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COVID-19 is a novel virus that attacks the upper respiratory tract and the lungs.

Its person-to-person transmissibility is considerably rapid and this has caused

serious problems in approximately every facet of individuals’ lives. While some

infected individuals may remain completely asymptomatic, others have been

frequently witnessed to have mild to severe symptoms. In addition to this,

thousands of death cases around the globe indicated that detecting COVID-19

is an urgent demand in the communities. Practically, this is prominently done

with the help of screening medical images such as Computed Tomography (CT)

and X-ray images. However, the cumbersome clinical procedures and a large

number of daily cases have imposed great challenges on medical practitioners.

Deep Learning-based approaches have demonstrated a profound potential in

a wide range of medical tasks. As a result, we introduce a transformer-based

method for automatically detecting COVID-19 from X-ray images using Compact

Convolutional Transformers (CCT). Our extensive experiments prove the e�cacy

of the proposed method with an accuracy of 99.22% which outperforms the

previous works.

KEYWORDS
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1. Introduction

The virus, named Severe Acute Respiratory SyndromeCorona-Virus 2 SARS-CoV-2, also

known by the nameCOVID-19, is the source of a severe disease that started inWuhan, China

during the last months of 2019 (1). It soon spread to other parts of the globe and caused one

of the most devastating pandemics, in that millions of people became abruptly affected or

dead. According to the World Health Organization (WHO), the number of death cases in

the first half of 2022 stood at more than 6,200,000 and the number of diagnosed people

reached more than 516,000,000 in the same year worldwide. This virus belongs to the same

group as Severe Acute Respiratory Syndrome (SARS) andMiddle East Respiratory Syndrome

(MERS) (2). Its commonly recognized symptoms are coughing, shortness of breath, fever,

pneumonia, and respiratory distress (3).
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The negative ramifications, imposed on the communities by

this virus, and also its rapid transmission from one person

to another, prove the necessity of tackling this disease with

prohibitive measures. Approximately all countries included a

variety of safety protocols, such as social distancing, with the

object of controlling the outbreak of this pandemic. Accurately

and rapidly detecting COVID-19 is an essential step that should

be taken to control the widespread disease (4). Screening

and monitoring of Computed Tomography (CT) and X-ray

images have demonstrated great potential in providing a reliable

modality for experts to examine different lung diseases such

as tuberculosis, infiltration, atelectasis, pneumonia, and COVID-

19 (5). However, the lack of specialized human resources in

many regions, especially poor and underdeveloped countries

acts as an impediment to taking advantage of such imaging

technologies. This motivated the scientific community to utilize

computer-aided intelligent decision-making systems to automate

the required process.

Deep Learning (DL) is a powerful tool that can provide

us with such systems. Among various architectures, designed

for processing different types of data, Convolutional Neural

Networks (CNNs) and Vision Transformers (ViTs) are

specifically invented for visual data. Especially, in medical

image analysis, these architectures have proven to be remarkably

effective for diagnosing a wide variety of medical conditions.

In the following, a brief explanation of CNNs and ViTs

is given.

1.1. Convolutional Neural Network

Convolutional Neural Network (CNN) is one of the most

favored types of architectures in deep learning, especially in

computer vision (6). The main component of CNN-based

architectures is convolution, which is a mathematical linear

operation between matrices (7). CNNs’ most notable success is

in the field of pattern recognition applied to imagery, that is,

visual data (8). In fact, the introduction of CNNs by Krizhevsky

et al. (9), has revolutionized a wide variety of challenges in the

domain of computer vision such as medical image analysis, face

recognition, image classification, object detection, and semantic

segmentation (10–15).

In general, CNN-based models comprise three types of

layers, namely convolutional layers, pooling layers, and

fully-connected layers. These three are depicted in Figure 1,

where you can see a formation of a CNN-based model for

classifying the input lung X-ray image into healthy or unhealthy

samples. As is shown in this figure, the convolution layer

operates by sliding a kernel on the input data. Each kernel

results in a feature map, to which the pooling operation

is applied.

Furthermore, translation equivariance and translational

invariance, which is inherent to CNNs, enable them to learn the

natural statistics of the input image. In addition to this, sparse

interaction, weight sharing, and equivariant representations

make CNN-based models more efficient and less computationally

expensive (16).

