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Explainable artificial intelligence (XAI) is of paramount importance to various
domains, including healthcare, fitness, skill assessment, and personal assistants, to
understand and explain the decision-making process of the artificial intelligence
(AI) model. Smart homes embeddedwith smart devices and sensors enabledmany
context-aware applications to recognize physical activities. This study presents
XAI-HAR, a novel XAI-empowered human activity recognition (HAR) approach
based on key features identified from the data collected from sensors located
at di�erent places in a smart home. XAI-HAR identifies a set of new features
(i.e., the total number of sensors used in a specific activity), as physical key

features selection (PKFS) based on weighting criteria. Next, it presents statistical

key features selection (SKFS) (i.e., mean, standard deviation) to handle the
outliers and higher class variance. The proposed XAI-HAR is evaluated using
machine learning models, namely, random forest (RF), K-nearest neighbor (KNN),
support vector machine (SVM), decision tree (DT), naive Bayes (NB) and deep
learning models such as deep neural network (DNN), convolution neural network
(CNN), and CNN-based long short-term memory (CNN-LSTM). Experiments
demonstrate the superior performance of XAI-HAR using RF classifier over all other
machine learning and deep learningmodels. For explainability, XAI-HAR uses Local
Interpretable Model Agnostic (LIME) with an RF classifier. XAI-HAR achieves 0.96%
of F-score for health and dementia classification and 0.95 and 0.97% for activity
recognition of dementia and healthy individuals, respectively.

KEYWORDS

explainable AI, advanced sensors, assistive technology, key feature extraction, human

activity recognition, Internet of Things, healthcare

1. Introduction

Smart home and artificial intelligence (AI)-based healthcare systems are appreciated as

an excellent paradigm to solve privacy issues in smart homes (1–7). Explainable artificial

intelligence (XAI) is the explainable category of AI (black box) in which humans can

understand the solution results (8). Smart homes support automated sustainability to

encourage smart cities, smart communities, and high technology-driven solutions (9, 10).

Smart homes provide sustainable health solutions such as supporting cognitively impaired
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individuals by assessing their daily life routine, remote monitoring

of home devices for activity recognition, emotion analysis, and

depression estimation (11–17).

Currently, neuropsychologists and clinicians are interested in

insight into an individual’s functional ability to detect diseases

early (18–20). There are many solutions to track and monitor an

individual’s functional ability, such as wearable sensors, vision-

based recognition, Wi-Fi-based activity recognition, smartphone-

based human activity recognition (HAR), and intelligent homes

utilizing the Internet of Things (IoT) (21–26). To assess the

functional ability of cognitively impaired individuals, IoT-oriented

smart home infrastructures are the most suitable (27–30). Smart

homes play an important role in driving the smart cities’

revolution by incorporating IoT that connects several devices,

systems, and technologies to achieve health-related tasks. A smart

home infrastructure is equipped with robust and autonomous

smart sensors, for instance, motion, temperature, pressure, and

electricity usage sensors, to provide assisted living solutions (31).

Actions done in a smart home includes eating, sleeping, cooking,

medications, task support parallelism, sequence, and interruption,

such as listening to a phone call and writing cards while

cooking. There is much discussion about the validity of using

an IoT-oriented smart home infrastructure for smart home

residents’ functional ability assessment. For example, the work

of Stavrotheodoros et al. (23) suggested that daily life functional

activity assessment is a reasonable way to measure the decline

in perceptions. The authors in Wilson et al. (32) argue that data

collection ismore subtle in a smart home habitat than in a dedicated

laboratory environment.

This study presents an activity recognition approach, XAI-

HAR, to identify key features from a high dimensional feature

matrix and augments statistical features to generalize the process of

smart home recognizing activities. It is important to retain better

the original meaning and representation of a feature matrix to

understand a cognitively impaired individual’s functional ability.

This study makes the following contributions:

• A novel XAI-empowered HAR assessment approach based on

key feature identification from the data collected from smart

sensors located at different places of a sustainable smart home.

• Introduced a weighting criterion to the sensor events

produced in a smart home.

• Provide a combination of the new feature set based on physical

key features selection (PKFS) and statistical key features

selection (SKFS) for accurate activity recognition.

• Analyze and validate the effectiveness of both key feature

selection approaches on the performance of the recognition

of activities using machine learning algorithms.

• XAI-HAR effectively enhances the recognition rate with

consistent performance.

The rest of the study is organized as follows: The literature

review is presented in Section 2. The selected smart home dataset

is discussed and presented in Section 3.1. Section 3 details

the proposed approach. The experimental setup and results are

presented in Section 4. Finally, in Section 5, the conclusion and

future work are presented.

2. Background

This section presents the related work on the fusion of activity

monitoring and XAI.

2.1. Activity monitoring

A smart home is embeddedwith a diversity of smart devices and

sensors. A smart home is equipped with temperature, motion, heat,

and light sensors that human-specific devices such as smartphones

and computers can remotely control. These sensors are intelligent

enough to reason about and decide our smart home environment

setting (33–35). Recently, IT organizations have offered some

frameworks for smart homes in an endeavor to capitalize on

the market and facilitate the customers in their service-based

smart environment so that the market competition and industrial

advancement will return as financial advantages to the general

public of the smart urban areas (36).

