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Air pollution is one of the leading causes for global deaths and understanding pollutant

emission sources is key to successful mitigation policies. Air quality data in the urban,

suburban, industrial, and rural areas (UA, SA, IA, and RA) of Jining, Shandong Province

in China, were collected to compare the characteristics and associated health risks.

The average concentrations of PM2.5, PM10, SO2, NO2, and CO show di�erences

of −3.87, −16.67, −19.24, −15.74, and −8.37% between 2017 and 2018. On the

contrary, O3 concentrations increased by 4.50%. The four functional areas exhibited

the same seasonal variations and diurnal patterns in air pollutants, with the highest

exposure excess risks (ERs) resulting from O3. More frequent ER days occurred within

the 25–30◦C, but much larger ERs are found within the 0–5◦C temperature range,

attributed to higher O3 pollution in summer and more severe PM pollution in winter.

The premature deaths attributable to six air pollutants can be calculated in 2017 and

2018, respectively. Investigations on the potential source show that the ER of O3 (r of

0.86) had the tightest association with the total ER. The bivariate polar plots indicated

that the highest health-based air quality index (HAQI) in IA influences the HAQI in

UA and SA by pollution transport, and thus can be regarded as the major pollutant

emission source in Jining. The above results indicate that urgent measures should be

taken to reduce O3 pollution taking into account the characteristics of the prevalent

ozone formation regime, especially in IA in Jining.
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1. Introduction

Air pollution has attracted significant concern worldwide in recent decades, especially in

China due to the highest ranking of death records across the world (1). Many previous studies

have reported that exposure to both ambient and indoor air pollutants has a direct association

with a significantly increased risk of cardiovascular, respiratory, and coronary heart diseases, and

even can induce cancer (2–7). Moreover, numerous studies have demonstrated that no matter

the long-term or short-term exposure, the varied risk and non-accident premature mortality

could be attributed to exposure levels of different air pollutants [i.e., particulate matter with

an aerodynamic diameter <2.5 and 10µm (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur

dioxide (SO2), ozone (O3), carbon monoxide (CO)] in one city or at the national scale (8–18).
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Health impacts from different air pollutants are usually assessed

by epidemiology, toxicology and clinical studies (19, 20). One of the

popularly used approaches is the epidemiological statistics method,

which can be used to calculate the coefficient of the exposure-

response relationship based on the relative mortality risk of air

pollutants (21), thus linking pollutants with health risks. At present,

many health impact assessment studies have investigated the health

risks or premature mortality attributable to a single air pollutant or

adjusted for exposure to other pollutants globally or regionally (22–

27). In China, numerous epidemiological literature concentrated on

the association of single pollutants and population health has been

designed by using various methods, which include time-series, cross-

sectional, panel, case-crossover, cohort and intervention designs (28).

To make an assessment of the short-term health effects of one single

air pollutant, time-series studies coupled with Poisson regression

or Generalized Additive Model (GAM) were conducted to explore

the association of different air pollutants [like NO2 (29), CO (30),

SO2 (31), PM10 (32), PM2.5 (33), and O3 (34)] and daily mortality

in large Chinese cities, including Beijing, Shanghai, Chongqing,

Shenyang, andWuhan (28). Because of the easier conducted research

experiment and clearly interpretable result, single-pollutant air

quality strategies are widely applicable to protect human health for

policy-makers (35). However, the health effect of single-pollutant

should be applied cautiously. Because of the certain correlation

among different air pollutants, identifying the independent effects

of single-pollutant become much more difficult (36). Moreover, the

air that humans breathe at once is multiple pollutants. Therefore,

exploring the joint effect associated with multi-pollutant should be

taken into consideration urgently by scholars.

Currently, three typical approaches, including statistical

regression models, the indicator approach, and the source

identification methods, can be used to quantify the joint health

risk from multi-pollutant (35). Generally, the indicator approach

means that it is to use one pollutant to represent the total exposure to

several pollutants. To evaluate the total health risks and premature

mortalities attributed to different air pollutants (here including

PM2.5, PM10, SO2, NO2, O3, and CO), how to select an appropriate

pollutant or construct a health risk index has become more

significant. Currently, the air quality is characterized by the widely

used Air Quality Index (AQI) system, an index implemented by

the central government (like in the US or China) is determined by

the primary pollutant rather than the overall air condition (37). To

address the inadequacy of the single-pollutant-oriented AQI, the

aggregate AQI (AAQI) (38) and air quality health index (AQHI)

(39) have been developed and applied in practice. In a recent

study, Hu et al. (40) using a novel index referred to as the health

risk-based AQI (HAQI), investigated air quality in six representative

Chinese cities and found that the total days in a given AQI category

(either unhealthy or very unhealthy) were including days in HAQI

categories that were equal or even higher than the respective AQI

category (i.e., very unhealthy or hazardous). Shen et al. (41) applied

the HAQI in 367 cities in China, showing high HAQI to be most

prevalent in the North China Plain region (NCP). Zhou et al. (42)

established the HAQI in 366 cities in China and found organics were

driving PM2.5-formation when PM2.5 is at a lower level of health risk.

