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Introduction: Despite of growing evidence linking silica nanoparticles (SiNPs), one of
the global-top-three-produced and -used nanoparticle (NP), to human health risks,
there remain many knowledge gaps over the adverse e�ects of SiNPs exposure on
cardiovascular system and the underlying molecular mechanisms.

Methods: In this study, the ferroptotic e�ects of SiNPs (20 nm; 0, 25, 50, and
100 µg/mL) on human umbilical vein endothelial cells (HUVECs) and the possible
molecular mechanism were studied with the corresponding biochemical and
molecular biology assays.

Results and discussion: The results showed that at the tested concentrations, SiNPs
could decrease HUVEC viability, but the deferoxamine mesylate (an iron ion chelator)
might rescue this reduction of cell viability. Also, increased levels of intracellular
reactive oxygen species and enhanced mRNA expression of lipid oxidation enzymes
(ACSL4 and LPCAT3) with increase in lipid peroxidation (malondialdehyde), but
decreased ratios of intracellular GSH/total-GSH and mitochondrial membrane
potential as well as reduced enzymatic activities of anti-oxidative enzymes (CAT, SOD,
and GSH-PX), were found in the SiNPs-treated HUVECs. Meanwhile, increase in p38
protein phosphorylation and decrease in NrF2 protein phosphorylation with reduced
mRNA expressions of downstream anti-oxidative enzyme genes (CAT, SOD1, GSH-PX,
and GPX4) was identified in the SiNPs-exposed HUVECs. These data indicated
that SiNPs exposure might induce ferroptosis in HUVECs via p38 inhibiting NrF2
pathway. Ferroptosis of HUVECs will become a useful biomarker for assessing the
cardiovascular health risks of environmental contaminants.
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1. Introduction

The increasingly extensive production and widespread usage of nanomaterials have resulted
in myriad engineered nanoparticles (ENPs) entering into the eco-environments and human
occupational and living environments (1–5). The exposure of humans and eco-environments
to these ENPs has been increasing through all possible routes over their life cycle (1–5). Thus,
globally ever-increasing concerns have been raised on the potential adverse effects of ENPs
exposure on humans and eco-environments. But, currently, their impacts on human health and
eco-environmental safety, as well as the underpinning biological mechanisms, are still far from
being well understood (6).

Silica nanoparticles (SiNPs), one of the most extensively-produced ENPs, have been widely
applied to various areas, including but not limited to, foods, building materials, biomedical
and biotechnological field, and electronic and chemical industries (1, 7). SiNPs have also been
ranked in the top three global nanomaterial-based consumer products (1, 7). With the increasing
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production and application, the exposure of SiNPs to people has
been increasing through all possible routes. Notably, following the
exposure of inhalation, ingestion or skin, SiNPs can easily pass
through the various physiological barriers of mammas and enter the
systemic circulation and in turn affect a variety of target organs (8, 9).
In addition, SiNPs may be injected directly into the bloodstream in
the usages of medicine (10). Consequently, the cardiovascular system
is directly exposed to these NPs before they reach other target organs.
Thus, their potential adverse effects on the cardiovascular system
deserve great concerns. Currently, however, research focusing on
their potentials to damage cardiovascular health is relatively limited,
in particular, the underpinning biolgical mechanisms have not yet
been fully clarified (2, 11).

Atherosclerosis (AS) is an important common
pathophysiological basis of cardiovascular diseases (CVDs)
(12, 13). Modern medical insights into the fundamental mechanism
of AS have shown that dysfunction and impairments of endothelial
cells (ECs) lining the innermost layer of the cardiovascular system
are not only a critical initial step of AS, but also involved in
both the progression of plaques and occurrence of atherosclerotic
complications, ultimately resulting in CVDs (12, 14). Ferroptosis
is an iron-dependent form of programmed cell death driven by
abnormal lipid peroxidation and redox imbalance, which are linked
to the pathogenesis of AS (15). Therein, ferroptosis of ECs was
indicated to be an important pathological process involved in AS and
its complications (16). Our prior works have shown that SiNPs are
able to pose multiple toxicities to human umbilical vein endothelial
cells (HUVECs), a model cell which is widely used to study the
possible molecular mechanisms underlying the pathophysiological
processes of AS (1, 17). Up to now, however, it’s yet unclear both
whether SiNPs exposure may induce ferroptosis in ECs and what the
underlying molecular mechanisms are.