Recent studies highlight that remote monitoring and assisted

living could provide patients with real-time assistance and

significantly minimize all risks while performing different daily

living actions (29, 30, 37). The authors in Dawadi et al. (28, 30)

use smart homes for activity assessment of a resident and reported

that it is the optimal way to monitor and assist the patient living

in it. The data gathered from the interactive sensors deployed in

the surrounding can be utilized to recognize activities of daily

living (ADLs) carried out inside a smart home, such as food

preparation, drinking water, and medication. ADLs automated

recognition is crucial in observing a smart home resident’s

functional health. According to a survey on assistive technologies,

the top priority of caregivers of patients with Alzheimer’s disease

is to identify and track their activity. In Cook (35), the authors

survey a generalized activity model that combines sensor actions

from all testbeds into one uniform labeled dataset. They applied

three basic machine learning algorithms, such as naive bayes

(NB), hidden Markov model (HMM), and conditional random

field (CRF), over annotated activities. The research of Sarwar

and Javed (38) and Javed et al. (39) is designed to make a

helping mechanism that assists individuals to live healthfully.

After recognizing the physical activities and consent of guardians,

doctors, and intelligent agent rankers, a good healthcare plan

is suggested.

The authors in Fong et al. (40) proposed a feature-based

mechanism for training classifiers that recognizes human activities.

They extracted the spatial features called shadow features, which

describe current sensor data positions by modeling the performed

activities’ momentum. The shadow features also highlight the

additional information dimensions for nominating activities in

the recognition process. Furthermore, they evaluate the devised

approach using a wearable and Kinect-based remote sensor. The

authors in Eastwood et al. (41) design a set of physical features

representing human motion to augment the statistical features. For

activity recognition, the authors in Lu et al. (42) extracted latent

features from data acquired from sensors with Beta Process hidden

Markov model (43). To do that, first, they used the dependent beta

process and later integrated sensors’ state constraints into sampling.
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The trained support vectormachine (SVM) recognizes the activities

from these latent features.

The approach proposed by Cook (35) aims to learn a

generalized activity model by combining sensor events from

different age groups, such as younger adults, healthy older adults,

older adults with dementia, and pets. They used CRF, NB,

and HMM for recognition. To improve activity recognition, a

segmental pattern mining approach is proposed, in which the

segment is a consecutive time event of the same activity (44). In

Dawadi et al. (27), the authors present a study for health assessment

of cognitively impaired individuals to track the health status in the

early stages of the individuals moving toward the critical stage such

as dementia. Their focus was to classify healthy individuals and

individuals with dementia.

2.2. Explainable artificial intelligence

Reducing healthcare costs and sustaining a healthier life are

important driving factors for governments to invest in smart

cities. The authors in Chen et al. (45) discuss using machine

learning (ML) algorithms to mitigate healthcare anomalies. They

propose a 5G-Smart Diabetes system for patients with diabetes

using sensors and patient vital analysis. in Eastwood et al.

(41) designed a set of physical features representing human

motion to augment the statistical features. First, a single-layer

feature selection framework is applied to analyze the impact on

recognition performance. They analyzed that different feature

selection mechanisms extract qualitative features that may, in turn,

increase the accuracy of recognition. An analysis is conducted

on recognizing activities using quick propagation, Levenberg

Marquardt, and batch back propagation algorithms (46). Several

features are presented that can be used for activity recognition

in Chinellato et al. (47). These features are based on time-

relatedmeasures (i.e., time of occurrence, duration, and repetition),

space-related measures (i.e., location of occurrence, movement),

complexity-related measures (i.e., event analysis, person analysis,

and object analysis), and inter activity-related measures. They used

linear discriminative analysis (LDA), random forest (RF), NB, and

SVM for recognition.

In summary, the current studies of feature selection lack

in selecting a significant feature subset from the whole dataset

as the best representative of all features (48). Some drawbacks

of the feature selection methods discussed in the literature

(40, 49) are: (1) In the case of a smart home, the location

of a sensor can be the best feature to represent the whole

feature matrix, but it may not correctly the activities performed

at other locations or interleaved locations, (2) A feature

considered best for one activity can be worst for some

other activities such as the location feature, (3) A feature

representing the activities of healthy individuals may not correctly

represent the activities performed by individuals with dementia,

and (4) A feature consisting of frequencies of corrupt or

damaged sensors.

By considering the above analysis, the following research

questions (RQ) are presented:

• RQ1: How to identify key features from a high dimensional

feature matrix and augment statistical features to generalize

the process of smart home-based activity recognition and

interpret the results using explainable AI methods?

• RQ2: How to retain a feature matrix’s original meaning

and representation to understand a cognitively impaired

individual’s functional ability?

• RQ3:How to define a weighting criterion for the sensor events

produced in a smart home?

• RQ4: What is the effectiveness of the weighting criterion on

feature selection?

3. Methodology

In this section, we discuss the suggested approach for activity

recognition named XAI-HAR for the activities performed by the

healthy individuals and individuals with dementia residing in

smart homes. The proposed approach provides a privacy-preserved

environment to the resident as the data are collected from motion,

pressure, and similar binary state sensors. This approach is being

used and recommended by state-of-the-art studies (50–54). XAI-

HAR consists of two steps: physical key features selection (PKFS)

and statistical key features selection (SKFS) to form a feature matrix

corresponding to different well-established contemporary methods

used for recognizing activities. XAI-HAR presents the concept of

selecting vital local features within the dataset. These selected local

key features are then transformed for activity recognition. Figure 1

summarizes XAI-HAR for data collection and analysis.

3.1. Dataset selection

The XAI-HAR approach is evaluated the publicly available

Cognitive Assessment Activity (Kyoto) dataset (27) from the

Center for Advanced Studies in Adaptive Systems (CASAS)1. The

dataset contains passive and automatic sensing data collected

from 79 participants from an on-campus smart home testbed at

Washington State University. The smart home consists of a living

room, kitchen, and dining room on the first floor. The second

floor consists of an office, a bathroom, and two bedrooms. The

participant’s interaction with the smart home is recorded with

binary, digital, and analog sensors.