Here, we expand on these studies, which focused on atmospheric

pollution at the city level (that is averaged over whole cities), to

investigate multi-pollutant exposure health risks associated with

different functional areas within a city. To this end, we applied the

HAQI calculation to observations obtained from four functional

areas in Jining city. Meanwhile, to identify which functional areas

and air pollutants play the dominant role in Jining, we introduced

the potential source contribution function (PSCF)model in this study

as well. The PSCF is a conditional probability model by coupling

the pollutant with an air mass arriving at the observational site after

having passed through a specific geographical area (43). The PSCF

value is determined by dividing the space up into certain grid cells and

checking the back-trajectory endpoint to see if there was a sampling

day commensurate with the trajectory. The PSCF analysis is widely

applied to identify the potential source of any pollutant, like SO2

(44), NO2 (45), PM2.5 (46), PM10 (47), CO (48), and O3 (48) black

carbon particles (49), or a pollutant-related indicator (e.g., excess risk

in section 2.4) (41).

At last, the results aim at providing a clear understanding of

the regional distribution of health risks and to provide guidance

to policy-makers for effective mitigation policies within Jining’s city

borders. In particular, Jining is located between the Beijing-Tianjin-

Hebei region and the Yangtze River Delta, which is prone to air

pollution under a zonal circulation and stable synoptic conditions

(low wind and high relative humidity) aside from strong emissions of

pollutants, especially in winter and spring. To evaluate the air quality

expected over the 2017–2018 period and the associated feedback on

health risks in four different functional regions in Jining city, this

study aims to: (1) compare the air pollution levels across the four

functional areas; (2) estimate the multi-pollutant exposure health risk

in these functional areas; (3) evaluate all-cause premature mortalities

attributable to all air pollutants, and (4) identify which functional

areas and air pollutants are the major contributors to the health risk

of Jining City.

2. Materials and methods

2.1. Site and data

The study region, Jining (116◦26
′

-116◦44
′

E, 35◦08
′

-35◦32
′

N), is

located in the southwest of Shandong Province in eastern China

(Figure 1A). The air sampling sites (colored stars) andmeteorological

stations (colored triangles) are located in the four different functional

areas identified in Jining. Highways and industrial parks are found

near the industrial (IA) site. For the urban (UA) site in the city

center, the nearby road network is complex, with heavy traffic and

high building density. The suburban (SA) site is located between the

urban and rural areas, and the rural (RA) site is located by a farm and

river and far away from the city center. The surrounding environment

of each air quality sampling site is largely consistent with the

basic characteristics of the functional areas. The meteorological

stations were chosen to be as close as possible to the air pollutant

sampling sites.

The hourly monitoring data of six pollutants and the hourly

meteorological data at each site were obtained from the website

of the Environmental Meteorological Platform of Shandong (http://

10.76.10.119/) and the Jining Meteorological Bureau, respectively.

The meteorology factors include temperature (◦C), wind direction

(WD), and wind speed (WS). Here, WS and WD were used to

explore the potential source region of pollution. The temperature
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FIGURE 1

The location of Jining in Shandong Province (A), and the meteorology and air quality stations (B) in Jining city. Colored stars and triangles represent air

quality sites and meteorological site in four functional areas (Suburban: orange, Urban: red, Rural: green, Industry: blue).

was applied to investigate the impact on air pollutants, especially

for O3. Based on the daily minimum requirement for the validity

of air pollutant concentration data (Chinese Ambient Air Quality

Standard GB 3095-2012) (https://www.mee.gov.cn/ywgz/fgbz/bz/

bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml), the daily

and monthly data during 2017 (2018) reported in this study are

valid for 362 (365) days and 12 (12) months, respectively. The other

days in 1 year were deleted due to the sampling data being <20 h

in a day. For the meteorology dataset, all the data used each day

is valid according to China’s Surface Meteorological Observation

Standard (CSMOS) (https://www.cma.gov.cn/zfxxgk/gknr/flfgbz/bz/

202209/t20220921_5099079.html). For precipitation and relative

humidity, we did not explore the impact of the two meteorology

factors on air pollution due to the large number of missing values.

