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Background: Epidemiological studies have widely proven the impact of ozone (O3)

on respiratory mortality, while only a few studies compared the association between

di�erent O3 indicators and health.

Methods: This study explores the relationship between daily respiratory

hospitalization and multiple ozone indicators in Guangzhou, China, from 2014

to 2018. It uses a time-stratified case–crossover design. Sensitivities of di�erent age

and gender groups were analyzed for the whole year, the warm and the cold periods.

We compared the results from the single-day lag model and the moving average

lag model.

Results: The results showed that themaximumdaily 8 h average ozone concentration

(MDA8 O3) had a significant e�ect on the daily respiratory hospitalization. This e�ect

was stronger than for the maximum daily 1 h average ozone concentration (MDA1

O3). The results further showed that O3 was positively associatedwith daily respiratory

hospitalization in thewarm season, while therewas a significantly negative association

in the cold season. Specifically, in the warm season, O3 has the most significant e�ect

at lag 4 day, with the odds ratio (OR) equal to 1.0096 [95% confidence intervals (CI):

1.0032, 1.0161]. Moreover, at the lag 5 day, the e�ect of O3 on the 15–60 age group

was less than that on people older than 60 years, with the OR value of 1.0135 (95%

CI: 1.0041, 1.0231) for the 60+ age group; women were more sensitive than men

to O3 exposure, with an OR value equal to 1.0094 (95% CI: 0.9992, 1.0196) for the

female group.

Conclusion: These results show that di�erent O3 indicators measure di�erent

impacts on respiratory hospitalization admission. Their comparative analysis provided

a more comprehensive insight into exploring associations between O3 exposure and

respiratory health.
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Introduction

Ozone (O3) is a secondary pollutant, forming through chemical
reactions from precursors mainly including volatile organic
compounds (VOCs) and nitrogen oxides (NOx). In recent years,
O3 pollution has received increasing scientific attention due to
the large number of environmental problems caused by rapid
urbanization and industrial activities worldwide. Ozone (O3)
exposure would trigger bronchial inflammation and respiratory
tract oxidative stress, which further causes many serious health
problems (1, 2) such as respiratory and lung-related diseases are
very common (3–6).

Darrow et al. andWise explored the relationship between O3 and
respiratory health and provided their exposure-response coefficients
but mainly in developed countries (7, 8). Developing countries, such
as China and India, however, face severe O3 pollution and have a
high population density (9, 10). Epidemiological studies about O3

concentration are still lacking, and therefore, there exists a lack of
local exposure-response coefficients, resulting in large uncertainty
in environmental health assessment. In addition, the relationship
between O3 concentration and human health may vary across cities
or regions because of differences in the nature and level of O3

pollution (10–12), and directly adopting the relationships established
in developed countries to Chinese cities may result in large biases. It
is, therefore, necessary to use local O3 concentration and health data
to obtain local exposure-response coefficients.

With the improvement of the quality of China’s air pollution
monitoring data and increasing O3 concentrations (13), increasing
attention can now be paid to the impact of O3 concentration on
human health. Many epidemiological publications have confirmed
that short-term O3 exposure is related to human health in China (4,
14, 15). However, few studies investigated how well the different O3

indicators (MDA8 O3 and MDA1 O3) measure the effects on human
health. In fact, different O3 indicators have varying associations with
human health (5, 16, 17). For example, Li et al. (16) used different
O3 indicators to explore the impact of short-term O3 exposure on all-
cause mortality in Guangzhou. Their results showed that MDA8 O3

was closely related to all-cause mortality, which was the key to study
the impact of environmental O3 exposure on health (16). Yang et al.
(17) examined the effect of three O3 indicators (MDA8 O3, MDA1
O3, and 24 h average O3) on daily mortality in Suzhou. They found
thatMDA8O3 andMDA1O3 were strongly associated with increased
mortality than the 24 h average O3 (17). A cohort study by Abbey
and Burchette investigated the impact of different O3 indicators
on respiratory disease, and they found that MDA8 O3 provided
the strongest impact on human health (18). As O3 concentration
shows large diurnal and seasonal variation related to the variability
in the release of O3 precursors, O3 indicators may be affected by
spatial factors, such as region, urbanization, and population density,
and temporal factors, such as season and weather. Therefore, in
studies relating O3 to health, it is important to know how the O3

concentration is obtained. If the differences among O3 indicators are
not considered appropriately, then this may lead to misleading health
risk conclusions (16).