Figure 2 provides an overview of the raw dataset. For example,

motion sensors (Mxx) are deployed on the ceiling, door sensing

devices (Dxx) on cabinets and doors, temperature-sensitive devices

(Txx) in each room, light sensors (Lxx), burner sensors (AD1-A),

hot water sensors (AD1-B), cold water sensors (AD1-C), whole

apartment electricity usage (P001), and item sensors (Ixx) placed on

specific items. Sensor events are generated and recorded, whereas

the participants perform the activities. Each sensor event comprises

a date, time, id, and state (value). Such events are used to make

instances for different activities. Sensor events are combined for

each activity into a period (starting and ending) as a single sample

(instance), representing each participant’s activity progress. The

1 http://casas.wsu.edu/datasets/
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FIGURE 1

Complete flow of the proposed framework.

sensor events are extracted from the state feature based on the

starting and ending activities shown as 19 − start and 19 − end.

Each sensor event in this activity is counted based on that sensor’s

triggering and added as an instance in the dataset.

The dataset contains instances of simple daily life activities.

Simple daily life activities are defined as those performed in daily

routine and are not interwoven, for instance, taking medicine

while doing the dishes. However, in the CASAS dataset, the

activities reported by the same sensors and performed in the exact

location are difficult to discriminate, such as preparing breakfast,

preparing soup, and sweeping the kitchen. Table 1 summarizes the

dataset’s characteristics used in this study. The ground truth about

the personals is generated by comprehensive clinical assessments,

which include a review of medical records, neuropsychological

testing data, telephone interview of cognitive status (TICS), clinical

dementia rating, and some other ways (27).

3.2. Feature extraction

A count of 254 features is retrieved from the sensing data. These

features help to identify how well an activity is performed. For

example, if a person gets stuck or slows in performing an activity,

his/her activity duration time would increase. A participant with

dementia would not complete an activity on time due to multiple

reasons, such as mistakes wandering and confusion in performing

an activity. The following features are those extracted from Dawadi

et al. (27):

• Duration: Total time spent to complete an activity.

• Sensor Count: Total number of times a particular sensor is

used during the activity.

• Sensor Events: Total number of unique sensor events.

• Activity Completeness: A boolean feature representing the

participant’s ability to accomplish all eight actions.

• Activity Label: Class label of the individual (i.e.,

sweeping, watering).

3.3. Feature design

Feature design or feature engineering selects the best

features and then constructs generic features from the feature

matrix capable of efficiently differentiating activities. Feature

selection simplifies the model for better understanding and a

more straightforward interpretation for users or researchers. A

significant benefit of feature selection is that it reduces the

number of features the model will train, eventually reducing the

training time. In many cases, the feature matrix consists of either

dissociated or repeating features that result in overfitting a model,

increasing the model’s complexity. Usually, the dataset with high

dimensions, such as the CASAS dataset which has hundreds of

features, may contain a large number of irrelevant and redundant

information, which eventually reduces the performance of the

learning algorithm (55). Feature selection enhances the model’s

generalization and accuracy, reducing the chances of overfitting if

the right subset of features is selected. To select the dataset’s best

features, it is necessary to excerpt features set from the raw dataset.

The below sections explain two sets of features extracted from the

raw dataset.
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FIGURE 2

Raw dataset illustration.

TABLE 1 Characteristics of the dataset.

Parameter Value

Participants 79

Mean Age 66

Healthy 65

Dementia 14

Activities 8

Action 1 Moping the scullery and tidying up the sitting room.

Action 2 Acquiring medicament box along with a dispenser per week,

and instruction based fill up of the dispenser.

Action 3 Calligraphy of a birthday card, of address on an envelope,

en-wrapping a check.

Action 4 Searching a suitable DVD to listen and watch a news clip.

Action 5 Grabbing a watering can and sprinkling water on each plant in

the living area.

Action 6 Replying to a phone call and answering the questions.

Action 7 Cooking soup with the help of the microwave oven.

Action 8 Selection of an appropriate dress from a collection of clothes,

for an interview.

3.4. Physical key feature selection

Physical features are interpreted by human activities performed

in a smart home. To systematically identify and assess the

usefulness of the most important features for correctly categorizing

various activities, many sophisticated techniques can be used to

search the compact feature subsets from the dataset. The below

equations present the complete process of selecting optimal features

from the entire dataset for a smart home resident’s cognitive

health assessment.

To select the features for PKFS, the CASAS dataset (27) is

considered well known for cognitive impaired classification. It

consists of different activity classes and several activity instances

where D = D1,D2, . . . ,Dx represent the different classes and I =

i1, i2, . . . , ikx represent the instance belonging to each class Dx, and

features of dataset D are the unique sensors S = s1, s2, . . . , sn that

were triggered as on/off while performing activities instances Ikx in

a smart home and temporal information Ti. Each feature consists

of total frequency, Fs =
∑I

Fsi
, in the numeric form of the activated

sensor during the progression of activity. The sensors not triggered

while performing activities were assigned zero, f s
kx

= 0. In this way,

the feature matrix Fkx consisting of activity instances Ikx can be

represented by the following Equation 1:

Fkx = {f skx}
S
s=1 (1)

Since the values vary widely in ranges of raw data because

healthy individuals and individuals with dementia performed

the activities, there are high chances of abnormality in sensor

frequency. In some machine learning algorithms, objective

functions will not work correctly and efficiently. The feature matrix

is shifted to a scaled version of a feature matrix to eliminate specific

gross influences to address this problem. The Rescaling method has

been used to normalize the range of features using Equation (2)

as follows:

x′ =
x−min(x)

max(x)−min(x)
(2)

Scaling works better for MLmodels where the distance between the

data points varies widely. In Equation (2), x is the real value of the

instance, and x′ is the normalized value. The scaled feature matrix

for all activities can be described by Equation (3), according to the

proposed approach:

F′kx =
f s
kx

−min(f s
kx
)

max(f s
kx
)−min(f s

kx
)

(3)

Currently, the featurematrix is in shape to select the key feature.