2.2. The calculation method of excess risk
and health-risk based AQI

The relative risk (RR) of each pollutant is expressed by an

exponential-linear function as shown in Eq. 1 (40). Here, βi is

the exposure-response relationship coefficient (which quantifies the

additional health risk per unit increase of an air pollutant) with

values of 0.038, 0.032, 0.081, 0.13, and 0.048% per µg/m3 for PM2.5,

PM10, SO2, NO2, and O3, respectively, and 3.7% per mg/m3 for

CO (50). Ci represents the mass concentration of a pollutant i.

Meanwhile, a baseline concentration Ci,0 is also defined to determine

the minimum risk of each pollutant i, meaning one pollutant has

no health risk when its concentration is below or equal to C0, that

is, RRi = 1. Here, the upper threshold values of Chinese Ambient

Air Quality Standard (CAAQS) 24-h Grade II were regarded as the

Ci,0 (Supplementary Table 1). The excess risk (ER) of pollutant i is

written as in Eq. 2 and the total ER can be calculated by adding up

the ER of each pollutant (Eq. 3). It should be noted that the ER added

up linearly could over-estimate the assessment of total ER if those

pollutants are highly correlated. Therefore, the total ER from six air

pollutants can be regarded as an upper-bound estimation (40).

RRi = exp
[

βi

(

Ci − Ci,0

)]

, Ci > Ci,0 (1)

ERi = RRi − 1 (2)

ERtotal =

n
∑

i=1

ERi =

n
∑

i=1

(RRi − 1). (3)

After calculating the total ER, the combined multi-pollutant

Relative Risk (RR∗) and an equivalent total concentration (Ci
∗) of

pollutant i (40) can be written as:

RR∗ = ERtotal + 1 = exp
[

β
(

C∗
− C0

)]

(4)

Ci
∗
=

ln (RR∗)

βi + C0,i.
(5)

Finally, Ci
∗ is substituted for the Ci,m in the AQI calculation to

yield the HAQI (40), where the AQI calculation is as follows:

AQIi =
AQIi,j − AQIi,j−1

(

Ci,j − Ci,j−1

) ×
(

Ci,m − Ci,j−1

)

+ AQIi,j−1, j > 1 (6)

AQIi = AQIi,1
Ci,m

Ci,1
, j = 1 (7)

AQI = max (AQI1,AQI2 . . . ,AQIn) , n = 1, 2, . . . , 6. (8)

where Ci,m is the measured concentration of pollutant i; j is the

health category index; Ci,j is the reference concentration for pollution
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i corresponding to the j-th health category. Accordingly, the HAQI

calculation could be demonstrated as follows:

HAQIi =
HAQIi,j−HAQIi,j−1

(Ci,j−Ci,j−1)
×

(

Ci
∗ − Ci,j−1

)

+

HAQIi,j−1, j > 1, (9)

HAQIi = HAQIi,1
Ci

∗

Ci,1
, j = 1 (10)

HAQI = max (HAQI1,HAQI2 . . . ,HAQIn) , n = 1, 2, . . . , 6. (11)

2.3. Daily cause-specific mortality and health
burden assessment

The annual all-cause mortality in Jining was obtained from the

Jining Statistical Yearbooks 2017 and 2018. The daily mortality was

then calculated by the annual mortality rate divided by the number

of days per year. The estimated health burden owing to short-term

exposure to air pollutants can be calculated as follows (51, 52):

M =

n
∑

i

AFi × BM (12)

AFi = (RRi − 1)/RRi (13)

where M (total mortality due to atmospheric pollution), n (total

number of days), BM (daily baseline mortality), AFi (daily

attributable fraction related to short-term exposure of air pollutant i).

2.4. Potential source contribution function
analysis

In this study, back trajectory analyses were performed by

using the Hybrid Single-Particle Lagrangian Integrated Trajectory

HYSPLIT model (Version 4.9) (53). The 72 h back trajectories

arriving at Jining city at a height of 300m were calculated every 3-h

from 2017 to 2018. Based on these back trajectories data, a potential

source contribution function (PSCF) analysis (54) was executed

with ZeFir, an Igor-based (Wavemetrics, USA) package (55). PSCF

analyses are commonly used to investigate the origin of observed

concentrations at a sampling site under a given criterion (here, the

75th percentile value).

