid simultaneous input and modeling of the whole large-scale data,

we dynamically investigate the nucleotide covarying pattern of weekly sequences.

The community detection algorithm is applied to a co-occurring genomic alteration

network constructed from mutation corpora of weekly collected data. Co-mutation

communities are identified, extracted, and characterized as variant markers. They

contribute to the creation and weekly updates of a community-based variant

dictionary tree representing SARS-CoV-2 evolution, where highly similar ones

between weeks have been merged to represent the same variants. Emerging

communities imply the presence of novel viral variants or new branches of existing

variants. This process was benchmarked with worldwide GISAID data and validated

using national level data from six COVID-19 hotspot countries.

Results: A total of 235 co-mutation communities were identified after a 120 weeks’

investigation of worldwide sequence data, from March 2020 to mid-June 2022. The

dictionary tree progressively developed from these communities perfectly recorded

the time course of SARS-CoV-2 branching, coinciding with GISAID clades. The

time-varying prevalence of these communities in the viral population showed a

good match with the emergence and circulation of the variants they represented.

All these benchmark results not only exhibited the methodology features but also

demonstrated high e�ciency in detection of the pandemic variants. When it was

applied to regional variant surveillance, our method displayed significantly earlier

identification of feature communities of major WHO-named SARS-CoV-2 variants in

contrast with Pangolin’s monitoring.

Conclusion: An e�cient genomic surveillance framework built from weekly

co-mutation networks and a dynamic community-based variant dictionary tree

enables early detection and continuous investigation of SARS-CoV-2 variants

overcoming genomic data flood, aiding in the response to the COVID-19 pandemic.
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Introduction

The evolution of severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) presents ongoing risks and threats to natural and

vaccine-induced immunity and the effectiveness of diagnostics

and therapeutics (1–3). With the rapidly increasing volume of

SARS-CoV-2 genomes, leveraging this wealth of data for variant

surveillance quickly becomes intractable due to a daunting

computational hurdle of using gold-standard phylogenetic

approaches (4). Routine analysis of the expanding scale of

sequence data helps the authorities to detect and monitor

variant viruses for further characterization and assessment of

risk but developing efficient methods is still a core need in

this field.

A growing body of evidence shows that multiple mutations

arising simultaneously in one genome, referred as co-mutation, can

be a reliable predictor for viral variant monitoring (5–9). A collection

and combination of co-mutation communities resulted from

genomic data accumulated over time helps to capture the evolution

and transmission patterns of SARS-CoV-2 (7). Nevertheless, the

efficacy of periodic surveillance of co-mutation-based SARS-CoV-2

phylogeny using only updated data for a more computational feasible

but globally correspondent evolutionary profile is still an outstanding

issue to be addressed.

In this study, we developed a co-mutation network surveillance

framework to dynamically scout the nucleotide co-occurring pattern

of sequences retrieved weekly. The homogeneous co-mutations in

the network were found to agglomerate into groups of co-mutation

communities characterized as variant markers. These variant markers

contribute to weekly updates of a dictionary tree representing

community-based SARS-CoV-2 evolution. Emerging communities

indicate the presence of new viral variants or new branches of existing

variants. We demonstrate this process and interpretation through

dynamic creation of global evolution history of major SARS-CoV-

2 variants and validate its variant surveillance efficiency by tracking

multiple variants circulating in some of the major contributors that

provide SARS-CoV-2 genomes in “Global Initiative on Sharing Avian

Influenza Data” (GISAID) (10).

Materials and methods

Data source

A total of 11,529,602 SARS-CoV-2 genomes were retrieved from

GISAID on 25 June 2022. The low coverage sequences (genomes

with >5% Ns) were first excluded and only complete genomes

(genome length >29,000 base pairs) sampled from humans with

explicit collection dates were included. Genomes with duplicated

GISAID sequence names were further detected and eliminated,

resulting in a dataset of 10,249,122 (88.9%) records. Due to sparse

or delayed sequence submission during early epidemic and at the end

of data retrieval, we exclusively involved genomes sampled between

1 March 2020 and 18 June 2022 in our study. Then a bioinformatic

pipeline, as reported by our previous study (9), was applied to the

remaining 10,246,539 (88.9%) sequences to extract and annotate

all single nucleotide polymorphisms (SNPs) and insertions/deletions

(INDELs) for each genome. In consequence, 519,230,825 mutational

events from these sequences were exported and labeled with the

sampling week. Since the earliest sampling time in this study was 1

March 2020, the 1st week was defined as from 1 to 7March 2020. And

the last week of the study period was designated from 12 to 18 June

2022, i.e., the 120th week.