A set denoted by Sk is initially initialized with an empty set φ. Best

key features Bf are extracted from activities Dx by counting the

features of {f s
kx
}. In Equation (4), Prx returns the number of features

in a list containing all features f s
kx

where each feature in f s
kx

has a

frequency greater than 0.

Prx = {f skx} > 0 (4)

∼

P
r

x= Prx ≥ Uf (5)

The value of Uf is user-defined, as shown in Equation (5), which

allows the user to choose the number of best features from the

feature matrix, and similarly, Ui in Equation (6) allows the user to

select the number of instances. It provides full authority to the user

to control the feature selection process, which could be sufficient

for deciding the feature as a key feature to perform the health

assessment of a smart home resident.

∼

P
r

x= Prx ≥ Ui (6)

The cross-validation technique is applied to assess the value

of Ui and Uf . The best-selected features are then appended to

the empty set φ. If the selected feature is already in the set, it is

discarded; else, it is appended. This process is repeated until each

class’s features are added or discarded.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1024195
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Javed et al. 10.3389/fpubh.2023.1024195

The precedence is given to each feature Fs in a certain activity

based on its occurrence. This process is repeated based on the

maximum frequency in an activity to obtain an overall generic

feature matrix. The features having low occurrence inactivity are

discarded. Later, the feature matrix is formed based on Equation (6)

for the best key features. The featurematrix features havemaximum

precedence in set φ as shown in Equation (7).

−

Fkx= {f skx argmax(p)} (7)

3.5. Statistical key feature selection

Statistical features are a dataset’s features which can be defined

and calculated through statistical analysis. Statistical models are

generic, increasing the capability of any model to recognize

different activities at a fine-grained level. The common statistical

features are bias, variance, mean, median, percentiles, standard

deviation, etc. Researchers investigated that it is useful to use

the statistical feature for human activity recognition (41). For

example, it is proved that variance helps to achieve higher accuracy

for different activities, such as walking, jogging, and hopping.

The extracted statistical features are root mean square, standard

deviation, mean, median, variance, averaged derivatives, zero-

crossing rate, interquartile range, mean crossing rate, kurtosis,

skewness, pairwise correlation, and spectral entropy from feature

matrix generated by PKFS. After successfully extracting statistical

features, these features are appended in the previous matrix made

by PKFS. The statistical features are represented by Sf kx, and the

whole key feature matrix is represented by Equation (8).

−

Fkx= {f skx ǫ argmax(p)} & Sf kx (8)

3.6. XAI-HAR

Various traditional well-known feature selection techniques,

namely, principal component analysis (PCA), minimum

redundancy maximum relevance (mRMR), information gain

(IG), and the proposed technique XAI-HAR is applied along with

the machine learning algorithms random forest (RF), K-nearest

neighbor (KNN), decision tree (C4.5), support vector machine

(SVM), Heoffding tree (HT), multilayer perceptron (MLP), and

naive Bayes (NB) for activity recognition. For further comparison,

we also apply deep learning algorithms, such as deep neural

network (DNN), convolution neural network (CNN), and CNN-

based long short-term memory (CNN-LSTM). These methods

for selecting feature selection are very effective in selecting the

best features. These feature selection techniques are selected to

compare and evaluate the proposed feature selection approach

XAI-HAR for activity recognition. For PCA, we set the variance to

95%. We use local interpretable model agnostic (LIME) and apply

it to RF (default parameters) to analyze the main components and

explain essential features. LIME provides the model interpretability

by producing meaningful and vital information. For KNN, the

batch size is set to 100, the nearest neighbors are set to 1, the

nearest neighbor searching algorithm is set to LinearNNSearch, and

distance weighting is set to False. For the decision tree, the batch

size is set to 100, the confidence factor is set to 0.25, subtreeRaising

is set to True, and reducErrorPruning is set to False. For SVM, the

batch size is set to 100, the complexity parameter is set to 1.0, the

kernel is set to PolyKernel, and the tolerance parameter is set to

0.001. For NB, the batch size is set to 100, and useKernalEstimator

is set to false. For DNN, the activation is relu in hidden layers and

softmax in the output layer along with the optimizer as adam.

For CNN and CNN-LSTM, the same parameters are set with the

kernel_size as 3.

4. Experimental analysis and results

The proposed approach XAI-HAR is fundamentally different

from other approaches in the way that XAI-HAR defines K

subsets of features for K activity classes. In contrast, feature

selection methods such as IG, mRMR, and PCA return a single

subset of features from the existing feature set, given as input to

selected classifiers. Furthermore, XAI-HAR uses the LIME-based

RF model to analyze the main components and explain essential

features. This section discusses the different valuation metrics

for experimentation and evaluation. For experimentation, CASAS-

Cognitive Assessment Activity (Kyoto) (27) dataset is used which is

well known for cognitively impaired individuals research. Different

experimental analyses are performed with different criteria on

the dataset. Three-fold cross-validation (56) is applied for all

experiments. This test leaves 1 : 3 part of the dataset for testing and

2 : 3 part for training. The KNN, SVM, DT C4.5, HT, MLP, and NB

algorithms are used to evaluate the recognition results. For further

comparison, we also apply deep learning algorithms, such as deep

neural network (DNN), convolution neural network (CNN), and

CNN-based long short-term memory (CNN-LSTM).