1.2. Vision transformer

Transformer-based models in deep neural networks have

been originally introduced in the domain of Natural Language

Processing (NLP) (17). The astounding performance of these

models in a variety of tasks in NLP, i.e., machine translation (18),

question answering (19), text classification (20), and sentiment

analysis (20, 21), has sparked the interest of a considerable number

of researchers in computer vision to attune these models to the field

of computer vision (22, 23) was the first research paper, in which

the authors creatively invented a way to apply transformers to the

visual data and introduced ViTs for image classification. Figure 2

demonstrates a general procedure in ViT-based models. Based on

this figure, it can be witnessed that an image is converted to a set

of patches, each representing a locality of a region in the image.

This procedure enables us to look upon an image as sequential

data; the type of data that is prevalent in NLP and is tailored

for transformers.

Firstly, ViT flattens these patches and then passes them through

a trainable linear projection layer, making the projections the

same with regard to their dimensionality. Then, since the ViT is

thoroughly agnostic to the hierarchy of the input image, meaning

that it does not take into consideration where each patch is located

in the original image, the position embeddings are integrated

into these projections to eradicate this problem. After that, the

transformer encoder block takes these patches, alongside their

position, and an extra classification token named CLS token. The

transformer encoder includes multi-head attention layers, capable

of learning a variety of self-attention states. Lastly, the outputs

of all existent heads are amalgamated and fed to the Multi-Layer

Perceptron (MLP).

2. Related works

In this section, we present a brief review of the previous

works for detecting COVID-19 from CT or X-Ray images. Due to

the successful performance of deep learning-based approaches in

medical image analysis (24), researchers have focused on proposing

different CNN or ViT-based architectures in order to automatically

recognize the presence of the infection (5).

To begin with, Wang et al. (25) were one of the first groups

who designed a deep neural network for detecting COVID-19. In

addition to this, they provided a relatively large dataset of chest X-

ray images. They achieved 93.3% accuracy. In (26), Marques et al.

proposed a pipeline based on EfficientNet and followed the 10-

fold cross-validation paradigm to evaluate their approach to chest

x-ray images. They have achieved an average accuracy of 99.62

and 97.54% in binary and multi-class classification, respectively.

Singh et al. (27) utilized a famous neural network, named VGG16,

and transfer learning in order to detect COVID-19 from CT

scans. In their approach, the extracted features were chosen by

using Principal Component Analysis (PCA) and later classified

by different classifiers. At most, they achieved 95.7% accuracy.

In (28), Islam et al. made a neural network that was a hybrid

of CNNs and Long Short-Term Memory (LSTM) networks. They

trained their model on 3 classes, namely COVID-19, pneumonia,

and normal, and achieved 99.2, 99.2, and 99.8% accuracy for
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FIGURE 1

The general architecture of a CNN-based model.

FIGURE 2

The general architecture of a ViT-based model.

each class, respectively. In Narin et al. (29), have thoroughly

investigated the impact of transfer learning on the analysis of chest

X-ray radiographs. Five pre-trained models, namely ResNet50,

Resnet101, ResNet152, InceptionV3, and Inception-ResNetV2

were the models examined by them and they achieved accuracies

of 96.1, 99.5, 99.7% in three different datasets. In addition, Goel

et al. (30) have proposed OptCoNet; an optimized Convolutional

Neural Network for detecting COVID-19 from X-ray images.

They employed the gray wolf optimization algorithm with the

aim of tuning the hyperparameters of the classifier and achieved

97.78% accuracy.

Furthermore, more recently ViT-based models have been put

forward for COVID-19 detection. In Al Rahhal et al. (31), a

novel model with two branches has been proposed. In this work,

a ViT architecture is utilized as a backbone, integrated with a

Siamese network for processing an augmented version of the input

X-ray image. They could obtain 99.13% for their accuracy in

the 80:20 distribution of train and test. Further, Mondal et al.
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TABLE 1 An overview of the existing works.

References Dataset
(CT/X-ray)

Classification Approach Train/test/validation Performance
(accuracy)

Konar et al. (35) X-Ray Binary Proposed Semi-Supervised

Classifier

Random sampling 70% for

training and 30% for testing

98.40%

Vaid et al. (36) X-Ray Binary VGG-19 Random sampling 80:20:20 for

train, validation and testing.