In this study, therefore, we firstly determined the potential of
SiNPs to induce ferroptosis in HUVECs in culture. After that, the
underlying molecular mechanism was probed through measuring
the mRNA or protein expression of critical genes involved in the
ferroptotic pathway. The aim is to gain an extended understanding
in the ferroptotic effects of SiNPs exposure on HUVECs as well as
the possible molecular mechanism, in order to offer scientific data to
assess their potential risks to public cardiovascular health.

2. Materials and methods

2.1. SiNPs, chemicals, agents and antibodies

Amorphous SiNPs (20 ± 5.6 nm, their characteristic features
were documented in S1) were bought from Jiangsu XFNANO
Materials Tech Co., Ltd (Nanjing, China). The chemicals, agents
and test kits, primers for RT-qPCR, and antibodies were listed in
Supplementary Tables S1–S3, respectively.

2.2. Cell culture and SiNPs exposure

HUVECs and their culture conditions have been detailly
described in our prior papers (1, 18). The exponentially growing cells
were exposed to suspensions of SiNPs (final concentrations: 0, 25,
50, and 100 µg/mL, freshly made by ultrasonic dispersion) in full

medium of cell culture to perform the following assays. Triplicate in
each dose were prepared.

2.3. Cell viability assay

After being seeded in 96-well microplates at a density of 5,000
cells/well for 24 h, HUVECs were treated with SiNPs suspensions
(0, 25, 50, and 100 µg/mL) for 24, 48, and 72 h, respectively. The
viabilities of HUVECs were determined with the Cell Counting Kit-8
(CCK-8) according to the standardized protocol (17, 19). 10 µl CCK-
8 reagent was added into each well and incubated at 37◦C in the CO2
incubator for 4 h. The light absorbance was determined at 450 nm
with a Thermomax microplate reader (Menlo Park, USA).

Then, the viabilities of HUVECs respectively exposed to four
groups of SiNPs and/or deferoxamine mesylate (DFO) (SiNPs
25 µg/mL, DFO 28 µg/mL, SiNPs 25 µg/mL + DFO 28 µg/mL) and
negative control for 24 h were determined.

2.4. RT-qPCR

After treating HUVECs with four groups (negative control, SiNPs
25 µg/mL, DFO 28 µg/mL, SiNPs 25 µg/mL + DFO 28 µg/mL)
for 24 h, the total RNAs of HUVECs were extracted with the
FastPureCell/Tissue Total RNA Isolation Kit and subsequently were
reversely transcribed to cDNAs with the HiScript III 1st Strand cDNA
Synthesis Kit according to their manufacturer’s protocols. RT-qPCR
was performed to quantitatively measure the copy numbers of cDNAs
of target genes (their primers were listed in Supplementary Table S2)
with the 2 × ChamQ Universal SYBR qPCR Master Mix in the
7,500 Fast Real-Time PCR system (20). The relative levels of mRNA
expression of target genes were normalized to that of β-actin using
the 2−11Ct method (20).

2.5. Intracellular ROS assay

After treatment with suspensions of SiNPs (0, 25, 50, and
100 µg/mL) for 24 h, the levels of intracellular reactive oxygen
species (ROS) in HUVECs were detected with a ROS assay kit,
which was based on the fluorescent probe 2,7-dichlorofuorescin
diacetate (DCFH-DA), according to the standardized protocol (1,
18). The morphology of cells was photographed with an inverted
fluorescene microscope qualitatively (Nikon, Japan) and the emission
of fluorescence (at 530 nm) was quantified by a Thermo Fisher
Flurescence spectrophotometer (Thermo Fisher, USA) (21). The
levels of intracellular ROS were expressed directly in the manner of
values of mean fluorescence intensity (MFI) measured.