Previous studies examined the effects of short-term O3 exposure
on daily all-cause, cardiovascular, and respiratory mortality (19–21),
while a few studies addressed the problem that various O3 indicators
were used to examine the relationship between different O3 indicators
exposure and respiratory hospitalization.

To address this research issue, this study aimed (1) to conduct a
time-stratified case–crossover model to explore the short-term effect
of two O3 indicators (MDA8 O3 and MDA1 O3) on daily respiratory
hospitalization in a single city; (2) to investigate whether the two
O3 indicators show different relationships with daily respiratory
hospitalization; and (3) to examine the associations between the two
O3 indicators and daily respiratory hospitalization for different age,
gender, and season groups. Then, the results of the single-day lag
model and the moving average lag model were compared. As the
study area, we selected the city of Guangzhou, China, where an
excellent dataset was available.

Materials and methods

Data collection

Guangzhou, located in Southern China, is a metropolis with
a high population density and high O3 concentration. It belongs
to the typical subtropical humid monsoon climate, and its annual
average temperature is 22◦C and relative humidity is 68%. Due to
the rapid economic development and increased energy consumption
in the past few decades, Guangzhou has suffered from severe air
pollution. Moreover, Guangzhou is a typical Chinese megacity,
representing a city with urgent public health problems caused by
air pollution. Therefore, Guangzhou is a unique city to evaluate
the health effects of O3 concentration. We collected data on daily
respiratory hospitalization from 1 January 2014 to 31 August 2018
from the First Affiliated Hospital of Sun Yat-sen University, which is
located in Yuexiu District, central district of Guangzhou (Figure 1).
This hospital is surrounded by universities, a large community of
residents. Therefore, the daily respiratory hospitalization in this
hospital can reflect the changes in the respiratory health status
of residents in Guangzhou. The information on respiratory data
contains the date of hospitalization, gender, age, diagnosis from
the 10th International Classification of Diseases (ICD-10), and
residential address. In this study, respiratory diseases (ICD-10: J00-
J99) include upper and lower respiratory tract diseases. Since 89.4% of
people in this dataset were above the age of 15, therefore, in this study,
hospitalization visits were divided into two groups: 15–60 years (15
≤ age < 60 years old) and 60+ years (≥60 years old). The screening
was performed according to the patient’s residential address, and the
inpatients in this study were all local residents of Guangzhou.

Data on air pollutants include the two O3 indicators (MDA8 O3

and MDA1 O3), NO2, and PM2.5 concentration in Guangzhou from
1 January 2014 to 31 August 2018, which were collected from the air
quality monitoring sites in Guangzhou. The data are published by the
China National Environmental Monitoring Centre (http://quotsoft.
net/air/). Because the hospitalized patients come from different
districts of Guangzhou, the average value of 10 pollutantmonitor sites
was used. Data on PM2.5 and NO2 were used to test the sensitivity
of the relationship between different O3 indicators and respiratory
hospitalization in the multi-pollutant model.

Meteorological factors were obtained from the China
Meteorological Data Sharing Service System (http://data.cma.gov.
cn/). Daily average temperature and relative humidity were included
to adjust for meteorological effects on respiratory hospitalization.
All data are divided into two periods: warm and cold periods, based
on the average temperature of each month, that is, months with
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FIGURE 1

The spatial distribution of air quality monitoring stations, weather sites, and targeted hospital in Guangzhou.

an average temperature above 20◦C are classified as warm period
(May to October) and those below 20◦C as cold period (November
to April).