96.30%

Ozturk et al. (37) X-Ray Binary and

multi-class

DarkNet 5-fold cross-validation 98.08%

Panwar et al. (38) X-Ray Binary Proposed nCOVnet Random sampling 70% for

training and 30% for testing

97.62%

Ahuja et al. (39) X-Ray Binary ResNet-18 Random sampling. 70% for

training and 30% for testing.

99.40%

Sharifrazi et al. (40) X-Ray Binary Sobel+Support Vector

Machine+CNN

10-fold cross-validation 99.02%

Khozeimeh et al. (41) Numerical Binary CNN-AE 10-fold cross-validation 96.05%

Al Rahhal et al. (31) CT/X-Ray Multi-class Proposed Siamese+ViT

Classifier

60:40

80:20

20:80

99.13± 0.23

Mondal et al. (32) CT/X-Ray Multi-class Proposed xViTCOS+

Multistage Transfer Learning

80:20 0.981

Krishnan and Krishnan (2) X-Ray Binary Pretrained ViT 73:3:24 97.61

Kumar et al. (42) X-Ray Multi-class SARS-Net CNN 90:10 97.60

Esmi et al. (43) X-Ray Multi-class Fuzzy fine-tuned Xception 80:20 96.60

FIGURE 3

Workflow of the proposed pipeline for detecting COVID-19.

(32) proposed a ViT-based model and employed a multi-stage

transfer learning technique to address the scarcity of data. They

obtained an overall accuracy of 96.00%. Furthermore, Liu et al.

(33) have applied a transformer-like classifier model. By employing

transfer learning techniques in their approach, they improved

TABLE 2 The dataset distribution.

No. train
samples

No. test
samples

Positive (COVID-19) 16,490 200

Negative (NO COVID-19) 13,992 200

Total 30,482 400

the results to outperform CNN-based models, achieving 99.7%

accuracy. Additionally, in (34), the authors applied a ViT-based

algorithm based on the Swin transformer for feature learning and

aggregation in two stages segmentation and classification. In their

paper, they further validated the superiority of their algorithm by

comparing their results with well-known visual feature extractors,

i.e., EfficientNetV2. The accuracy of 94.3% was obtained by

their approach.

Furthermore, we have provided Table 1, which details an

overview of the existing research works on the diagnosis of COVID-

19 from CT or X-ray images.

In contrast to the efficiency of previous works, the related

literature lacks employ ViT-based deep models with less hunger for

data. Although such models lack inductive biases like translation

equivariance and locality, which are inherent to CNN-based

models, they are not efficient in generalizing in the procedure

of training on small datasets and this shows their data-driven

nature which is not feasible, especially in the medical area, where

it is less likely to have access to the huge amount of data. As a

result, ViTs do not seem to be a better choice when dealing with
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FIGURE 4

Negative and positive samples of X-ray images from the dataset.

small datasets because they have more requirements both in terms

of computation and memory, preventing many researchers from

adopting such models in different areas. The above-mentioned

challengesmotivated us to propose amore performant solution that

utilizes both the CNN and ViT-based models simultaneously with

the object of boosting COVID-19 detection from visual data.

3. Methodology

This section includes our methodology for detecting COVID-

19 from X-ray images. The workflow of the adopted pipeline is

shown in Figure 3.

Moreover, in this section, after describing the details of the

used dataset, all the main components of the proposed method will

be elaborated.

3.1. Dataset description

In this paper, a publicly available dataset1 is used for training

and evaluating our proposed method. Table 2 shows the official

distribution of this dataset.

Moreover, Figure 4 demonstrates some samples from both

positive and negative classes.

3.2. The used architecture

This section introduces our proposed algorithm, including

different stages in Compact Convolutional Transformers (CCT)

(16). The overview of CCT architecture is illustrated in Figure 5.

1 https://www.kaggle.com/datasets/andyczhao/covidx-cxr2?select=

competition_test

FIGURE 5

An overview of the proposed architecture.

Compact Convolutional Transformer (CCT) is one of the most

recent compact transformer-based models for image processing.