4.1. Evaluation metrics

The selection of evaluation metrics depends on the essence of

the data. Accuracy is mainly considered a key evaluation metric

when the data are balanced (i.e., an equal number of observations)

(57). However, accuracy alone can be misleading if a dataset

contains imbalanced observations in each category. To overcome

this limitation, recall, precision, and f-score evaluation metrics are

a rationale for the performance computation of DFCII. Given as

under are the practical terms to help in evaluation and analysis. TP

(i.e., true positive rate representing correctly categorized instances)

calculates the accuracy by dividing it by N (all the samples of

all activities). The recall measure is computed by TP divided by

TP+FN (where FN is the false negative rate that provides wrongly

recognized samples). We divide TP by TP+FP (false positive rate:

samples of other activities wrongly recognized as one activity

sample), and we obtain the precision of a technique. F-score

shows the harmonic mean of recall and precision. The experiment’s

computing environment is set as Intel(R) Corei5, 8th Generation

with 16 GB RAM, Windows 10 OS, and Python version 3.7.6 as

shown in Table 2.

Accuracy =
TP

N
(9)

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1024195
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Javed et al. 10.3389/fpubh.2023.1024195

TABLE 2 Capability of the experimental machine.

Type Specification

OS Windows 10

CPU Intel(R) Corei5, 8th Generation

RAM 16 GB

Python 3.7.6

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F − Score = 2×
Precision× Recall

Precision+ Recall
(12)

For cognitive health assessment, the f-score is used as a critical

evaluation measure because the f-score is the most appropriate for

the imbalanced data (57).

Figure 3 illustrates the f-score of each activity on activities of

individuals with dementia and healthy individuals when XAI-HAR,

PCA, IG, and mRMR are applied with the RF learning method. For

kitchen activity, the XAI-HAR achieves 96% f-score, while PCA,

IG, and mRMR achieve 87, 81, and 83% f-score, respectively. For

medicine activity, the XAI-HAR achieves 97% f-score, while PCA,

IG, and mRMR achieve 91, 81, and 84% f-score, respectively. For

birthday card activity, the XAI-HAR achieves 94% f-score, while

PCA, IG, and mRMR achieve 80, 77, and 81% f-score, respectively.

In the case of DVD activity, the XAI-HAR achieves 98% f-score,

while PCA, IG, and mRMR achieve 84, 80, and 81% f-score,

respectively. For watering activity, the XAI-HAR, PCA, IG, and

mRMR achieve 98, 91, 82, and 90% f-score, respectively. For phone

activity, the XAI-HAR, PCA, IG, and mRMR achieve 94, 82, 80,

and 74% f-score, respectively. In the case of soup activity, the XAI-

HAR achieves 98% f-score, while PCA, IG, and mRMR achieve

84, 87, and 83% f-score, respectively. For outfit activity, the XAI-

HAR achieves 98% f-score, while PCA, IG, and mRMR achieve

90, 82, and 80% f-score, respectively. It is seen that all feature

selection methods achieved less accurate results than XAI-HAR

when the activities performed by individuals with dementia and

healthy individuals were classified collectively.

Figure 4 presents the f-score of each activity on the healthy

individual’s activities when XAI-HAR, PCA, IG, and mRMR are

applied with the RF learning method. For kitchen activity, the XAI-

HAR achieves 96% f-score, while PCA, IG, and mRMR achieve 70,

82, and 85% f-score, respectively. For medicine activity, the XAI-

HAR achieves 98% f-score, while PCA, IG, and mRMR achieve

92, 85, and 75% f-score, respectively. For birthday card activity,

the XAI-HAR achieves 95% f-score, while PCA, IG, and mRMR

achieve 84, 76, and 95% f-score, respectively. In the case of DVD

activity, the XAI-HAR achieves 99% f-score, while PCA, IG, and

mRMR achieve 77, 82, and 85% f-score, respectively. For watering

activity, the XAI-HAR, PCA, IG, and mRMR achieve 96, 76, 60, and

76% f-score, respectively. For phone activity, the XAI-HAR, PCA,

IG and mRMR achieve 93, 67, 90, and 83% f-score, respectively. In

the case of soup activity, the XAI-HAR achieves 98% f-score, while

PCA, IG, and mRMR achieve 77, 95, and 92% f-score, respectively.

For outfit activity, the XAI-HAR achieves 95% f-score, while PCA,

IG, and mRMR achieve 85, 92, and 90% f-score, respectively. The

results conclude that all feature selection methods achieve less

accuracy than XAI-HAR when only the activities performed by

healthy individuals are classified.

Figure 5 presents the f-score of each activity on the activities of

individuals with dementia when XAI-HAR, PCA, IG, and mRMR

are applied with the RF learning method. For kitchen activity, the

XAI-HAR achieves 95% f-score, while PCA, IG, andmRMR achieve

89, 85, and 82% f-score, respectively. For medicine activity, the

XAI-HAR achieves 98% f-score, while PCA, IG, andmRMR achieve

90, 85, and 79% f-score, respectively. For birthday card activity, the

XAI-HAR achieves 96% f-score, while PCA, IG, andmRMR achieve

86, 79, and 90% f-score, respectively. In the case of DVD activity,

the XAI-HAR achieves 99% f-score, while PCA, IG, and mRMR

achieve 87, 89, and 85% f-score, respectively. For watering activity,

the XAI-HAR, PCA, IG, and mRMR achieve 96, 89, 90, and 86% f-

score, respectively. For phone activity, the XAI-HAR, PCA, IG, and

mRMR achieve 94, 79, 81, and 83% f-score, respectively. In the case

of soup activity, the XAI-HAR achieves 98% f-score, while PCA, IG,

and mRMR achieve 90, 84, and 92% f-score, respectively. For outfit

activity, the XAI-HAR achieves 99% f-score, while PCA, IG, and

mRMR achieve 88, 90, and 90% f-score, respectively. It is shown

that all feature selectionmethods achieved less accurate results than

XAI-HAR when only the activities performed by individuals with

dementia are classified.