Statistical analysis

We applied a time-stratified case–crossover (TSCC) design in this
study. The case–crossover design combines the advantages of case–
control and cross-sectional studies and can be seen as an extension
of the traditional case–control design (22). It uses the case itself
as the control to avoid the bias caused by the selection of the
control group and some uncontrollable factors between cases (such
as age, intelligence, and job). Compared with traditional case–control
studies, case–crossover designs have advantages in controlling for

time-invariant confounders of individual characteristics, since each
individual is under his or her own control (23). The TSCC design
has been widely used to examine the impact of air pollution or
extreme weather conditions on health outcomes such as morbidity
and mortality (24–26).

We used a TSCC design to examine the relationship between two
different O3 indicators and daily respiratory hospitalization. Of these,
all cases served as their own controls. Odds ratios (ORs) and their
95% confidence intervals (CIs) between short-term O3 exposure and
daily respiratory hospitalization were calculated using a conditional
logistic regressionmodel that was conducted with a Cox proportional
hazards regression model. If the p-values were<0.05, the results were
considered statistically significant. The formula was as follows:

log (h(t,X)) = log(h0 (t))+ β1Ct + β2AT + β3RH (1)
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where log (h (t, X)) is the risk function of exposure to the independent
variable X (X includes pollutants and meteorological factors) on
day t (t is the date of hospital admission), log(h0(t)) is the baseline
risk function, Ct is the daily O3 concentrations, AT is the average
temperature, and RH is the relative humidity, with coefficients β1,
β2, and β3. The results are presented as changes in percentage and
their 95%CI of hospital admissions by a rise of per interquartile range
(IQR) in O3 concentration. We choose the same day of the week 1
month before the patient’s admission as a control. For instance, if
patient visits on a Tuesday in June 2016, all Tuesdays a month ago
are control days. According to this design, each case has 3–4 control
days (27).

To capture the delayed (or “lag”) effects of O3 on respiratory
hospitalization, we investigated the delayed associations of O3

exposure on hospitalization visits in Guangzhou. We both used a
single-day lag model (lag0 to lag5), moving the average lag model
to explore their cumulative effects (lag01 to lag05). Notably, the
O3 concentration of lag0 refers to the concentration of O3 on
the current day, and lag1 refers to the O3 concentration of the
previous day. The O3 concentration of lag01 was calculated by the
2-day (the current day and the previous day) average, and similarly,
the O3 concentration of lag05 was calculated by the average O3

concentration on the current day and the 5 days ago.
We performed a series of subgroup analyses stratified by age

(15–60 years old and 60+ years old) and gender (male and female)
to identify potentially susceptible subgroups. These age stratifications
refer to the division from the previously published studies (4, 28).
Moreover, a seasonal analysis of O3-related effects was also performed
by dividing the entire study period into warm (May–October) and
cold (November–April) periods. In these subgroup analyses, the
effects of different O3 indicators on daily respiratory hospitalization
in Guangzhou were examined separately.

Sensitivity analysis

To test the stability of these results, we performed the following
sensitivity analyses: (1) Multi-pollutants analyses were performed
by including the other two serious pollutants, NO2 and PM2.5;
(2) change the lag days of meteorological factors (temperature and
relative humidity) from 0 to 3, which were used to check whether
the results are sensitive to changes in meteorological factors. All
the aforementioned analyses were performed using the “survival”
package in R software (version 3.6.3).

Results

Descriptive analysis

Table 1 describes the basic characteristics of daily respiratory
hospitalization data, two different O3 indicators, two other pollutants
(PM2.5 and NO2), and meteorological factors (average temperature
and relative humidity). The cumulative number of respiratory
hospitalization visits was equal to 5,229 cases from 1 January 2014
to 31 August 2018, and the average number of hospitalization visits
per day was 6. Approximately 62.6% of patients were male and 37.4%
were female. The number of hospitalization visits for respiratory
diseases in the age group of 15–60 (44.1%) was slightly lower than
that in the 60+ age group (45.2%) (Table 1).