PSCFi,j =
mi,j

ni,j
(14)

where ni,j and mi,j are the total count of endpoints and above-

threshold endpoints located in the i, jth air cell, respectively. A

sigmoid weighting function (41) was used to reduce the influence of

large differences between two air cells (see Eq. 15). Three values in

this function are 10, 0.5, 0.1 for a, b, c respectively (41). It is written

as follows:

W =
1

(1+ c)
(

1+ e−a(x−b)
) +

c

1+ c
(15)

x = log
(

ni,j + 1
)

/maxlog(ni,j+1) (16)

After calculating the PSCF for each sampling site in one city

individually, the combined PSCF over all the sampling sites in the

city can be calculated by using a multi-site (MS) merging method:

MSi,j =

∑

l m
l
i,j

∑

l n
l
i,j

(17)

where ml and nl values indicate the m and n number counts of the

sampling sites l in Jining.

3. Results and discussion

3.1. Comparison of six pollutants in four
functional areas

Figure 2 shows the annual mean mass concentrations of six

pollutants in Jining during 2017 and 2018 at the city level. PM2.5,

PM10, SO2, NO2, and CO all show lower values in 2018 than in 2017,

indicating decreased emissions between the 2 years with 3.87% (from

57.11 to 54.89 µg/m3), 16.67% (from 107.65 to 89.71 µg/m3), 19.24%

(from 26.27 to 21.21 µg/m3), 15.74% (from 40.97 to 34.52 µg/m3)

and 8.37% (from 10.43 to 9.56 mg/m3), respectively. Conversely, the

mass concentration of O3 was elevated by 4.5% (from 99.26 µg/m3

to 103.72 µg/m3). Elevated O3 mass concentrations and decreased

mass loadings of PM have become a generally observed phenomenon

resulting from pollution control measures, indicating that fewer PM

but more O3 pollution events may also occur in Jining city in the

future. Following many previous studies reports (56–59), this finding

also stresses the key role of controlling O3 pollution through a

series of strategies, such as the reduction of anthropogenic emissions,

adjustment of the temperature, and balanced NOx and VOC control,

for the local government in the future.

The seasonal distributions of the six pollutants averaged over

the 2 years were then compared among four functional areas: UA,

SA, RA, and IA, with the results shown in Figure 3A. Overall, the

mass loading of all pollutants (except for O3) exhibited high (low)

mass concentrations in winter and low (high) mass concentrations

in summer. The seasonal patterns of all the air pollutants’ mass

loadings in Jining are consistent with that in almost all other cities

across China (41, 42). The higher concentrations of the six air

pollutants, except for ozone, in winter, can be explained by enhanced

coal combustion, biomass burning, and unfavorable meteorological

conditions, including low temperature (2.6◦C), and boundary layer

height (395m) in winter (Supplementary Figure 1). The opposite

behavior of the ozone concentrations, with the highest values during

spring/summer is a well-known consequence of photochemistry,

which is most active in these seasons.

After identifying the seasonal patterns of the six air pollutants in

the four functional areas, the differences in the annual mean behavior

(averaged over 2017 and 2018) of the mass loadings of the six air

pollutants among UA, SA, RA, and IA are discussed. For PM (PM10

and PM2.5), the order of mass loading from high to low follows as:

IA (105.00 and 60.37 µg/m3) > RA (103.57 and 57.56 µg/m3) > UA

(98.52 and 54.49 µg/m3) > SA (88.61 and 53.26 µg/m3). With the

contribution of fossil fuel combustion from plenty of power plants

and the emissions from factories in this area, the IA had a higher
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FIGURE 2

The annual mean mass concentrations of six pollutants in Jining during 2017 and 2018 [the unit of CO is mg/m3, CO (*10) means the real CO mass

concentration multiple 10].

FIGURE 3

The seasonal (A) and diurnal (B) distributions of the six pollutants averaged over 2017 and 2018 for each of the functional areas (color-coded).

mass concentration of PM than in the other three areas in all four

seasons (except for the PM10 in summer and fall). The local source

of high mass loading of PM in RA results mainly from residents

cooking and straw burning. The higher PM10 in UA compared to

that in IA in summer and fall might be ascribed to the heavy traffic

emissions and unfavorable pollution dilution conditions due to high

building density. For NO2 and SO2, the mass concentrations in these

areas followed the order of RA (41.02 µg/m3) > UA (36.79 µg/m3)

> IA (36.61 µg/m3) > SA (36.52 µg/m3) and SA (26.74 µg/m3)

> RA (24.92 µg/m3) > UA (23.13 µg/m3) > IA (20.56 µg/m3),
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respectively. The mass concentrations of NO2 and SO2 were the

highest in IA and SA, respectively. For CO, the mass loading was very

similar during spring, summer, and fall. In winter, on the other side,

the concentrations were decreasing following the order of SA (1.53

mg/m3)> IA (1.49 mg/m3)> RA (1.38 mg/m3)>UA (1.23 mg/m3).