Co-mutation network surveillance

SARS-CoV-2 variant surveillance are performed periodically. We

repeatedly executed weekly detection protocols for real-time tracking

of circulating co-mutation network using our method (Figures 1A–

C). These co-mutation networks across weeks were integrated to

form a dynamic dictionary for variant monitoring and early warning

(Figure 1D). The following subsections detail the complete workflow.

Before network creation, mutations with an allele frequency

at the weekly level ≤1% were eliminated since such mutations

are considered unfixed in a viral population (11) leading to poor

computation effectiveness in co-mutation community detection (7).

Step 1. Weekly co-mutation community
network

Step 1.1. The a�nity model for identification of
paired co-mutations

We model a mutation’s tendency to be present or absent in

a genome where another mutation is already present (Figure 1A).

Suppose that, at each genome, independently of all others, mutation

j is present with probability pj+|i+ if mutation i is present but with

probability pj+|i− if mutation i is absent. Their tendency to co-occur

can be defined as the degree of difference of the two probabilities

using a log odds ratio (12).

αij = log(
pj+|i+

1− pj+|i+
/

pj+|i−

1− pj+|i−
). (1)

When paired mutations co-occur more often, the log odds ratio is

expected to be positive (Supplementary Figure 1A). Or, conversely,

their log odds ratio becomes negative (Supplementary Figure 1B). A

more or less equal value of pj+|i+ and pj+|i− turns αij to be close

to zero, suggesting mutation j’s presence or absence is independent

to mutation i (Supplementary Figure 1C). Then, identification of co-

mutation pairs becomes a series of hypothesis testing problems with

H0 :αij = 0 (Figure 1A). Our analysis considered only co-mutations

with positive co-occurrence.

It has been shown that the binary co-occurrence X follows the

extended hypergeometric distribution with a general form of,

P
(

X = k
)

=

(

mi

k

)(

N −mi

mj − k

)

eαijk/

mj
∑

s=0

(

mi

s

)(

N −mi

mj − s

)

eαijs (2)

for max
(

mi +mj − N, 0
)

≤ k ≤ min(mi,mj) and the same

co-mutation distribution arises if their roles are switched (12).

Obviously, this distribution (i.e., Eq. 2) depends only on mi, mj, N

and αij, but not on pj+|i+ or pj+|i−, indicating insensitive to their

respective prevalence. The αij can be estimated by maximizing Eq.

2 with X = “observed amount of co-occurrence of mutation i and j”

substituted for k and the maximum likelihood estimate α̂ij is termed

to be an affinity metric of co-occurrence (12). Then the P-values can
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FIGURE 1

The schema of dynamic SARS-CoV-2 co-mutation network surveillance. (A) The a�nity-model-based identification of co-mutation pairs. (B) An

illustration of weekly co-mutation network, where nodes and edges with the same colors represent the gathering homogeneous co-mutations, referred

to as co-mutation communities. (C) The arborescence indicating SARS-CoV-2 evolution through modeling the hierarchical containment of partition of

viral population based on the detected communities’ presence or not, where nodes correspond to communities with the same colors as in (B). (D)

Weekly updates of a dictionary tree representing community-based SARS-CoV-2 evolution, which is a “union” of two trees. One is the co-mutation

community tree detected at the current week, where historically circulating communities were colored in yellow but emerging communities in cyan.

Another is last week’s dictionary tree whose nodes are colored in gray. The union results in an update of the dictionary tree where nodes and edges

included in at least one tree are preserved and colored by their circulating features.

be calculated as the exact probabilities of co-occurrence greater than

or less than what is observed. The computation of false discovery

rate across all P-values provides correction for multiple hypothesis

testing and the cutoff for identification of paired co-mutations is

set at 0.001.

Step 1.2. Co-mutation network and co-mutation
communities

Each pair of co-mutations will result in a connection or an

edge leading to an adjacency matrix which defines the co-mutation

network. Let Aw = (Aw
ij ) be the adjacency matrix where Aw

ij = 1 if
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mutation i and j form a co-mutation pair at week w, or else Aw
ij = 0.