Detailed information on air pollutants andmeteorological factors
from 2014 to 2018 in Guangzhou is listed in Table 1. From 2014 to
2018, the daily concentration of MDA8 O3 and MDA1 O3 ranged
from 4.0 to 271.0 µg m−3 and 4.3 to 311.1 µg m−3, respectively. The
annual average value of PM2.5 was 38.2 µg m−3, which was 9.14%
higher than the Grade II Annual Standard (35µgm−3) of the Chinese
Ambient Air Quality Standards (CAAQS) and 2.8 times higher than
the annual average value (10 µg m−3) reported by the World Health
Organization. The daily concentration of NO2 ranges from 14 to 148
µg m−3, with an annual average of 46.1 µg m−3. From 2014 to 2018,
there are 907 days that NO2 exceeded the Grade II Annual Standard
CAAQS (40 µg m−3). Notably, PM2.5 and NO2 concentrations were
higher in the cold season than that in the warm season, but O3, on
the contrary, was higher in the warm season than that in the cold
season. In addition, the average daily temperature was included as
a confounder in the model, ranging from 3.3 to 31.7◦C (the annual
average is 22.2◦C). Daily relative humidity ranges from 28 to 97% (the
annual average is 78.7%). Specifically, the statistical characteristics of
four pollutants, MDA8 O3, MDA1 O3, PM2.5, and NO2, and two
meteorological factors, average temperature and relative humidity,
are shown in Table 1.

Comparison of all di�erent age and gender
groups

Figure 2 shows the relationships between two O3 indicators and
respiratory hospitalization visits in a single-pollutant model. At lag 5
day, MDA8 O3 has a significant and negative impact on the risk of
respiratory hospitalization visits, with the OR value of 0.9945 (95%

TABLE 1 Descriptive statistics of di�erent O3 indicators, meteorological factors and hospitalization for respiratory diseases in Guangzhou.

Variable Min 25% 50% Mean SD 75% IQR Max

MDA8 O3 (µg/m3) 4 51 86 91 51 122 71 271

MDA1 O3 (µg/m3) 4.3 57 100 105 59 144 87 311

PM2.5 (µg/m3) 4 23 33 38 22 49 26 157

NO2 (µg/m3) 14 33 42 46 18 55 22 148

Temperature (◦C) 3.3 17.1 23.9 22.2 6.3 27.7 10.6 31.7

Relative humidity (%) 28 73 80 79 10 86 13 97

RS hospital admission (number) 0 2 6 6 5 9 7 23

RS, represents respiratory.

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1060714
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lin et al. 10.3389/fpubh.2023.1060714

FIGURE 2

OR of respiratory hospitalization visits in di�erent age group for per IQR increase in MDA8 O3 (A) and MDA1 O3 (B).

CI: 0.9897, 0.9993). As for MDA1 O3, there is no significant impact
for all people.

The respiratory risk in different age groups was further examined
by applying the same model to identify whether there are differences
in different stratifications. As shown in Figure 2A, MDA8 O3

was inversely associated with respiratory hospitalization visits in
Guangzhou. At the lag of 4 and 5 days, MDA8 O3 had a significant
impact on respiratory hospitalization in the 15–60 age group, and the
OR value was 0.9917 (95% CI: 0.9843, 0.9991) and 0.9888 (95% CI:
0.9817, 0.9960), respectively. As for lag 04 and lag 05, there also have
significant OR values, and they are 0.9889 (95% CI: 0.9779, 0.9999)
and 0.9850 (95% CI: 0.9736, 0.9966), respectively. Meanwhile, no
significant correlation was observed for the effect of MDA8 O3 on
the 60+ age group.

Figure 2B shows the association between MDA1 O3 and
respiratory hospitalization visits in different age groups in a single-
pollutant model. At the lag4 and lag5 days, there was a significant
effect of MDA1 O3 on the 15–60 years old, with values of 0.9903
(95% CI: 0.9828, 0.9979) and 0.9889 (95% CI: 0.9816, 0.9963). As for
the 60+ age group, at the lag 1 day, the OR value is 0.9914 (95% CI:
0.9832, 0.9997).