The SA and IA sites are located at the edge of the city and nearby

the outside ring of a highway, therefore, higher traffic emissions of

CO might be the main source in SA and IA. At last, for O3, the mass

loading ranked from high to low as: SA (76.61µg/m3) ≈ UA (76.00

µg/m3) > IA (70.49 µg/m3) > RA (62.88 µg/m3). Even though the

average mass loading of O3 in SA was almost equal to that in UA in

all four seasons, the O3 in UA was significantly higher than that in SA

in summer, indicating a phenomenon that O3 pollution has become

an increasing concern for the urban residents in Jining. On the other

hand, O3 in RA was the lowest in all seasons.

Figure 3B illustrates the diurnal pattern of the six standard

pollutants in the four functional areas. The different functional areas

exhibit very similar diurnal cycles for the same pollutant. Overall,

the mass loadings of PM2.5 and NO2 during night-time were stable

but started to drop after 9:00 a.m. After reaching minimum values

around 4:00 p.m., they began to increase until 11:00 p.m. For

PM10, the diurnal pattern is different to PM2.5 and exhibits two

peaks at 3:00 a.m. and 9:00 a.m. and a valley at 4:00 p.m. Overall,

PM and NO2 concentrations during night-time surpass daytime

values and an obvious decrease appears in the afternoon, which

could be interpreted by the strengthened emission (traffic emission,

resident heating, etc.) during night-time and an elevated height of the

planetary boundary layer (PBL) during the afternoon.Meanwhile, the

decreased concentrations of gas pollutants, including SO2 and CO, in

the afternoon also can be explained by the increased height of PBL,

which can dilute those gas pollutants. However, morning peaks (at

9:00 am) of PM, SO2 and CO can be attributed to enhanced fossil fuel

combustion.

3.2. Health risk in four functional areas

In the next step, the average AQI and HAQI values were

calculated over the 2017–2018 time period based on the daily average

values of pollutants (Figure 4). In the four functional areas, the mean

value of AQI and HAQI in 2017–2018 decreases following the order:

IA (AQI: 106.9 ± 47.0, HAQI: 121.3 ± 71.5) > UA (AQI: 103.6 ±

45.2, HAQI: 117.0 ± 68.2) > SA (AQI: 101.5 ± 47.1, HAQI: 112.5 ±

68.0)>RA (AQI: 99.1± 46.1, HAQI: 108.8± 65.0). For all functional

areas, the mean values of HAQI are higher than the AQI value,

which is consistent with the finding of studies concentrated on the

comparison between AQI and HAQI (21, 40, 42). The main reason

for higher HAQI than AQI is that the HAQI reflects comprehensive

health risk rather than the single-pollutant oriented AQI.

It is interesting to also look at the total ERs needed as input to the

HAQI calculation and which were calculated by using Eq. 3. It should

be noted that SO2 and CO concentrations were always below the

threshold concentration and thus the two pollutants had no exposure

health risk to the public people. The total ER in IA (Figure 5) was the

highest with a value of 2.38%, followed by 2.35% in UA, 1.50% in SA,

and 1.20% in RA, respectively. For total ERs in the four functional

areas, ERs of O3 (IA: 0.88%, UA: 1.05%, SA: 0.89%, RA: 0.41%) made

the dominant contribution to total ERs. For the total ER in IA, the

ER of PM2.5 and PM10 made an almost equal contribution (0.71%

and 0.72%) after that of O3, followed by the contribution of NO2

(0.06%). In UA, the other total ER contributors amounted to 0.58%

for PM2.5, 0.68% for PM10, and 0.04% for NO2. In SA, the other three

contributions to the total ER were 0.30% for PM2.5, 0.24% for PM10,

and 0.07% for NO2, respectively. Except for the ER of O3, the ER of

PM2.5, PM10, and NO2 in RAwere 0.29, 0.26, and 0.24%, respectively.

For total ERs in RA, even though the major contributor of O3 is

rather low compared to the other functional areas, the highest ER for

NO2 can offset the contribution fromO3, leading to the not quite low

HAQI in RA.