Specifically, Aw
ij = 0 if i = j. So, it defines an undirected network

(Figure 1B), denoted by Gw = (Vw,Ew), where Vw is a set of nodes

corresponding to all mutations involved at week w and Ew is a set of

edges each linking a co-mutation pair.

The affinity model indiscriminately identifies homogeneous and

heterogeneous co-mutation pairs (Supplementary Figures 1D, E),

which are respectively abbreviated as HoCPs and HeCPs. A HoCP

is a pair of co-occurring mutations with equal or close mutation

frequencies, while a HeCP is the opposite. A lot of indexes can be used

to measure the homogeneity of paired co-mutations. For simplicity,

we inherited the rate of the co-mutation (RCM) from Qin et al. (7) to

determine a HoCP.

RCMij =
|Mi ∩Mj|
√

|Mi| · |Mj|
(3)

where Mt =
{

Genomes with mutation t
}

(t = i or j) and | · |

denotes the total number of elements in the set. This is equivalent

to the Ochiai efficient (13), which ranges from 0 to 1. The larger it

is, the more homogeneous the two mutations co-occur in the same

viral population. Due to the sequencing errors, a relaxed RCM 0.9

instead of 1.0 was empirically used as a cutoff to determine a HoCP

(Supplementary Figures 2A, B).

The HoCPs identified form an aggregated community structure

with groups of strongly linked nodes (Figure 1B). We excluded non-

HoCP nodes and applied the Girvan-Newman partition algorithm

(14) to discover these HoCP groups, named with co-mutation

communities hereafter, which was executed by R igraph (15) package.

Different from co-mutation modules defined by shared co-mutations

(7), the community detection method may get finer division for these

HoCPs (Supplementary Figures 3A, B).

Step 1.3. Weekly co-mutation community tree
The co-mutation communities exhibit hierarchical organization

in weekly co-mutation network (Figure 1B). This hierarchy can be

captured by division of the viral genomes and their hierarchical

containment according to the detected communities’ presence or not

(7). We built an arborescence, a directed rooted tree, to depict their

concatenated containment between these divisions and then used its

topological ordering to find the hierarchical relationship (Figure 1C).

In detail, the arborescence, denoted by Tw = (Cw,Rw, r),

incorporates nodes Cw corresponding to genome groups present

and labeled with the detected co-mutation communities at week w,

joint by directed edges Rw representing the identified containing

relationships with the direction going from parent to child and rooted

by a complete group r (∈ Cw) including all genomes besides those

with absence of any co-mutation community. Different from the

exact containing relationship, some of the genomes in a child set

may not be included in its parent set due to sequencing errors or

algorithm limitation in genotype or mutation calling. To that end, we

defined a containing relationship cx ⊂ cy (cx, cy ∈ Cw) through their

Simpson index beyond a cutoff determined by evaluation of historical

communities (Supplementary Figure 4). The Simpson similarity is

calculated as,

Simcxcy =
|cx ∩ cy|

min(|cx| ,
∣

∣cy
∣

∣)
. (4)

It ranges from 0 to1 with a value of 1 representing that all elements

in a child set are included in its parent set. That is to say, cx ⊂ cy
if and only if most of the elements in cx are elements in cy where

|cx| < |cy|. To model evolution histories of SARS-CoV-2 similar to a

phylogenetic tree, we constrained edges in Rw to those resulting from

direct containing relationships. For example, if the concatenated

containing relationship cx ⊂ cy ⊂ cz is found, only cx ⊂ cy and

cy ⊂ cz but not cx ⊂ cz will be included, resulting in cz → cy → cx in

the arborescence. Once the containing relationships between groups

have been established, the arborescence can be created and visualized

by R igraph.

Step 2. Dynamic creation of a co-mutation
community dictionary tree

A phylogenetic tree contains smaller trees descending within its

branches. A containing tree descends and branches, while within its

branches a contained tree itself descends and branches. Instead of a

simple pileup in a dictionary, we simulated the phylogenetic tree to

leverage the hierarchical containment structure of genome groups

present with the co-mutation communities to progressively build

the arborescence to capture the evolution patterns of SARS-CoV-2.

Specifically, we called it a dictionary tree.