Figure 3 shows OR estimates for subgroups stratified by gender.
No obvious differences were identified. Specifically, in almost all
gender subgroups, there was no significant association between
MDA8O3/MDA1O3 and respiratory hospitalization visits except for
MDA8 O3 in the OR at the lag4 day for the female group, and its
significant OR value is 0.9905 (95% CI: 0.9826, 0.9986).

In our analysis, the effect of O3 on respiratory hospitalization was
statistically significant for some lag days. It can be seen that there
is a different lagged effect of O3 on daily respiratory hospitalization
in Guangzhou. In the different lag days, the effect of O3 on the
respiratory hospitalization visits was different. Taking MDA8 O3 as
an example for the 15–60 age group, the single-day lag effect at the
lag4 has the greatest impact, that is, when the O3 concentration delay
at 4 days, it has the greatest impact on the number of respiratory
hospitalization visits. No significant effect, however, was observed
in the 60+ age group. For women, the single-day lag effect was
greatest at lag4; formen, no significant effect was observed.Moreover,

compared with the single-day lag effect, the OR value of the moving
average lagmodel is not significant, which indicates that for the whole
year, the cumulative effect of O3 on respiratory hospitalization visits
is also not significant.

The influence of seasonal e�ects

O3 concentration has obvious seasonal variation. Due to the
strong sunlight in summer and the strong photochemical reaction
at high temperature, the phenomenon of high O3 concentration in
summer and low O3 concentration in winter is formed. Therefore,
we analyzed the effect of O3 during the warm period (May–
October) and the cold period (November–April). Notable differences
were identified during different periods. Specifically, in the warm
period, there are positive and significant associations between MDA8
O3/MDA1 O3 and respiratory hospitalization visits; conversely, there
is a negative association in the cold period.

In the warm season, as for MDA8 O3 and all people, at the lag of
3–5 days, there have significant and positive associations, with the OR
values being 1.0094 (95% CI: 1.0029, 1.0160), 1.0096 (95% CI: 1.0032,
1.0161), and 1.0084 (95% CI: 1.0021, 1.0146), respectively. As for the
moving average lag model, there has a greater association at the lag
04 and lag05 days, and their OR values were 1.0130 (95% CI: 1.0030,
1.0231) and 1.01573 (95% CI: 1.0052, 1.0263), respectively (Figure 4).
As for MDA1 O3 and all people, at the lag of 3–5 days, there is also a
positive association but not statistically significant (Figure 5).

While in the cold season, MDA8 O3/MDA1 O3 was significantly
and negatively correlated with respiratory hospitalization visits, both
peaked at the lag05 day, with the OR being 0.9663 (95% CI:
0.9576, 0.9751) and 0.9745 (95% CI: 0.9641, 0.9849), respectively
(Figures 4, 5).

The associations between short-termO3 exposure and respiratory
hospitalization in different age groups were further examined in the
warm period. At the lag 4 and 5 days, MDA8 O3 had a significant
and positive impact on the respiratory hospitalization for the 60+ age
group, with the OR being 1.0116 (95% CI: 1.0018, 1.0214) and 1.0135
(95% CI: 1.0041, 1.0231), respectively. For MDA1 O3, at the lag5 day,
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FIGURE 3

OR of respiratory hospitalization visits in di�erent gender group for per IQR increase in MDA8 O3 (A) and MDA1 O3 (B).

FIGURE 4

(A–D) OR of respiratory hospitalization visits for an increase of per IQR in MDA8 O3 during the warm periods (May to October) and the cold periods

(November to April).
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FIGURE 5

(A–D) OR of respiratory hospitalization visits for an increase of per IQR in MDA1 O3 during the warm periods (May to October) and the cold periods

(November to April).

there is also a significant association, with the OR being 1.0099 (95%
CI: 1.0001, 1.0198). For MDA8 O3/MDA1 O3, there is no significant
association for the 15–60 age group of people (Figures 4, 5).