The biggest advantage of CCT is its ability to learn from the

small amount of data in comparison with the base ViT models

which are considerably data-hungry. In situations where we do

not have access to huge number of samples, ViT models cannot

achieve better performance than convolutional-based models and

thus such models are not considered suitable. However, although

some state-of-the-art models, namely DeiT, ConViT, and Compact

Vision Transformers have addressed the issue of the low volume

of data in ViTs, CCT has managed to outperform all other pre-

existing approaches. CCT’s performance has been studied through

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1025746
https://www.kaggle.com/datasets/andyczhao/covidx-cxr2?select=competition_test
https://www.kaggle.com/datasets/andyczhao/covidx-cxr2?select=competition_test
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Marefat et al. 10.3389/fpubh.2023.1025746

FIGURE 6

The architecture of transformer encoder.

FIGURE 7

Confusion matrix.

a variety of low to high-resolution images in benchmark datasets

such as FashionMNIST, MNIST, CIFAR-10, CIFAR-100, ImageNet,

and Flowers-102.

Moreover, CCT is developed over Compact Vision

Transformers (CVT) and takes advantage of a convolutional

tokenizer leading to the preservation of local information and

the production of richer tokens. Compared to the primitive ViT,

the convolutional tokenizer is more effective in encoding the

connection between patches. In the sequel, we go into further detail

on the components of compact transformers.

TABLE 3 The metrics used for evaluation.

Metric name Equation

Accuracy TP + TN
FP + FN + TP + TN

(2)

Precision TP
TP + FP

(3)

Recall TP
TP + FN

(4)

F1-score
(2∗precision∗recall)
precision+recall

(5)

AUC-ROC Area under curve of receiver operator characteristic (6)

False positive rate

(FPR)

FP/(FP+ TN) (7)

False negative rate

(FNR)

FN/(TP+ FN) (8)

True negative rate

(TNR)

TN/(TN+ FP) (9)

TABLE 4 Experimental setup.

Programming
language

Python 3.7

Deep learning library Pytorch 1.9

CPU Intel R© CoreTM i7-10700 CPU @ 2.90 GHz× 16

GPU GeForce GTX 1060

TABLE 5 Hyperparameter settings.

Parameter name Detail

Image size (256, 256)

Embedding dimension 512

Number of convolution layers 4

Pooling kernel size 5

Pooling padding 1

Pooling stride 2

Kernel size 5

Stride 2

Padding 1

Number of heads 8

Number of classes 2

Positional embedding Sine function

3.2.1. Transformer-based backbone
As for CCTmodel design, the original Vision Transformer (23),

and original Transformer (44) are proposed. The encoder is made

up of transformer blocks, each of which has an MLP block and a

Multi-Head Self-Attention (MHSA) layer. Based on Figure 6, the

input image is patchified, after which each patch becomes flattened

and projected linearly. Then, the positional embeddings are added

to these patch embeddings. These embeddings are fed to multiple

transformer encoders, whose architecture is shown in Figure 6

in detail.

Figure 6 demonstrates that the embedded patches are fed to

a normalization layer and after that MHSA module is applied to
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FIGURE 8

Policies for train and test split.

TABLE 6 Results of classification on the o�cial test data (all metrics are reported on a 0–100 scale).

Accuracy Precision Recall F1-score AUC-ROC FPR FNR TNR

99.00 99.00 99.00 99.00 99.67 1.00 1.00 99.00

the output. Also, the residual connections exist before and after

each block of MLP. The encoder additionally employs dropout,

GELU activation, and Layer Normalization. It is considered that the

vision transformers are more compact and simpler. Variants with

(the minimum number of) 2 layers, 2 heads, and 128-dimensional

hidden layers are implemented. Based on the image resolution of

the training dataset, the tokenizers are modified. These variations

are referred to as ViT-Lite, and although they differ in size, they are

largely comparable to ViT in terms of architecture.