Step 2.1. Initial dictionary tree
The initial dictionary was composed of all the co-mutation

communities detected at 1st week, where phylogenetic relationships

were determined by their hierarchical containment in the

arborescence (Supplementary Figure 5). And the arborescence

structure of these communities is consistent with Qin et al. (7) using

historically accumulative genomes as of 16 March 2021.

Step 2.2. Creation of weekly dictionary tree
Since 2nd week, the dictionary trees will be built through a

“union” of two trees: last week’s dictionary tree and current week’s

co-mutation community tree (Figure 1D). Before union, similar co-

mutation communities on these two trees should be first merged.

Step 2.2.1. Merging current week’s co-mutation

communities into dictionary

Co-mutation communities identified at the current week may

have been included in the dictionary. While some are fresh

communities composed of completely new mutations that have

not been detected before, or some have common but not identical

mutations in last week’s dictionary. They can be a compression

of, an extension of, or even partially overlap with well-established

communities in the old dictionary (Supplementary Table 1). These

communities were adjusted based on the principle that preserved the

historical dictionary structure as much as possible where the Jaccard

index was used tomeasure similarity of paired communities. In detail,

the updating rules are: (i) a new community will be substituted by its

most similar one in the dictionary if community compression occurs;

(ii) a new community with an extension of at least two mutations will

be progressively split into two: one corresponding to its most similar

communities in the dictionary and another one for its extension;

(iii) a new community will be replaced by its most similar one in
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the dictionary with a Jaccard similarity ≥ 0.5 (16) if partial overlap

happens, or else it will be kept. All community adjustment has been

listed in Supplementary Table 2.

Step 2.2.2. Re-creation of current week’s co-mutation

community tree

We re-built the co-mutation community tree at the current

week using communities after adjustment according to the flowchart

described in step 1.3. Before that, communities, that are identified

as intermediate nodes in last week’s dictionary tree and leading to

those communities present at the current week, will be appended

(Supplementary Figure 6).

Step 2.2.3. Union of last week’s dictionary tree and current

week’s community tree

We executed the union of two trees using “union” function in R

igraph. All communities (nodes) and their hierarchical relationships

(edges) included in at least one tree will be preserved as part of the

new dictionary tree (Figure 1D). Completely new communities which

may suggest emergence of new branches are highlighted in color.

Workflow benchmark and validation

Our dynamic surveillance framework using co-mutation network

was benchmarked through monitoring major SARS-CoV-2 variants

and their branches at global level. National level data from primary

contributors, including South Africa, India, Brazil, Philippines,

United Kingdom (UK) and United States of America (USA), were

leveraged to further validate the surveillance efficiency. Considering

huge fluctuation in sample size in different countries and collection

weeks, distinct mutation filtration rules were utilized before genomic

surveillance. Specifically, when total genomes collected across the 120

weeks were <200,000, we only kept mutations that had occurred

in 10% or more of genomes with occurrences >10 in at least one

sampling week. Otherwise, the same parameters were used as global

surveillance. In addition, variant surveillance at national level will

focus on early detection and prevalence monitoring of co-mutation

communities indicating novel or rapidly circulating variants or

their branches.

Results

Co-mutation communities capture the
emergence, circulation, and extinction of
SARS-CoV-2 variants

A total of 10,246,539 SARS-CoV-2 sequences sampled between

1 March 2020 and 18 June 2022 were included in this study. These

viral sequences have been distributed over 120 sampling weeks

and experienced an exponential growth over time, from thousands

to hundreds of thousands a week (Supplementary Figure 7). We

identified 166,893 nucleotide mutations with a total of 519,230,825

mutational events from this data, but only 1,208 (0.7%) reached a

frequency of > 1% in at least 1 week (Supplementary Figures 8A, B),

indicating a high chance of unstable mutations, or even sequencing

error. The counting statistics in co-mutation discovery (see Materials

and methods section) from such a giant data set showed that the co-

mutation communities highly condensed viral variation information

(Supplementary Table 3). These communities, illustrated by feature

communities of WHO-named Alpha (B.1.1.7), Beta (B.1.351),

Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529) variants,

demonstrated very sensitive detection in variants’ emergence

and concurrent growth, peaking, and decline in their epidemic,

indicating strong surveillance potential (Supplementary Table 4,

Supplementary Figures 9, 10). The filtration of mutations with

low occurrence rate (≤1%) provided more accurate and reliable

capture of viral variants’ signal with a prevalence level of about

1% (Figure 2).