2.6. GSH and total GSH assay

Following the treatment of SiNP suspensions (0, 25, 50, and
100 µg/mL) for 24 h, the levels of intracellular GSH and total GSH
(T-GSH) in HUVECs were detected respectively with a GSH assay kit
and a total GSH assay kit according to their standardized protocols,
which use catalytic GSH to reduce 5,5’-dithiobis(2-nitrobenzoic acid)
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(DTNB) to TNB (1, 18). Briefly, after the protein removal, the
extracts of cells were used to determine the levels of GSH and T-
GSH respectively with a Thermomax microplate reader (Menlo Park,
USA) to measure the absorbance at 412 nm under the procedure of
these kits.

2.7. MDA assay

The levels of malondialdehyde (MDA), an important biomarker
of lipid peroxidation, were measured with a MDA Detection Kit
according to the manufacturer’s protocol, which bases on the reaction
between MDA and thiobarbituric acid to form a red compound that
has a largest absorbance at 535 nm (21).

2.8. MMP assay

The changes of mitochondrial membrane potential (MMP) were
monitored through the fluorescence probe JC-1 within the MMP
assay kit according to the manufacturer’s protocol (22). Briefly,
following 500 µl working solution being added to the cells, the
cells were incubated at 37◦C in the CO2 incubator for 15 min. After
washing with incubation buffer, fluorescence intensities of cells were
observed with a fluorescence microscope (Nikon, Japan).

2.9. Activity assay of anti-oxidative enzymes

Catalase (CAT) activity was determined by a CAT Detection kit
according to the manufacturer’s protocol, which analyze the rate of
CAT-mediated H2O2 decomposition at 240 nm (23). The activities of
CAT were presented as U/mg protein.

Activity of superoxide dismutase (SOD) in HUVECs was detected
through a SOD Detection kit according to the manufacturer’s
protocol (24). The principle is that SOD cleans the superoxide
anion produced by xanthine oxidase oxidizing xanthine to block up
superoxide anion reducing azoblue tetrazole to form blue methyl,
which has the largest light absorption at 560 nm. The activities of SOD
were expressed as U/mg protein.

Glutathione peroxidase (GSH-PX) activity was measured with a
GSH-PX Detection kit according to the manufacturer’s instructions
(24). The GSH-PX is able to catalyze the oxidation reaction between
GSH and benzoic acid chromogenic to produce yellow anion which
has the largest light absorption at 422 nm. The activities of GSH-PX
were documented as U/mg protein.

2.10. Western blot

The relative levels of target proteins were determined with
the western blot according to the standardized procedure, which
were detailly described in our prior papers (17–19, 25, 26). Briefly,
after treating HUVECs with suspensions of SiNPs (0, 25, 50, and
100 µg/mL) for 24 h, the protein extracts were prepared. Following
separation on SDS-PAGE gels, the proteins were transferred
to the PVDF films for western blot. After the incubation of
primary antibodies for target proteins (Supplementary Table S3)

and subsequently incubation of HRP-conjugated second antibodies,
the films were developed with a chemiluminescence ECL kit and
measured with Tanon 6,100 Chemiluminescent Imaging System.
Relative levels of the target proteins to the β-actin were expressed.

2.11. Statistical analysis

The data was present in the manner of Mean ± SE (n = 3). One-
way analysis of variance (Bonferroni post hoc test) for multiple group
comparison were used and 2 × 2 factorial analysis can be used for
analyzing the main effect, interaction and individual effect of SiNPs
and DFO on viability, ACSL4, LPCAT etc. Statistical significance was
accepted at p < 0.05. SPSS Statistics 19.0 was the statistical software.

3. Results

3.1. Cytotoxicity

As illustrated in Figure 1A, with the increased concentrations and
durations of SiNPs exposure, the viabilities of HUVECs were found
to significantly decrease, presenting a clearly dose-dependent effect
relationship. Interestingly, the DFO, an iron ion chelator that can
inhibit the uptake of iron ion by cells, was able to clearly increase the
viability of HUVECs when they were simultaneously treated with the
DFO and SiNPs (Figure 1B), suggesting that the iron ion has taken
an important role in this SiNPs-mediated cytotoxicity to HUVECs,
which is a key feature of cell ferroptosis.