Table 3 presents a comparison of XAI-HAR with PCA, IG,

and mRMR using the performance evaluation metrics on the

CASAS dataset (27). We use KNN, SVM, DT, NB, HT, MLP, RF,

DNN, CNN, and CNN-LSTM learning models for comparison.

XAI-HAR improves recognition performance compared with all

other models. XAI-HAR achieves the best accuracy of 96.4% in

combination with RF compared with KNN, SVM, DT, HT, MLP,

and NB. While analyzing the XAI-HAR with existing feature

selection approaches, i.e., PCA, IG, and mRMR, XAI-HAR achieves

better results. The XAI-HAR with RF achieved a 5% high f-

score compared with PCA-based learning models on activities of

healthy individuals and individuals with dementia. Similarly, XAI-

HAR with RF achieved a 5% high f-score compared with IG-

based learning models on activities of healthy individuals and

individuals with dementia. The XAI-HAR with RF achieved a

12% high f-score compared with mRMR-based learning models

on activities of healthy individuals and individuals with dementia

While on activities of individuals with dementia, XAI-HARwith RF

achieved a 13% high f-score compared with PCA-based learning

models. Similarly, XAI-HAR with RF achieved an 11% high f-

score compared with IG-based learning models on activities of

healthy individuals and individuals with dementia. XAI-HAR with

RF achieved a 3% high f-score compared with mRMR-based

learning models on activities of healthy individuals and individuals

with dementia. Finally, in healthy individuals’ activities, XAI-HAR

with RF achieved a 6% high f-score compared with PCA-based

learning models. Similarly, XAI-HAR with RF achieved a 9% high

f-score compared with IG-based learning models on activities of

healthy individuals and individuals with dementia. XAI-HAR with

RF achieved an 8% high f-score compared with mRMR-based
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FIGURE 3

The comparison of the proposed XAI-HAR with feature selection methods such as PCA, mRMR, and IG in combination with RF for each activity of
individuals with dementia and healthy individuals.

FIGURE 4

The comparison of the proposed XAI-HAR with feature selection methods such as PCA, mRMR, and IG in combination with RF for each activity of
healthy individuals.

learning models on activities of healthy individuals and individuals

with dementia.

It is noticed in most cases that the RF outperforms all other

classifiers in terms of accuracy, and the HT classifier has the

lowest accuracy.

Table 4 presents the time complexity of all models. Experiments

reveal that the least model compiling time of the XAI-HAR

approach on healthy and dementia individuals dataset is 0.01 s

using KNN, and the highest model compiling time is 246 s using

the CNN-LSTM model. Next, the least model compiling time of

the PCA feature selection approach on the healthy and dementia

individuals dataset is 0.11 s using NB, and the highest model

compiling time is 195 s using the MLP classifier. Furthermore, the

least model compiling time of the IG feature selection approach

on healthy and dementia individuals dataset is 0.01 s using KNN,

and the highest model compiling time is 55 s using the CNN-

LSTM classifier. Furthermore, the least model compiling time of

the mRMR feature selection approach on the healthy and dementia

individuals dataset is 0.01 s using KNN, and the highest model

compiling time is 324 s using the CNN-LSTM classifier. Next,

the least model compiling time of the XAI-HAR approach on

the dementia individuals dataset is 0.01 s using KNN, and the

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1024195
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Javed et al. 10.3389/fpubh.2023.1024195

FIGURE 5

Comparison of proposed XAI-HAR with feature selection methods such as PCA, mRMR, and IG in combination with RF for each activity of individuals
with dementia.

TABLE 3 F-score-based comparison of XAI-HARwith other feature selection and classification techniques for activities in CASAS Dataset (27).

Approach Participants K-NN SVM DT NB RF MLP HT DNN CNN CNN-LSTM

XAI-HAR Healthy &

Dementia

0.96 0.92 0.90 0.89 0.96 0.83 0.75 0.95 0.95 0.95

PCA Healthy &

Dementia

0.86 0.87 0.87 0.89 0.91 0.82 0.75 0.90 0.81 0.81

IG Healthy &

Dementia

0.81 0.83 0.82 0.80 0.91 0.96 0.84 0.96 0.95 0.96

mRMR Healthy &

Dementia

0.82 0.82 0.84 0.83 0.84 0.83 0.75 0.95 0.95 0.95

XAI-HAR Dementia 0.94 0.89 0.86 0.85 0.95 0.89 0.62 0.77 0.80 0.80

PCA Dementia 0.79 0.82 0.79 0.80 0.82 0.88 0.78 0.91 0.87 0.87

IG Dementia 0.83 0.83 0.82 0.81 0.84 0.88 0.78 0.91 0.88 0.88

mRMR Dementia 0.85 0.86 0.84 0.84 0.92 0.89 0.76 0.97 0.86 0.86

XAI-HAR Healthy 0.95 0.91 0.89 0.88 0.97 0.96 0.79 0.96 0.95 0.95

PCA Healthy 0.87 0.86 0.87 0.85 0.91 0.96 0.79 0.96 0.96 0.96

IG Healthy 0.85 0.84 0.83 0.82 0.88 0.96 0.83 0.96 0.96 0.96

mRMR Healthy 0.86 0.87 0.85 0.81 0.89 0.95 0.86 0.96 0.94 0.94

Key: HT-heofffding tree. The bold values indicate the superior results.

highest model compiling time is 21 s using the CNN-LSTMmodel.