In different gender groups, the associations between O3 exposure
and respiratory hospitalization were also examined. At the lag3, lag4,
lag04, and lag05 days, MDA8 O3 had a significant and positive
impact on respiratory hospitalization for the male group, with the
OR values being 1.0097 (95%CI: 1.0015, 1.0181), 1.0112 (95%CI:
1.0030, 1.0194), 1.0133 (95%CI: 1.0006, 1.0262), and 1.0158 (95%
CI: 1.0024, 1.0293), respectively. There is also a positive association
for the female group but not statistically significant. Meanwhile, no
significant association was observed for the effect of MDA1 O3 on
different gender groups (Figures 4, 5).

Sensitivity analysis

Sensitivity analyses demonstrated the robustness of our main
findings. In addition to the single-pollutant model for O3, we also
tested a multi-pollutant model, including PM2.5 and NO2. After

adding PM2.5 and NO2 as risk factors, the OR value of the single-
pollutant model for O3 did not change much. The OR values changed
to −0.26, 0.20, −0.26, and 0.18%, respectively. The OR values of
MDA1O3 changed to−0.01, 0.32, 0.01, and 0.26%, respectively.

In addition, after adjusting for different lagged days of
meteorological factors, the results of the single-pollutant model for
MDA8 O3/MDA1 O3 did not change much, and their values for
MDA8 O3 were−0.319,−0.065, 0.045, and 0.147%, respectively. The
OR value of MDA1O3 changed values were −0.016, 0.147, 0.223,
and 0.308%, respectively. These results were not materially affected,
suggesting that these results of this study are relatively stable.

Discussion

Ozone had a negative impact on human health (29). To our
knowledge, this is one of the few studies in China reporting the effects
of two different O3 indicators on daily respiratory hospitalization
visits. In this study, a time-stratified case–crossover design was used
to evaluate the short-term effects of MDA8 O3/MDA1 O3 on daily
respiratory hospitalization. The results showed that in the warm
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period, MDA8 O3 indicator appeared to be strongly associated with
respiratory hospitalization visits risk than the MDA1 O3 indicator.
The health effects of O3 on respiratory hospitalization visits are
stronger in the 60+ age group than that in the 15–60 age group,
and the female group is slightly more sensitive than the male group.
Moreover, the association of bothMDA8 O3 andMDA1 O3 and daily
respiratory hospitalization visits was significant and positive in the
warm period and negative in the cold period. Our findings help to
understand the short-term health impact associated with different O3

indicators in Guangzhou, China, and present differences in the effects
of O3 on different age and gender groups.

A comparative analysis of the two O3 indicators provided a
comprehensive perspective to explore the relationships between O3

and respiratory health. From the year 2000 onward, various studies
on respiratory mortality as measured globally by different indicators
are reviewed in Table 2. These provide a comparative analysis, and
we note large differences in the results. In the time-series analysis
presented in this study, we observed different estimates for the
MDA8 O3 and MDA1 O3 indicators. These were significant and
negative and were associated with daily respiratory hospitalization
visits at the lag 5 day, while MDA8 O3 had stronger associations than
MDA1 O3. These results were similar to those obtained in previous
studies. For instance, using a Poisson generalized linear model,
Darrow et al. examined the association between daily respiratory
emergency department visits and various O3 indicators (7). Their
study showed thatMDA8O3 andMDA1O3 were positively related to
daily respiratory emergency department visits and thatMDA8O3 had
a stronger association than MDA1 O3. Meanwhile, their OR values
for MDA8 O3 and MDA1 O3 were greater than that in this study
(Table 2). Moreover, Sun et al. conducted an epidemiological study
on 34 counties in China exploring the associations between short-
term exposure to different O3 indicators and respiratory mortality
using three types of O3 indicators (MDA8 O3, MDA1 O3, and
daily average) from 2013 to 2015 (32). Their results showed that
the association between MDA8 O3 and respiratory mortality was
stronger than that between MDA1 O3 and respiratory mortality,
which is consistent with the results of this study. Notably, their OR
value for MDA8 O3 was similar to that in our study, while the OR
value was larger than that in our study. The potential reason for
differences among the OR values of other studies and our study
is that each city/region has different O3 levels and characteristics,
as well as different population exposure patterns. Therefore, short-
term exposure to different levels of O3 would have different health
effects. Meanwhile, a possible explanation forMDA8O3 had a greater
impact is that the MDA8 O3 may be the most relevant indicator for
individual exposure levels, as many people pour into the city during
the day andmove out at night. Moreover, high O3 exposure in the city
during the daytime and 8-h maximum period may have higher health
impacts than commute time and nighttime (16). Therefore, it has
been suggested that health effects are related to short-term exposure
to slightly higher O3 concentrations, such as MDA8 O3, rather than
peak concentrations, such as MDA1 O3 (16).