3.2. Expression of key genes involved in
ferroptosis pathway

To further confirm that the occurrence of ferroptosis in this
SiNPs-mediated cytotoxicity to HUVECs, the mRNA expressions of
several key genes involved in the modulation of ferroptosis pathway
were determined by RT-qPCR. Both ACSL4 (acyl-CoA synthetase
long-chain family member 4) and LPCAT3 (lysophosphatidylcholine
acyltransferase 3), are two critical enzymes involved in phospholipid
metabolism (particularly in the oxidation of polyunsaturated fatty
acids) and contribute to ferroptosis (16, 27). The results showed that
SiNPs exposure could significantly enhanced the mRNA expressions
of both ACSL4 and LPCAT3 in HUVECs, but the DFO was able
to decrease their mRNA expressions in HUVECs when they were
simultaneously treated with DFO+ SiNPs (Figures 2A, B).

PCBP1 (poly (PC) binding protein 1) can bind to Fe2+ to generate
ferritin, which regulates the availability of intracellular Fe2+ (16).
The SiNPs exposure did not alter the mRNA expression of PCBP1
in HUVECs, but DFO was able to significantly reduce its mRNA
expression in HUVECs (Figure 2C).

GPX4 (glutathione peroxidase 4), an enzyme which transforms
lipid hydroperoxides into nontoxic lipid alcohols, is able to effectively
abate the impairment mediated by oxidized lipids to biomembrances
of cells (16, 27). The results showed that SiNPs exposure could
significantly decrease the mRNA expression of GPX4, and that
the DFO was able to increase its mRNA expression in HUVECs
(Figure 2D).
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FIGURE 1

The viabilities of HUVECs under SiNPs exposure. (A) The time- and dose-dependent viabilities of HUVECs exposed to SiNPs. (B) The DFO rescue the
viabilities of HUVECs exposed to SINPs. [The negative control: con; *p < 0.05; **p < 0.01, compared with the con; ##p < 0.01, compared with the SiNPs,
n = 3].

FIGURE 2

The mRNA expression of key genes involved in ferroptotic pthway. (A) The relative mRNA expression of ACSL4. (B) The relative mRNA expression of
LPCAT3. (C) The relative mRNA expression of PCBP1. (D) The relative mRNA expression of GPX4. [**p < 0.01, compared with the con; #p < 0.05,
##p < 0.01, compared with the SiNPs, n = 3].

Collectively, these results suggested that SiNPs exposure
might not only increase the mRNA expressions of the key genes
(such as ACSL4 and LPCAT3) that can contribute ferroptosis,
but also decrease the mRNA expression of anti-ferroptosis
gene, GPX4, to induce ferroptosis in HUVECs. Therein, the
bioavailability of intracellular Fe2+ takes a critical role in this
pathophysiological process.

3.3. Intracellular oxidative conditions

A specific hallmark of ferroptosis is intracellular redox imbalance
and lipid peroxidation with accumulation of lipid hydroperoxides
(such as MDA) (16). So the intracellular ROS level, ratio of GSH/total
GSH (T-GSH) and content of MDA were detected in HUVECs under
SiNPs exposure. The results showed that clearly enhancing levels
of intracellular ROS were produced in HUVECs with the elevating
concentrations of SiNPs exposure (Figures 3A, B), showing a positive
dose-effect relationship (P < 0.01). Correspondingly, the ratios of
GSH/T-GSH were decreased with the increased concentrations of
SiNPs treated (Figure 3C). These results suggested SiNPs exposure

induced redox imbalance in HUVECs. At the same time, the levels
of MDA were also increasing with the elevating concentrations of
SiNPs exposure (Figure 3D), presenting a similar manner of dose-
effect relationship. These data further confirmed that SiNPs exposure
could induce ferroptosis in HUVECs.