3.2.2. Sequence pooling
The ViT and almost all general transformer-based classifiers

follow BERT (45), which sends a learnable class or query token

across the network before feeding it to the classifier leading

to the conversion of the sequential outputs to a single class

index. However, in CCT, an attention-based technique that pools

over the output token sequence are leveraged, and hence, unlike

the learnable token, the output sequence contains substantial

information that includes several parts of the input image, resulting

in a more efficient performance. Moreover, the network can

correlate data across the input data and weigh the sequential

embedding of the transformer encoder’s latent space. Finally,

Compact Vision Transformer (CVT) is made by substituting

SeqPool for the ordinary class token in ViT-Lite.

3.2.3. Convolutional tokenizer
As for the last steps in designing CCT, a straightforward

convolutional block is substituted for the patch and embedding

in ViT-Lite and CVT to induce an inductive bias into the

model. A single convolution, ReLU activation, and a max pool

make up the standard and customary design of this block by

which the models have more flexibility than models like ViT

since they are no longer restricted to input resolutions that are

strictly divisible by the predetermined patch size. The CCT is

produced via this convolutional tokenizer, whose mathematical

representation is shown in Equation (1), Sequence Pooling, and the

transformer encoder.

X0 = MaxPool(ReLU
(

conv2d(x)
)

) (1)

The feature map is extracted to be the representation of local

features. Based on Equation 1, we can deduce that CCT does

not depend on image resolution, since it preserves locality in

information gained from the data due to its convolutional blocks.
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FIGURE 9

Confusion matrix (CM) for o�cial test data.

FIGURE 10

Accuracy diagram vs. epochs.

3.3. Evaluation metrics

The measures used for evaluating the performance of the

proposed classifier are estimated against the following metrics:

Confusion Matrix (CM): A matrix, containing four main

elements, namely True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN). For a binary classifier, CM

is as Figure 7.

True Positive (TP): the number of infected samples correctly

classified as infected.

True Negative (TN): the number of uninfected samples

correctly classified as uninfected.

False Positive (FP): the number of infected samples correctly

classified as infected.

False Negative (FN): the number of infected samples correctly

classified as infected.

FIGURE 11

Loss diagram vs. epochs.

FIGURE 12

Receiver operating characteristic (ROC) curve for o�cial test data.

Based on the metrics mentioned above, the metrics detailed

in Table 3 can be deduced and used for evaluating a classifier.

Other metrics used for evaluating the proposed approach are

accuracy, precision, recall, F1-Score, AUC-ROC, False Positive

Rate (FPR), False Negative Rate (FNR), and True Negative Rate

(TNR) (40, 46–48).

4. Results

This section includes the results of classification by our

proposed approach.

4.1. Experimental setup

Table 4 details the software and hardware used for

implementing our proposed method.

Frontiers in PublicHealth 08 frontiersin.org
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TABLE 7 Results of classification using 10-fold cross-validation (all metrics are reported in 0–100 scale).

No. fold Accuracy Precision Recall F1-score AUC-ROC FPR FNR TNR

1 99.16 98.90 99.42 99.16 99.23 1.10 0.58 98.90

2 98.90 98.21 99.61 98.91 99.15 1.81 0.39 98.19

3 99.71 99.68 99.74 99.71 99.20 0.32 0.26 99.68

4 99.38 99.10 99.68 99.39 99.61 0.91 0.32 99.09

5 98.96 98.40 99.55 98.97 99.03 1.62 0.45 98.38

6 99.61 99.42 99.81 99.61 99.27 0.58 0.19 99.42

7 99.03 98.84 99.22 99.03 99.19 1.17 0.78 98.83

8 98.80 97.90 99.74 98.81 99.02 2.14 0.26 97.86

9 99.64 99.68 99.61 99.64 99.64 0.32 0.39 99.68

10 99.03 98.65 99.42 99.03 99.31 1.36 0.58 98.64

Average 99.22 98.88 99.58 99.23 99.27 1.13 0.42 98.87

The bold values demonstrate that the best values is placed in the last record.

FIGURE 13

Accuracy diagram vs. epochs.

4.2. Hyperparameter settings

Table 5 details the Hyperparameter settings applied for

implementing our proposed method.

4.3. Dataset split

Note that we opted for three main policies for evaluating the

classifier. These three are:

1) Policy #1: We used the official training data for training and

validating the model and the official test data for testing it.

2) Policy #2: We amalgamated official train and test data with

each other; then randomly shuffled the data multiple times.