Hierarchical containment between
co-mutation communities reveals the
phylogenetic relationships

The affinity model was applied to each weekly data set to detect

paired co-mutations. These weekly co-mutations contributed to the

formulation of a co-mutation network where HoCPs gathered into

groups of densely interconnected communities (see Materials and

methods section). Interestingly, the co-mutation network displayed

a community clustering structure (Figures 3A–E left), exemplified

by the gathering of co-mutation communities into groups such that

communities within groups are closer to each other. The gathered

communities seemed to be connected to higher-level communities at

the network center. By partitioning the viral population according to

the communities’ presence or not and their containing relationships,

we dynamically established the hierarchical containment of the

variants at different stages of the pandemic. This structure

captures the hierarchical organization of these communities. These

relationships were visualized using an arborescence to depict their

hierarchy. This computational framework provided accurate insights

on weekly epidemic communities and their branching relationships

highlighting circulating SARS-CoV-2 variants (Figures 3A–E right

and Supplementary Table 2). It also showed sensitive and accurate

detection capability in emerging communities indicating novel

evolutionary branches (Supplementary Figures 11A–E).

Worldwide dictionary tree of co-mutation
communities provides global profiles of
SARS-CoV-2 variants

Based on the above facts, we periodically created dictionary

trees to continuously accumulate and store weekly detected co-

mutation communities and their evolutionary relationships (see

Materials and methods section). As of mid-June 2022, a dictionary

tree comprised of 235 co-mutation communities has been built

to imprint the whole evolutionary history of SARS-CoV-2 virus

(Supplementary Table 5). This dictionary tree was progressively

developed over 120 weeks and represented the time course of

SARS-CoV-2 branching, coinciding with GISAID clades (Figure 4).

Curiously, the community including the co-mutation pair of

A28877T andG28878C independently appeared in different branches

of Gamma (P.1) and Omicron (B.1.1.529 branches of BA.1 and BA.2),

suggesting possible recombination events of these viral descendants

(Supplementary Table 5).
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FIGURE 2

Temporal dynamics of major WHO-named SARS-CoV-2 variants identified by co-mutation communities using worldwide data. All mutations included

were priorly filtered with a frequency of >1%. The scatter plots showed the prevalence changes over time of community-based variant surveillance. The

circles were sized by the median of RCMs of aggregated co-mutation pairs at each sampling week. In the background, the prevalent trajectories of the

variants were shown using histograms in pink.

Dynamic co-mutation network surveillance
provides early detection of SARS-CoV-2
variants

Our efficient computational framework performed SARS-CoV-2

variant surveillance through weekly tracking of the circulating

co-mutation network. When novel co-mutation communities

arise, our method is expected to provide timely detection at a

low prevalence, identify their phylogenetic branches of emerging

variants, and aid in early warning and response. We found

no significant superiority for our method in detected time at

global level surveillance in contrast with Pangolin’s monitoring

(Figure 5A and Supplementary Table 6), which may result from

signal flooding due to massive data. However, it demonstrated

a strong advance at national level monitoring, illustrated using

data from South Africa, India, Brazil, Philippines, UK and

USA (Supplementary Table 7), which exhibited significantly

earlier detection of key co-mutation communities referring

to major WHO-named SARS-CoV-2 variants (Figure 5B and

Supplementary Table 6).

Discussion

We developed a co-mutation network surveillance framework

for dynamical nucleotide co-occurrence pattern investigation of

weekly sequences and leveraged this framework to deliver an

evolution and transmission monitoring of SARS-CoV-2 (Figure 1).

This strategy required nothing more than weekly genomic data,

enabling us to execute monitoring with only a laptop but to offer
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FIGURE 3

Weekly co-mutation network and co-mutation community tree for

viral variant surveillance. Worldwide sequences at first detected week

of major WHO-named SARS-CoV-2 variants were included for

network creation [(A–E) left] and arborescence generation [(A–E)

right]. Nodes (i.e., co-mutation communities) located at close

branches of the arborescence were shown with the same or similar

colors. Appended nodes (see Material and methods section) were

shown in white. The same colors were designated to nodes and edges

that made up the communities in the co-mutation network. Emerging

communities indicating novel viral variants were highlighted with red

boxes.

efficient surveillance of major viral variants and their branches

(Figure 4). Confidence in the monitoring of spreading variants came

through retrospectively evaluating multiple variants of the pandemic

(Figures 2, 3) and verifying its timeliness, accuracy and reliability

in detection through comparing it with Pangolin nomenclature

at global and national level data sets. Our approach provided

several weeks’ earlier warning using national level data (Figure 5),

highlighting its powerful potential in variant surveillance and public

health response.