Furthermore, the least model compiling time of the PCA feature

selection approach on the dementia individuals dataset is 0.01 s

using KNN, and the highest model compiling time is 24 s using the

CNN-LSTM model. Furthermore, the least model compiling time

of the IG feature selection approach on the dementia individuals

dataset is 0.01 s using KNN, and the highest model compiling

time is 10 s using the CNN-LSTM model. Furthermore, the least

model compiling time of the mRMR feature selection approach

on the dementia individuals dataset is 0.01 s using KNN, and the

highest model compiling time is 3 s using the CNN-LSTM model.

Next, the least model compiling time of the XAI-HAR approach

on the healthy individuals dataset is 0.01 s using KNN, and the

highest model compiling time is 144 s using the CNN-LSTMmodel.

Furthermore, the least model compiling time of the PCA feature

selection approach on the healthy individuals dataset is 0.01 s using

KNN, and the highest model compiling time is 144 s using the

CNN-LSTMmodel. Furthermore, the lowest model compiling time

of the IG feature selection approach on the healthy individuals

dataset is 0.01 s using KNN, and the highest model compiling

time is 82 s using the CNN model. Furthermore, the least model

compiling time of the mRMR feature selection approach on the
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TABLE 4 Time-based comparison of XAI-HARwith other feature selection and classification techniques for activities in the casas dataset (27).

Approach Participants K-NN SVM DT NB RF MLP HT DNN CNN CNN-LSTM

XAI-HAR Healthy &

Dementia

0.01 0.41 0.59 0.1 2.5 194 0.7 42 77 246

PCA Healthy &

Dementia

0.8 0.44 0.49 0.11 2.6 195 0.55 5 9 26

IG Healthy &

Dementia

0.01 0.2 0.2 0.03 1.37 11.6 0.09 10.9 24 55

mRMR Healthy &

Dementia

0.01 0.39 0.59 0.11 2.72 2.41 0.07 12 89 324

XAI-HAR Dementia 0.01 0.14 0.01 0.01 0.2 5.41 0.01 3 5 21

PCA Dementia 0.01 0.07 0.01 0.01 0.2 5.21 0.02 3 5 24

IG Dementia 0.01 0.25 0.01 0.01 0.13 1.41 0.01 2.9 7.0 10.4

mRMR Dementia 0.01 0.1 0.01 0.01 0.12 0.41 0.01 3 3 3

XAI-HAR Healthy 0.01 0.21 0.27 0.06 1.61 56 0.37 21 61 144

PCA Healthy 0.01 0.24 0.36 0.05 1.78 56.2 0.2 12 45 144

IG Healthy 0.01 0.3 0.15 0.03 1.17 14.2 0.1 20.5 82.0 77.0

mRMR Healthy 0.01 0.24 0.18 0.02 1.45 5.33 0.05 15 42 36

The bold values indicate the superior results.

TABLE 5 Confusion matrix of XAI-HAR for activities in the CASAS dataset (27).

Activities Kit Med BC DVD Wat Phone Soup Outfit

Kit 321 0 0 0 1 14 1 1

Med 0 329 2 0 0 0 4 0

BC 0 0 311 0 0 24 0 0

DVD 0 0 1 328 0 1 0 1

Wat 5 0 0 0 335 0 0 0

Phone 3 1 24 3 0 272 0 4

Soup 1 6 0 0 0 0 326 0

Outfit 0 0 1 0 0 0 0 342

Kit, Kitchen; Med, Medicines; Wat, Watering; BC, Birthday Card.

healthy individuals dataset is 0.01 s using KNN, and the highest

model compiling time is 42 s using the CNNmodel.

Table 5 presents the confusion matrix of the proposed

approach. It shows howmany instances of one activity get confused

with instances of other activities. The kitchen activity is getting

confused with the phone activity. The birthday card activity and

phone activity are getting confused with each other. In comparison,

the remaining five activities are recognized accurately. Overall,

XAI-HAR achieved better results than other approaches.

4.2. Explainable RF with local interpretable
model agnostic for healthy individuals

We use local interpretable model agnostic (LIME) and apply

it to RF to analyze the main components and explain essential

features. LIME provides the model interpretability by producing

meaningful and vital information. We also use ELI5 to inspect

machine learning classifiers and explain their predictions. ELI5

extracts the top 10 features with their corresponding weights.

4.2.1. Interpretation of healthy individuals and
individuals with dementia

The RF model achieves an accuracy score of 96.25%. The

result of the LIME model gives a list of essential features and

explains each feature’s contribution to the dataset’s prediction.

Figure 6 shows the output of the LIME model and explains the

top 10 features. The leftmost sections present the prediction

probabilities with 0.96% healthy and 0.04% dementia probability

values. The second section represents the 10 most important

features. We use binary classification and that is why it is

in two colors, blue and orange. Attributes in orange color

support the healthy class, and the blue color supports the

dementia class. Floating-point numbers on the horizontal bar

show the importance of the features. M047, M030, and T101

are the Top three features belonging to the healthy class.

The rightmost section contains the actual values of the top

10 variables.

Figure 7 demonstrates that M047, M030, T101, MO32,

and M031 are the top most important features of the

model belonging to the healthy class. While M005 and
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FIGURE 6

Feature explainability.

FIGURE 7

Local importance.

LL007 are the top most important features of the model

belonging to the dementia class, Figure 8 provides the

weights against to top 10 features participating most in the

prediction process.

4.2.2. Interpretation of healthy individuals
The RF achieves an accuracy score of 97.40%. The result of

the LIME model gives a list of essential features and explains each

feature’s contribution to the dataset’s prediction. Figure 9 shows the

output of the LIME model and explains the top 10 features. The

leftmost sections present the prediction probabilities with 0.94% for

medicine and 0.05% for phone probability values. Formedicine, it is

noticed that M013, M017, M017, MO08, M002, I010, M018, D007,

I006, and M016 are the top most important features of the model

belonging to the healthy class.