Next, we used 10-fold cross-validationmethod for the training

and evaluation process.

FIGURE 14

Loss diagram vs. epochs.

3) Policy #3: We randomly shuffled the training data multiple

times and then chose a specific number of training data

(randomly chosen), removed them from the training set, and

added them to the testing set. The number of replaced samples

was set in a way to make the test size 0.1 of the remaining

training data.

The main reason for pursuing these policies is the small size

of the official test chunk, which makes the evaluation results

unreliable. This process is depicted in Figure 8.

4.3.1. Results for policy #1
Table 6 contains the results of classification by the proposed

model on the official distribution of the used dataset. Additionally,

Figure 9 shows the obtained CM for the same distribution.

Figures 10, 11 show the accuracy and loss curves vs. epochs,

respectively. Figure 12 demonstrates the ROC curve for the

classifier.
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FIGURE 15

The CMs based on 10-folds (A–J).

Based on Table 6, it can be observed that our approach can

achieve a high value of 99.00% for accuracy, precision, recall, and

F1-Score. The stability of the proposed model in terms of detecting

TABLE 8 Train and test distribution in policy #3.

No. train samples No. test samples

Positive (COVID-19) 26142 4740

FIGURE 16

Accuracy diagram vs. epochs.

FIGURE 17

Loss diagram vs. epochs.

both negative and positive samples can be proved by the fact that a

high value of 99.67 is achieved for AUC-ROC.

4.3.2. Results for policy #2
Table 7 details the achieved results for each fold based on the

introduced metrics. Figures 13, 14 demonstrate the accuracy and

validation curves achieved in the training process. Figures 15A–J

shows the CMs obtained in the second policy.

Table 7 shows the results achieved in all folds as well as the

average. The achieved accuracy, on average, is 99.22, the precision

is 98.88, the recall is 99.58, and the F1-Score is 99.23. The value for

AUC-ROC, on average, is 99.27 which shows the strong confidence
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TABLE 9 Results of classification using policy three (all metrics are reported on a 0–100 scale).

Accuracy Precision Recall F1-score AUC-ROC FPR FNR TNR

99.09 98.74 99.45 99.09 99.73 1.27 0.55 98.73

FIGURE 18

Confusion matrix.

of the proposed classifier in classifying both negative and positive

samples.

4.3.3. Results for policy #3
This subsection includes our results based on the third

evaluation policy. Train and test distribution in policy #3 is

indicated in Table 8. Figure 16 demonstrates training and validation

accuracy in each epoch. Also, Figure 17 illustrates training and

validation loss in the training procedure. Table 9 shows the results

achieved by the classifier when we adopt policy 3 for the evaluation.

Also, the obtained CM and ROC, in this policy, is shown in

Figures 18, 19, respectively.

Based on Table 9, we can see that in policy 3, we have achieved

99.09 as accuracy, 98.74 as precision, 99.45 as recall, and 99.09

as F1-Score. 99.73 is achieved as the AUC-ROC of the classifier

in policy 3 and proves the efficient performance of the model in

distinguishing positive and negative samples correctly.

5. Discussion

The COVID-19 serious illness that began in the final months

of 2019 and quickly spread to other regions of the world, led to

one of the most destructive pandemics. The WHO estimates that

as of August 2022, there have been more than 6.4 million deaths

and 570 million confirmed cases. According to the research and

experiences obtained up to now, CT scans and X-ray images are

highly effective tools in diagnosing COVID-19. The absence of

specialized human resources in many areas makes it difficult to

FIGURE 19

Receiver operating characteristic curve.

benefit from such imaging technologies that are encouraged. The

scientific community uses computer-aided intelligent systems to

automate the desired procedure.

In this study, we proposed deep learning methods for the

detection of COVID-19, based on X-ray images of both confirmed

(positive) and negative COVID-19 cases that were gathered in

a dataset with 30,882 samples. The main architecture that we

proposed was CCT. Because of its compactness, CCT can be

implemented in low-resource environments, which is its primary

advantage, and therefore, is considered to be among mobile-

friendly models. In addition, because CCT is a hybrid model

based on CNN and ViT, it combines the benefits of both

while avoiding their drawbacks. For instance, CCT experiences

substantial performance improvements, resulting in a top-1%

accuracy of 98% on CIFAR-10.