3.3. Premature mortality attributable to air
pollutants

After evaluating the total ERs from six air pollutants in Jining,

we can further investigate the premature mortality attributable to

different air pollutants. Based on monitoring data of six pollutants

in 2017 and 2018, the all-cause premature mortality by short-

term exposure to air pollution in Jining was calculated here. The

total premature mortality caused by air pollution for the 2 years

was 6,072 and 2,145 for 2017 and 2018, respectively (Table 1).

Specifically, the premature mortalities attributable to NO2, O3, PM10,

and PM2.5 were 912, 1,755, 1,824, 1,581 for 2017 and 175, 666,

593, and 710 for 2018. For the number of premature mortality

attributable to PM2.5 in 2017, it is almost consistent with the death

number of 1,488 in terms of the total population (1.5 million)

(60). PM10 was the dominant contributor to premature deaths in

2017, but its contribution decreased from 30.0% in 2017 to 27.7%

in 2018. The relative contribution of O3 increased from 28.9%

in 2017 to 31.0% in 2018, exceeding the relative contribution of

PM10 in 2018. The changing contributions of PM10 and O3 to

the total premature mortality between 2017 and 2018 are directly

related to the opposed changes in their observed concentrations.

Furthermore, the contribution of NO2 decreased from 15.0% in

2017 to 8.2% in 2018. Note, the health effects of SO2 and CO

are not shown in the table because their concentrations are

always under the threshold values and thus do not contribute to

premature mortality.

Looking into the four functional areas separately, the number

of NO2-driven premature deaths in RA and IA was higher in

2017 than that in 2018, and their relative contributions decreased

from 22.9% and 24.9% in 2017 to 7.2% and 15.8% in 2018,

respectively. Note, the contribution of NO2 to premature death

was much lower and the inter-annual variation was not significant

in the other two regions. Inspection of the contribution of O3

to premature death in UA and SA reveals its significance in

these areas, notably increasing from 43.5 and 40.1% in 2017

to 48.31 and 47.83% in 2018, respectively, and representing the

main factor leading to premature death in UA and SA. In

the other two regions, the contribution of O3 to premature

death was relatively low and the inter-annual variation was

not significant.

The contributions of PM10 and PM2.5 to premature death

in the four regions varied between 2017 and 2018. In RA, the

contribution rates of PM10 and PM2.5 increased from 30.9 and

29.3% in 2017 to 38.2 and 42.8% in 2018, respectively. In SA
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FIGURE 4

The mean AQI and HAQI average over 2017 and 2018 in four functional areas in Jining.

FIGURE 5

The comparison of excess risks (ERs) averaged over 2017 and 2018 attributable to the sum and individual air pollutants among the four functional areas in

Jining.

and IA, the contribution rate of PM10 decreased from 29.6 and

31.7% in 2017 to 19.5 and 23.6% in 2018, while PM2.5 increased

from 28.63 and 19.9% in 2017 to 31.2 and 36.2% in 2018,

respectively. In RA, the trend of PM10 and PM2.5 contributions

to premature death was thus different to that in the other

functional areas.
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TABLE 1 Premature mortality attributable to short-term exposure to di�erent air pollutants and their emission sources in 2017 and 2018, respectively.

Air pollutant 2017 2018

Premature
death

(person)

Urban Contribution (%) Premature
death

(person)

Urban Contribution (%)

Suburban Suburban

Rural Rural

Industry Industry

NO2 912 17 15.0 1.53 175 9 8.2 1.7

22 1.7 16 1.4

392 22.9 34 7.2

481 24.9 127 15.8

O3_8h 1,755 490 28.9 43.5 666 236 31.0 48.3

522 40.1 175 47.8

288 16.8 57 11.8

456 23.6 198 24.5

PM10 1,824 298 30.0 26.4 593 147 27.7 30.1

385 29.6 71 19.5

528 30.9 184 38.2

613 31.7 191 23.6

PM2.5 1,581 322 26.0 28.6 710 97 33.1 19.9

373 28.6 114 31.2

501 29.3 206 42.8

386 19.9 292 36.2

Total 6,072 1,127 100 100 2,145 489 100 100

1,301 100 366 100

1,708 100 482 100

1,936 100 808 100

Bold indicate total numbers, rows beside each total from top to bottom are numbers for UA, SA, RA, and IA.