To further explore the mechanism underlying the redox
imbalance and lipid peroxidation in HUVECs exposed to
SiNPs, the activities of key anti-oxidative enzymes (including
CAT, SOD and GSH-PX) and the MMP [a key biomarker for
mitochondrial impairment (28)] were determined. As illustrated in
Figure 4A, the red fluorescence produced from J-aggregate in normal
mitochondria of HUVECs was clearly weakening with the increasing
concentrations of SiNPs exposure, showing a clear reduction in
the MMP, which means an increase of mitochondrial impairments.
Meanwhile, the activities of the anti-oxidative enzymes (CAT, SOD,
and GSH-PX) in HUVECs were decreasing with the elevating
concentrations of SiNPs exposure (Figures 4B–D). These results
indicated that SiNPs exposure could induce significant increases in
both intracellular ROS and lipid peroxidation in HUVECs by both
causing mitochondrial impairment and inhibiting the activities of
anti-oxidative enzymes (CAT, SOD, and GSH-PX).
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FIGURE 3

The levels of ROS, MDA and ratios of GSH/T-GSH in HUVECs. (A) The intensity of intracellular green fluorescence. (B) The relative levels of intracellular
ROS. (C) The ratio of GSH/total GSH. (D) The levels of MDA. [**p < 0.01, compared with the con, n = 3].

3.4. p38/Nrf2 pathway

To probe the action of transcription factor nuclear factor
erythroid-2-related factor 2 (NrF2), a master regulator that
moderates the expression of various anti-oxidative enzymes in
cells (29), and its upstream inhibitory regulator, the p38 MAPK
(mitogen-activated protein kinase) (30), the total NrF2 protein and
its phosphorylation (Ser40), total p38 protein and its phosphorylation
(Thr180/Tyr182), and the mRNA levels of downstream target genes
(anti-oxidative enzymes, such as CAT, SOD1, GSH-PX, and GPX4)
were determined with western blot and RT-qPCR respectively. The
results showed that the phosphoration of Nrf2 protein (Ser40)
was decreasing in HUVECs with the increasing concentrations of
SiNPs exposed (Figures 5A, B). Instead, the phosphorylation of p38
(Thr180/Tyr182) was enhancing with the increasing dose of SiNPs
exposure (Figures 5A, C). Correspondingly, significant reductions in
the mRNA expression of anti-oxidative enzyme genes (CAT, SOD1,
GSH-PX, and GPX4) were observed in the SiNPs-treated HUVECs
(Figures 5D–G). These data suggested SiNPs exposure may activate
the p38 to inhibit the NrF2, resulting in the decreased mRNA
expression of downstream antioxidative enzyme genes in HUVECs.

4. Discussion

As one of the global top three produced and used NPs, SiNPs
have been increasingly exposing to human beings via all possible
accesses (1, 7). As mentioned above, they will directly expose to the
endothelium of cardiovascular system as soon as they pass through
the physiological barriers of body or are injected into the bloodstream
due to the medical usages (8–10). They will pose adverse effects
to cardiovascular system primarily through their toxicities on the
ECs, which take a vital role in maintaining the homostasis and
normal functions of cardiovascular system as well as in various
pathophysiological processes of CVDs (12, 31, 32). But, up to now,
our understandings in the adverse effects of SiNPs on ECs, especially
about the underlying molecular mechanisms, are still rudimentary.

Ferroptosis is an iron-dependent form of programmed cell death,
characterized with mitochondrial impairment, redox imbalance and
lipid peroxidation (15). In this study, SiNPs exposure was found to
cause a significant decrease in cell viability to HUVECs (Figure 1A),
but inhibition of iron ion uptake into cells by DFO (an iron ion
chelator) could rescue this reduction in cell viability (Figure 1B),
decrease the mRNA expression of both ACSL4 and LPCAT3 [two
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FIGURE 4

The impairment of mitochndria and activities of anti-oxidative enzymes. (A) The changes of mitochondrial membrane potential (intensity of the red
fluorescence is positive correlation to the height of mitochondrial membrane potential). (B) The activities of CAT. (C) The activities of SOD. (D) The
activities of GSH-PX. [*p < 0.05, **p < 0.01, compared with the con, n = 3].

key enzymes involved in oxidation of polyunsaturated fatty acids
in cellular membranes and contribute to ferroptosis (16, 27)], and
increase the mRNA expression of GPX4 [a key anti-ferroptotic
enzyme (16, 27)] in HUVECs (Figure 2), indicating this SiNPs-
mediated cell death in HUVECs is iron-dependent. At the same time,
significant increases in mitochondrial impairment (Figure 4A), levels
of intracellular ROS and lipid peroxidation (e.g., MDA), as well as a
clear reduction in the ratios of GSH/T-GSH (Figure 3), were observed
in HUVECs exposed to SiNPs. These results confirmed that SiNPs
exposure can induce ferroptosis in HUVECs.