Strong sunlight in summer and high photochemical production
at high temperature result in high O3 concentration in summer and
low O3 concentration in winter (13, 39). Therefore, we analyzed the
effect of the two O3 indicators on the daily respiratory hospitalization
visits in Guangzhou, China, during the warm period (May–October)
and the cold period (November–April). The positive associations

in the warm period and the negative ones in the cold period were
identified, which were consistent with previous studies. In both
periods, the sensitivity to O3 concentration was also studied in men
and women aged 15–60 and older than 60 years, respectively. We
found that during the warm period, MDA8 O3 was significantly
positively correlated with the daily respiratory hospitalization visits
at lag3–lag5, with a higher risk occurring in the 60+ age group. The
relationship between MDA1 O3 and daily respiratory hospitalization
visits was almost insignificant. During the cold period, the two
O3 indicators were significantly and negatively associated with
respiratory hospitalization visits, with a higher risk in the 60+ age
group than that in the 15–60 age group. These results are consistent
with studies from other time-series studies (40).

For example, Wang et al. showed that O3 was positively related
to respiratory outpatient visits in the warm period but negatively
associated with that in the cold period (4), while Malig et al.
showed that O3 exposure was significantly and positively related to
respiratory emergency department visits, and there has a slightly
larger association in the warm period (41). The possible reason is that
people tend to go outdoors/open windows in the warm period, so
people are easily exposed to such a high O3 environment at that case,
which will have larger effects on human health. Li et al. showed that
the association between O3 and daily mortality in Guangzhou seems
to be more prominent in the cold period than in the warm period
(16), while Yang et al. also demonstrated that O3 had a significant
effect on human health as in the cold period, and the relationship
between O3 and daily mortality seemed to be more evident than
that in the warm period (17). Other studies showed that there is
no significant relationship between O3 and human health during
the warm period (42, 43). This difference with the results in this
study is possibly caused by different interactions of O3 exposure
and season at different locations. Other factors such as exposure
patterns and levels of local residents, air conditioners usage (44),
and ventilation rates between indoor and outdoor may influence the
season tomodify the relationship between daily O3 concentration and
respiratory hospitalization visits.

Lag effects of O3 on the daily respiratory hospitalization visits
may exist in Guangzhou, China. Compared with the single-day
lagged model, O3 showed similar impacts in the results of the moving
average lag model for different age and gender subgroups. Especially
in the warm period, the OR of the single-day lag model is slightly
lower than that of the moving average lag model, indicating that
O3 also had a cumulative effect on respiratory hospitalization visits,
which were similar to the previous studies (4, 45). The reason for the
lag effects may be that O3 produces an acute inflammatory response
in the lungs. Studies have demonstrated that this inflammatory
response is caused by repeated exposure over several days (46, 47).
Notably, inflammation may play a key role in the increased O3-
related mortality and morbidity (48).

There are some limitations to this study. First, data on the
ambient O3 were averaged using fixed monitoring sites rather than
individual measurements, which can result in underestimating the
health effects of O3. Second, our data on respiratory hospitalization
visits came from a large comprehensive and famous hospital, rather
than from all hospitals in Guangzhou, which may lead to the
underestimation of O3 effects on respiratory diseases, reflected
in relatively small OR values. Therefore, caution should be paid
when generalizing the results to other regions. Third, although we
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TABLE 2 Various studies on respiratory mortality attributed to di�erent O3 indicators after the year 2000 worldwide.