3.4. Identify the contributions of air
pollutants to health risk

The PSCF analysis (see methods in section 2.4) was used to

identify which functional areas and air pollutants are the major

contributors to the health risk in Jining (Figure 6). To this end, the

total ER in each functional area is first calculated by adding up the

ER of all six pollutants according to Eq. 3, and then the multi-

site merging method (see Eq. 17) was applied for calculating the

multi-site ER for the total (Figure 6A) and PM2.5 (Figure 6B), PM10

(Figure 6C), O3 (Figure 6D), and NO2 (Figure 6E) contributions

in Jining, respectively. In Figure 6, the color scale represents the

possibility of the ER source, while the areas of hot spots covered can

be considered as the Potential Source Areas (PSA) for each pollutant.

The information obtained from this analysis is expected to offer

important information to the local government in Jining on which

air regulation measures to implement to reduce public exposure to

health risks depending on the different functional areas.

For the total ER in Jining, the dominant PSA are mainly located

in the north and central of Shandong Province, including Jining city

itself, and also expand to significant fractions of the southeast of

Henan Province and the Anhui Province, and almost the total area

of Yangtze River Delta (YRD). Besides, there was still a small part of

PSA located in the northwest of Hubei Province and East China Sea

extending from Henan Province and YRD, respectively. The hot spot

areas in the north direction of ER for PM2.5 was larger than that for

PM10, thus ER for PM2.5 was considered as the major contributor

of the total ER in the north direction. In the south direction, the

contribution to the PSA of the total ER is mostly attributable to

O3, followed by that attributable to PM2.5, PM10, and NO2. After

identifying the PSA of the total ER in different directions, we further

calculated the Pearson coefficient (r) and Spearman coefficient (s)

between the PSA for ER of each pollutant and that for the total ER

(Figure 7). From the results of the two coefficients, the ER of O3

(r of 0.86) had the tightest association with the total ER, followed

by that of PM2.5 (r of 0.76), PM10 (r of 0.75), and NO2 (r of

0.42) when just considering the r. The ER of NO2, on the other

hand, was only weakly correlated with the total ER exhibiting the

lowest r of 0.4 and s of 0.42. This finding stress that the local

government in Jining should take urgent ways to reduce O3 pollution

as well as PM in the south direction and north direction of Jining

City, respectively.
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FIGURE 6

The potential source areas (PSA) of the excess risks (ERs) of air pollutants (based on CAAQS standards) in the four functional areas in Jining estimated

based on multi-site emerging method. The color scale represents the possibility of the ER source, while the areas of hot spots covered can be considered

as the PSA for each pollutant (A: Total; B: PM2.5; C: PM10; D: O3; and E: NO2).

3.5. E�ects of meteorological factors on
health risk

Figure 8 shows the bivariate polar plots of HAQI in four

functional areas during 2017 and 2018. In Figure 8, the horizontal

(W–E) and vertical (S–N) axes represent the wind directions, the

length of the radial contours represents the wind speed, and the color

bar scale indicates HAQI values. HAQI varied depending on the wind

speed and wind direction. The layout of Figures 8A–D is displayed

according to the actual geographic location of each functional site

in Jining. For instance, the UA (Figure 8C) and RA (Figure 8D)

sites are located in the west and south of the IA (Figure 8B) site,

respectively. The SA (Figure 8A) site is on the west side of the UA.

When the wind speed was low in IA and RA, the HAQIs were both

higher indicating a local source leading to the high HAQI values. It

also reveals high HAQIs for wind directions from the southeast and

southwest suggesting two potential transport directions in IA. The

RA site also had two potential transport directions in the southwest

and northwest. Conversely, when the windspeed was higher at the

UA and SA sites, the HAQI resulted in higher values, suggesting high

HAQIs at these two sites can be attributed to transport from nearby

pollution sources in the northeast and southeast directions. From the

analysis above, IA has been identified as a likely source for increased

health risk in UA and SA in situations with east wind direction.

Figure 9 illustrates the HAQI variation depending on the

temperature in IA, UA, SA and RA (Figure 5a–d). At each site, the

triangles (HAQI in 2017) and circles (HAQI in 2018) indicate the

distribution of HAQI events in each temperature bin, with the circle

size depending on the ER values and the circle color indicating

the season during which the event occurred. Overall, in all four

functional areas, more ER days (UA: 150, SA: 147, RA: 145, IA: 145)

occurred in the temperature range of 25 to 30◦C (that is primarily

during summer), but higher averaged HAQI (UA: 134.7, SA: 140.28,

RA: 139.66, IA: 149.24) presented in the temperature bin of 0 to 5◦C

(that is mostly during winter). High frequency of Ozone pollution

days led to more ER days in summer, while less PM pollution days

coupled withmore severe pollution levels attributed to higher average

HAQI in winter.