Up to day, the molecular cascades involved in the SiNPs-
mediated ferroptosis in HUVECs have not yet been elucidated, while
the underlying mechanisms of ferroptosis have been extensively
studied since it was first identified (33). Although others (34)
and our previous works (1) had shown that SiNPs exposure can
induce a significant production of intracellular ROS in the exposed
cells, but the underpining mechanisms were not fully clarified. In
this study, we found that SiNPs exposure could induce serious
redox imbalance with significantly increased intracellular ROS
and decreased reductants (e.g., GSH) (Figures 3A–C) in HUVECs
via multiple approaches, including damaging the mitochondria
(Figure 4A), promoting the uptake of iron ion (Figures 1, 2), down-
regulating the expression of anti-oxidative enzymes (e.g., CAT, SOD,
GSH-PX, and GPX4) (Figures 5D–G) and decreasing their enzymatic
activities (Figures 4B–D), resulting in lipid peroxidation (Figure 3D).
In addition, SiNPs exposure can also promote lipid peroxidation
by both up-regulating the expressions of ACSL4 and LPCAT3

(two critical enzymes for lipid oxidation) and down-regulating the
expression of GPX4 (an enzyme can transform lipid hydroperoxides
into nontoxic lipid alcohols) (Figure 2). At the same time, the
increasing intracellular ROS (e.g., H2O2) can activate p38 (35) to
inhibit NrF2 activation, resulting in reductions in the expressions of
the downstream anti-oxidative enzymes (e.g., CAT, SOD, GSH-PX,
and GPX4) (Figure 5). Additionally, NrF2 was found to be associated
with the outer membrane of mitochondria and protects them from
oxidative impairments (36). Thus, this inhibition of NrF2 will further
make mitochondria easy to SiNPs-mediated oxidative damaging.
Collectively, these have formed a positive feedback for increase in
intracellular ROS, mitochondrial impairment and lipid peroxidation,
ultimately leading to ferroptosis.

As mentioned above, ECs ferroptosis is an important pathological
process involved in AS and its complications (16). This work showed
that SiNPs exposure at the tested doses was able to induce ferroptosis
in HUVECs. Moreover, Ma et al. (37) have found that amorphous
SiNPs can accelerate atherosclerotic lesion progression in ApoE−/−

(knockout) mice. These results indicate that long-term and high-
dose SiNPs exposure will promote initiation and progression of
AS, leading to CVD events. Notably, based on their production
and usages, the concentrations of SiNPs in some environmental
compartments (e.g., soils and sediments) were estimated to be high
to “mg/kg” (38, 39), although there are not yet the real data of
human exposure to SiNPs. At “this” level of environmental SiNPs
exposure, there will be an increasing atherosclerotic risk for exposed
population, especially for those occupational individuals who are
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FIGURE 5

The phosphorylation of p38 and Nrf2 protiens and mRNA expressions of downstream anti-oxidative enzymes. (A) the protein bands of NrF2, p-NrF2, p38,
and p-p38. (B) The relative gray values of p-NrF2 to NrF2. (C) The relative gray values of p-p38 to p38. (D) The relative mRNA expression of CAT. (E) The
relative mRNA expression of SOD1. (F) The relative mRNA expression of GSH-PX. (G) The relative mRNA expression of GPX4. [**p < 0.01, compared with
the con, n = 3].

more likely to expose to high dose of SiNPs. Induction of ferroptosis
in ECs may be an important biological mechanism whereby SiNPs
exposure affects the cardiovascular health. EC ferroptosis will
be a useful biomarker for assessing the risks of environmental
contaminants to the cardiovascular health.

5. Conclusion

SiNPs exposure may induce ferroptosis in HUVECs through
ROS/p38/NrF2 pathway. Long-term and high-dose SiNPs exposure
will increase the atherosclerotic risk to human cardiovascular
health. Ferroptosis of ECs will be a useful biomarker for us to
assess the potential risks of environmental contaminants to human
cardiovascular health.
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