References Study year Study area Model O3 indicator Health
endpoints

Estimates (β) (%)

Lin et al. (30) 2000–2009 Taiwan, China DLNM MDA8 O3 DRS 5.0 (4.0, 5.01)

MDA1 O3 DRS 2.0 (1.0, 2.01)

24 h average DRS 3.0 (2.0, 3.01)

Shi et al. (31) 2013–2018 128 counties,
China

GLM MDA8 O3 MRS 0.50 (0.31, 0.68)

MDA1 O3 MRS 0.41 (0.25, 0.57)

24 h average MRS 0.89 (0.58, 1.19)

Sun et al. (32) 2013–2015 34 counties,
China

DLNM MDA8 O3 MRS 0.22 (−0.28, 0.72)

MDA1 O3 MRS 0.11 (−0.22, 0.44)

24 h average MRS 0.57 (−0.09, 1.23)

Yang et al. (17) 2006–2008 Suzhou, China GAM MDA8 O3 MRS −0.31 (−1.19, 0.53)

MDA1 O3 MRS −0.57 (−1.33, 0.16)

24 h average MRS −0.70 (−2.18, 0.74)

Byers et al. (33) 2007–2011 USA GAM MDA8 O3 EDVA 1.37 (−0.10, 2.88)

MDA1 O3 EDVA 1.41 (0.60, 2.78)

Darrow et al. (7) 1993–2004 Atlanta, USA GLM MDA8 O3 REDV 1.7 (1.0, 2.4)

MDA1 O3 REDV 1.4 (0.8, 2.0)

24 h average REDV 1.1 (−0.1, 2.4)

Kazemiparkouhi et al. (34) 2000–2008 USA LLRM MDA8 O3 MRS 1.64 (1.49, 1.83)

MDA1 O3 MRS 1.49 (1.34, 1.69)

24 h average MRS 1.04 (0.80, 1.29)

Mar et al. (35) 1998–2002 USA GAM MDA8 O3 EDVA 3.92 (0.99, 5.36)

MDA1 O3 EDVA 2.96 (0.50, 5.36)

Gryparis et al. (36) 1990–1996 23 cities, Europe GAM MDA8 O3 MRS 1.13 (0.74, 1.51)

MDA1 O3 MRS 1.13 (0.62, 1.48)

Moshammer et al. (37) 1991–2009 Vienna, Austria GAM MDA8 O3 MRS 1.29 (0.43, 2.15)

MDA1 O3 MRS 1.29 (0.55, 2.04)

24 h average MRS 1.07 (0.01, 2.15)

Nhung et al. (38) 2007–2014 Vietnam GAM MDA8 O3 DRS 0.28 (−0.32, 0.87)

24 h average DRS 0.20 (−0.29, 0.68)

DRS , respiratory diseases; MRS , respiratory mortality; EDVA, emergency department (ED) visits for asthma; REDV, Respiratory emergency department visits; LLRM, log-linear regression model.

adjusted the confounders such as meteorological conditions (average
temperature and relative humidity), there is still the possibility that
some unmeasured confounders could have influenced the results.
Finally, we do not have any information about patients’ smoking
behavior, which is also responsible for respiratory problems.

Conclusion

This study analyzed the relationship between daily respiratory

hospitalization visits and two common O3 indicators in Guangzhou,
China. It showed that the two O3 indicators were significantly
and positively related to respiratory hospitalization visits in the

warm period, and negatively in the cold period. In the warm
period, women were more sensitive to O3 than men, and the
60+ age group was more sensitive than the 15–60 age group.
Both the single-day lag model and the moving average lag
model showed a significant effect on respiratory hospitalization
visits. In the multi-pollutant model, adding one or all pollutants
as a risk factor, the results for two different indicators are
similar, indicating that the results are stable. These findings
provide a comprehensive insight into the impact of different

O3 indicators on human health in densely populated cities.
They may serve as well as a reference for local governments
to formulate air pollution measures to optimize emergency
medical resources.
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