4. Policy implication

To better protect the public’s health in Jining as well as in

the whole of China, the local government should design certain

policies and execute mitigation measures to tackle the threat to

the public’s health. Firstly, the multi-pollutant index should be

considered when policymakers are developing relative regulations.

Air quality standards are generally constructed based on the

summary of the research evidence on the assessment of health impact

attributable to each air pollutant separately. With the emergence

of the multi-pollutant health index’s framework and the increasing

epidemiological evidence of the health effects, the future application

of the multi-pollutant health index will become possible, even

though there are still many uncertainties. Moreover, standards for

multi-species air pollution levels should be built. If the multi-

pollutant-oriented health risk assessment (including their statistical

uncertainty) could be estimated with high reliability, then the air

quality standards could be built on the base of the multi-species air
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FIGURE 7

Distribution of the di�erence between total ER and ER from individual pollutant, and the Pearson coe�cient and Spearman coe�cient between the two

in Jining. The color scale represents the di�erence between the total ER and ER from each air pollutant, the areas of hot spots covered can be considered

as the PSA for each air pollutant (A: PM2.5; B: PM10; C: O3; and D: NO2).

pollution level. For example, this study in Jining city found that PM10

was the dominant contributor to premature mortality but the O3

pollution level increased simultaneously. Thus, it would be better

to define a standard for PM10 that considers the ozone pollution

level. Finally, if the pollution source that leads to health risks for the

humans is identified, the mitigation regulations could be designed

such that it would account for the relative importance of the primary

and secondary pollutants. For example, in Jining city, the ozone

pollution level increased from 2017 to 2018, and control measures

should be taken that yield a more balances control of the levels of

VOC and NOx, which are the precursors of ozone.

5. Conclusion and remarks

In this study, four ambient air sampling sites in different

functional areas, including urban, suburban, industrial, and rural

areas, were selected to explore air pollution characteristics and the

exposure health risk to the public in Jining. The spatiotemporal

distribution, exposure health risks, and potential source areas of

each functional area were compared for 2017 and 2018 in Jining.

Overall, all average air pollutant concentrations in Jining decreased

between 2017 and 2018, except for O3, which showed an increase.

The four functional areas showed the same seasonal and diurnal

patterns among the six criteria air pollutants considered. The mass

concentration of PM and NO2 in IA and RA showed higher

concentrations, respectively. The total premature deaths attributable

to air pollution were 6,072 and 2,145 in 2017 and 2018 respectively,

attributing to the decrease of air pollutants’ concentrations and

reflecting the benefits of controlling air pollution levels to human

health in this region. Local pollutant emissions mainly contributed

to high HAQI values in IA and RA, while high HAQI in UA and

SA may instead be attributed to long-distance pollution transport.

The ER of O3 was with the highest r, reflecting the dominant

contributor to the potential source area for total ER in the south,

while PM was the main contributor to the potential source area
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FIGURE 8

The bivariate polar plots of HAQI in suburban (A), industry (B), urban (C), and rural (D) areas in Jining. The horizontal (W–E) and vertical (S–N) axes in the

bivariate polar plots represent the wind directions, the length of the radial contours represents the wind speed, and the color bar scale indicates HAQI

values.

FIGURE 9

The HAQI variation depends on the temperature in the four functional areas (A: Industry; B: Urban; C: Suburban; D: Rural) in Jining. The triangles (HAQI in

2017) and circles (HAQI in 2018) indicate the distribution of HAQI events in each temperature bin, with the circle size depending on the ER values and the

circle color indicating the season.
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of total ER in the north. Overall, these results highlight that

IA is the main local pollution source and that the most urgent

measures should be taken to reduce O3 pollution and particulate

matter (PM), especially in industrial and urban areas to improve

public health.

Results demonstrated in this study imply that O3 rather than

PM might become the primary threat to the public’s health and

urgent measures should be taken in the IA region in Jining

city. However, it should be noted that this health assessment

includes uncertainties due to various factors such as the ER

calculation, measurement errors, and degree of correction between

pollutants etc. More epidemiologic studies are required in the

future to validate whether or not the HAQI is reliable to represent

the multi-pollutant’s health risk. Simultaneously, more attention

should be paid on how to select the baseline concentration and

ER coefficients since the results are sensitive to these measures

as well.
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