The CCT model is the only transformer-based model among

the top 25 models in terms of performance and efficiency on

CIFAR-10, despite having no pre-training and being rather small

compared to the majority. Moreover, CCT surpasses the majority

of comparable CNN-based models in this field, except for some

Neural Architectural Search techniques (49). Furthermore, CCT

can be lightweight, using only 0:28 million parameters, while still

achieving accuracy within 1% of the top 90% of similar models

on CIFAR-10. CCT obtains 80.67% accuracy on ImageNet with

fewer parameters and less computational work, and it outperforms

more recent, comparably sized models like DeiT (50) [for more

information, see (16)].

In order to achieve better performance in our study, we chose to

evaluate the classifier according to three primary policies. In policy

1, we merely trained and validated the model through the official

training data, and we examined the classifier using the official test

data. Afterward, to obtain more reliable and robust outcomes, the
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TABLE 10 Comparison between the current study and related studies based on binary classification for COVID-19 diagnosis.

References Cases/normal/COVID Method Performance (accuracy, precision,
recall, F1-score, AUC, NC: Not
considered)

Alakus and Turkoglu (51) 600/520/80 CNN-LSTM Accuracy: 92.30%

Precision: 92.35%

Recall:93.68%

F1-Score: 93.00%

AUC:90.00%

Oguz and Yaganoglu (52) 1,345/738/607 ResNet-50+SVM Accuracy: 96.29%

Precision: 96.66%

Recall: 95.08%

F1-Score: 95.86%

AUC:98.21%

Srivastava et al. (53) 4,551/3,270/1,281 lightweight CNN (CoviXNet) Accuracy: 99.56%

Precision:100%

Recall: 99.70%

F1-Score: 100%

AUC: 99.00%

Chen (54) 60,000/59,600/400 CNN+Histogram-oriented gradients Accuracy: 92.95%

Precision: 91.5%

Recall: 85%

F1-Score: N/C

AUC: N/C

Nasiri and Hasani (55) 625/500/125 DenseNet-169+ XGBoost Accuracy: 98.23%

Precision: 98.54%

Recall: 92.08%

F1-Score: 97.00%

Specificity: 99.78%

AUC: N/C

Jain et al. (56) 1,832/1,372/460 ResNet-101 Accuracy: 98.93%

Precision: 96.39%

Recall:98.93%

F1-Score: 98.15%

AUC: 98.20%

Al-Waisy et al. (57) 800/400/400 A hybrid deep learning detection

System (deep belief network+

convolutional deep belief network)

Accuracy: 99.93%

Precision: 100%

Recall: 99.90%

F1-Score:99.93%

AUC: N/C

Ardakani et al. (58) 1,020/510/510 ResNet-101 Accuracy: 99.51%

Precision: 99.03%

Recall: 100%

F1-Score: N/C

AUC: 99.40%

Zhao et al. (59) 16,351/14,704/1,647 Big transfer-M Accuracy: 96.50%

Precision:100%

Recall: 93.00%

F1-Score: N/C

AUC: 99.40%

Haghanifar et al. (60) 3,628/3,200/428 A 121-layer dense

Convolutional network

Accuracy: 99.04%

Precision: N/C

Recall: N/C

F1-Score: 96.00%

AUC: N/C

In this study (2023) 30,882/14,192/16,690 Compact Convolutional Transformers Accuracy: 99.22%

Precision:98.88%

Recall: 99.58%

F1-Score: 99.23%

AUC: 99.27%
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official test and train data were combined, after which they were

repeatedly shuffled at random. The training and evaluation process

was then conducted using the 10-fold cross-validation method

which altogether constitutes our second policy. Finally, to provide

the third (and the last) policy, we shuffled the training data at

random several times followed by randomly selecting a group of

training data, taking them out of the train set, and adding them to

the testing set. It is important to note that the official test chunk’s

small size, which renders the evaluation results untrustworthy, was

our main motivation for considering these three different policies

and approaches.

Table 10 lists the comparison between the current study and

several related studies on the topic of COVID-19 diagnosis

based on binary classification, and the performance of each

study is mentioned due to the evaluation metrics used by the

authors.