This work is a profound advancement over previous studies. First,

it provides periodic co-mutation network surveillance using weekly

genomic data but produces global evolutionary history through the

union of weekly co-mutation communities. This method avoids

the huge computational burden caused by the use of cumulative

data (7). Second, the affinity model (12) was introduced for

statistical discovery of weekly co-mutation pairs (either HoCPs

or HeCPs), further contributing to the creation of a weekly co-

mutation network. The network conglomerated HoCPs forming

groups of co-mutation communities while HeCPs aided in generating

community clusters that unveil novel branching patterns. This

approach identifies emerging communities and their branching

relationships with the latest circulating ones, indicating novel variants

and their evolutionary relationships. This strategy contrasts most

of previous researches that focuses on discovery of individual

communities (9, 16).

Several recent efforts seek to compensate for the sensitivity and

accuracy of emerging variants using phylogenetic tree to improve

real-time variant surveillance. Most of these studies focus on trend

survey of viral mutations (3, 17, 18) or their phenetic clustering

(11, 19) but not real variant monitoring. Time-series clustering of

frequency trajectories of mutations has been found to be an efficient

tool in variant discovery and prediction (9, 16). Challenges arise in

interpreting these results due to discrepancies in cluster features of

the same variants that hinder comparisons of horizontal (between-

country) or longitudinal (across-time) monitoring results. Our

current work provides merging rules of co-mutation communities to

overcome this problem.

The phylogenetic-tree-based methods such as Pangolin

(20), Nextstrain (21), and GISAID (22) have been consistently

proposed for SARS-CoV-2 variant detection and their evolution

surveillance. But several challenges have been acknowledged.

First, their computational complexity and statistical uncertainty

in the phylogenetic construction reduce the monitoring efficiency

(7). Second, their subtyping fineness either results in excess

burden on variant surveillance (e.g., Pangolin with >2,000

lineages, so far) or delayed detection and communication of

dangerous variants (e.g., Nextstrain with 31 clades and GISAID

with 11 clades) (9). Our method gives moderate resolution

of 235 variants (Supplementary Table 5) and achieves real-

time variant discovery through the identification of novel

co-mutation communities.

There are limits to this study. The current work provides near

real-time detection of novel co-mutation communities indicating

emergence of novel variants at a low prevalence but not a true

appearance of previously unobserved variants. Thus, the global

dictionary tree accumulated from weekly co-mutation communities

recorded the major branches reaching the prevalence threshold

(>1%), and could not be thought as a substitute of GISAID’s global

phylogeny of SARS-CoV-2. In addition, multiple consistency indexes

have been introduced in our surveillance framework and their

thresholds for similarity measurement are all empirical. We believe

it is a trade-off between detectability and discriminability in variant

monitoring. The efficacy of the empirical thresholds was verified

throughout the study.

Conclusion

In this study, a simple, explainable, and accurate approach

was presented for SARS-CoV-2 variants surveillance, enabling

an early detection and continuous investigation of viral variants
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FIGURE 4

Worldwide dictionary tree comprised of co-mutation communities detected as of mid-June 2022. In total, 235 co-mutation communities were collected

and piled up for arborescence creation. The branching process displayed high consistency with GISAID clades (S, V, O, G, GR, GH, GV, GK, GRY and GRA)

through a comparison of weekly genome grouping using these communities or GISAID designation, which details have been listed in

Supplementary Table 2.

FIGURE 5

Capture of the emergence of WHO-named SARS-CoV-2 variants. (A) The heatmap of worldwide prevalence calculated from variants’ feature co-mutation

communities. Their first detected weeks were marked with di�erent symbols depending on detection frameworks. (B) The heatmap of national-level

prevalence of the same communities using data from country first detected. These countries include South Africa, India, Brazil, Philippines, UK or USA.
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overcoming genomic data flood and aiding in the response to the

COVID-19 pandemic.
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