The second section represents the 10 most important features.

Attributes in orange color support the medicine class and the

purple color supports the phone class. Floating-point numbers on

the horizontal bar show the importance of the features. M013,

M017, and M008 are the top three features belonging to the

medicine class. The rightmost section contains the actual values of

the top 10 variables.

FIGURE 8

ELI5-based feature Inspection.

Figure 10 shows that M013, M017, M008, M051, I006, I010,

M023, M015, and D007 are the top three most essential features

of the model belonging to the medicine class. Figure 11 provides

the weights against to top 10 features participating most in the

prediction process.

4.2.3. Interpretation of individuals with dementia
The RF model achieves an accuracy score of 93.93%. The result

of the LIMEmodel gives a list of essential features and explains each

feature’s contribution to the dataset’s prediction. Figure 12 shows

the output of the LIMEmodel and explains the top 10 features. The

leftmost sections present the prediction probabilities with 0.76%

for the medicine class, 0.15% for the phone class, 0.04 for kitchen,

0.02 for DVD, and 0.03 for other probability values. The second

section represents the 10 most important features–attributes in

orange color support the medicine class and others support not

medicine class. Floating-point numbers on the horizontal bar show

the importance of the features. M013, M017, andM018 are the Top
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FIGURE 9

Feature explainability.

FIGURE 10

Local importance.

three features belonging to the healthy class. The rightmost section

contains the actual values of the top 10 variables.

Figure 13 shows that M013, M017, and M018 are the top three

most essential features of the model belonging to the healthy

class. Figure 14 provides the weights against to top 10 features

participating most in the prediction process.

4.3. Discussion

Currently, clinicians are interested in insight into an

individual’s functional ability to detect diseases early. This

study presented an XAI-empowered human activity recognition

approach for individuals with dementia and healthy individuals

to monitor their health. RF achieves the best results by using

the XAI-HAR feature matrix. The other learning models, such

as KNN, SVM, HT, MLP, NB, DNN, CNN, and CNN-LSTM,

achieve better f-score using XAI-HAR-based feature matrix than

PCA, IG, and mRMR-based feature matrix. However, DT showed

relative degradation in dementia individuals’ activities compared

with others. The rationale behind this degradation is due to

the fact that the data collected for dementia individuals have

FIGURE 11

ELI5-based feature Inspection.

non-normal distribution. In addition, the number of dementia

individuals performing activities is also fewer than that of healthy

individuals. The KNN looks for the nearest neighbors in the

dementia individual’s activities for assigning labels. The SVM looks

for the boundaries of the target variable in the dataset’s search

space for assigning labels.

In contrast, DT looks for promising interactions between

features representing activities of an individual with dementia. We

also provide the explainability of the prediction made by the RF

model. We use local interpretable model agnostic (LIME) and

apply it to RF to analyze the main components and explain the

most important features. LIME provides the model interpretability

by producing meaningful and vital information. We use ELI5 to

inspect machine learning classifiers and explain their predictions.

ELI5 extracts the top 10 essential features with their corresponding

weights. As shown in Table 3, it is noticed that the RF achieves a 2%
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FIGURE 12

Feature explainability.

FIGURE 13

Local importance.

higher f-score than the deep learning models such as DNN, CNN,

and CNN-LSTM while using XAI-HAR-based feature matrix. In

addition, the deep learning models take more time in model

building than RF, as shown in Table 4. The deep learningmodels not

only achieve better f-score on PCA, IG, and mRMR-based feature

matrices than RF but also take a long time in model training. So,

the RF model works more robustly and efficiently on the XAI-HAR

feature matrix than all other learning models. Below, we answer the

research questions articulated in this study.

Answer to RQ1: The XAI-HAR consists of two steps: physical

key features selection (PKFS) and statistical key features selection

(SKFS) to form a feature matrix corresponding to different well-

established contemporary methods used for recognizing activities.

Further, we use local interpretable model agnostic (LIME) to

interpret the decision-making process by classifiers.

Answer to RQ2: XAI-HAR presents the concept of selecting local

key features within the dataset while maintaining the original

meaning of the features.

Answer to RQ3: The weighting criteria are set as explained in

equations 1, 2, 3, 4, 5, 6, 7, and 8.

Answer to RQ4: The results reveal that the proposed approach

will help neuropsychologists and clinicians to gain insight into

an individual’s functional ability to detect diseases and recognize

FIGURE 14

ELI5-based feature Inspection.

their daily activities. Furthermore, the proposed approach help

to understand the reason behind decision-making since detecting

cognitive impairment is critical. Finally, it helps to provide

interpretability to individuals with dementia.

5. Conclusion and future work

This study presented an XAI-empowered human activity

recognition approach to enhance the recognition accuracy of

cognitively impaired individuals’ activities in a smart home.

This approach helps to monitor the activities of cognitively

impaired individuals and individuals having chronic impairments.

The proposed approach improved the recognition accuracy of

the intra-class variations. Moreover, XAI-HAR is compared

with other commonly used feature selection techniques (PCA,
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mRMR, and IG) from the literature and other machine learning

techniques. The results showed that the XAI-HAR achieved an

f-score of 96% using RF, which is higher than other feature

selection approaches. In addition, these results demonstrated

the further help provided by the proposed XAI-HAR to

achieve healthier patients over available patients. In future,

we aim to experiment with the proposed approach on the

dataset having complex activities. We also intend to develop

a dataset with multiple participants of different ages and

pets. It will be challenging to detect activities and cognitive

conditions in the presence of pets. Furthermore, we intend

to extend this study by providing essential features and early

detection for other domains, particularly for Parkinson’s and

Alzheimer’s diseases.
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