Following is a brief description of the methodology and

results of the articles listed in the table above. In Alakus and

Turkoglu’s study (51), six different deep-learning model types

were developed and the outcomes were compared. With an

accuracy of 92.30%, CNN-LSTM produced the best results out of

the group.

In (52), 1,345 CT scans were subjected to deep feature

extraction using deep learning models like ResNet-50, ResNet-

101, AlexNet, etc. Following that, classification methods

were given the deep features, and test images were used for

model evaluation. The results showed that ResNet-50 and

the SVM together provided the best performance. The F1-

score was 95.86%, the accuracy was 96.29%, and the AUC

was 98.21%.

Srivastava et al. in (53) proposed CoviXNet, a lightweight CNN-

based model, over a dataset of three classes: COVID-19, normal

X-rays, and viral-pneumonia-infected chest X-ray images, with an

accuracy of 99.56% for binary classification (i.e., normal Chest

X-ray image and COVID-19 infected).

The literature study (54) suggested a CNN-based plus

histogram-oriented gradients (HOG) model on a public dataset

of 60,000 X-ray images with 59,600 negative and 400 positive

COVID-19 samples and a 92.95% accuracy was attained.

In (55), features from 1,125 X-ray images, including 125 images

identified as COVID-19 were extracted using DenseNet-169. The

XGBoost classifier was then fed the derived features and the average

accuracy was 98.23%.

A deep learning ResNet-50 network was utilized as a classifier

in the study (56) to identify viral/bacterial pneumonia and

normal cases among 1,832 X-ray chest images. Additionally, the

ResNet-101 was employed to determine COVID-19 in patients

with positive viral-induced pneumonia and the overall accuracy

was 98.93%.

A parallel design (COVID-DeepNet) that combines a deep

belief network with a convolutional deep belief network trained

from scratch on a large dataset was proposed by Al-Waisy et al.

(57). With a 99.93% detection accuracy rate, the method properly

identified COVID-19 in patients.

Ten well-known deep learning-based techniques for

distinguishing COVID-19 from non-COVID-19 in CT scan

images were proposed by Ardakani et al. (58), and the results

showed that the ResNet-101 model achieved 99.51% accuracy.

To detect COVID-19 infections from chest X-ray images,

Mahajan et al. (61) developed a single-shot MultiBox detector

(SSD) in conjunction with deep transfer learning models and

achieved high precision (i.e., 93.01%).

The authors of (60) used transfer learning to diagnose COVID-

19 over 1,326 chest X-ray images, and the final method, the

121-layer Dense Convolutional Network (COVID-CXNet), was

developed using the well-known CheXNet model (62). They

achieved 99.04% accuracy using the COVID-CXNet method.

In (59), the authors conducted in-depth convolutional

neural network (CNN) fine-tuning experiments and showed that

models pre-trained on larger out-of-domain datasets demonstrate

enhanced performance. Also, higher-quality images include more

clinical information when the hyperparameters are chosen

properly, and using mixups during training enhanced the

model’s performance.

According to the related works, to evaluate the performance

of our proposed compact convolutional Transformer method, we

took into account almost all of the standard and most important

evaluation metrics, including accuracy (99.22%), precision

(98.88%), recall (99.58%), F1-score (99.23%), AUC-ROC (99.27%),

FPR 1.13, FNR (0.42%), and TNR (98.87%), which is outstanding

in this regard. The results of our study show that this research is

superior to many similar and state-of-the-art works in general

and also when each of the evaluation metrics is considered or

is completely comparable with them, and Table 10 confirms

this claim.

6. Conclusion and future works

In this paper, a transformer-based model is proposed for

screening chest X-ray images to detect COVID-19 disease. The

proposedmodel is based on Compact Convolutional Transformers,

whose main advantage over the other transformer-based models

is its less need for data. This is important since in most medical

domains data scarcity is ubiquitous. Using different metrics, we

have demonstrated the efficacy of the proposed model for COVID-

19 diagnosis. In future work, we tend to evaluate our proposed

approach to other diseases related to human beings’ lungs. That

is to say, instead of classifying in a binary fashion positive and

negative COVID-19, the approach should detect more classes of

lung disorders.
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