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The emerging field of digital phenotyping leverages the numerous sensors

embedded in a smartphone to better understand its user’s current psychological

state and behavior, enabling improved health support systems for patients. As

part of this work, a common task is to use the smartphone accelerometer to

automatically recognize or classify the behavior of the user, known as human

activity recognition (HAR). In this article, we present a deep learning method

using the Resnet architecture to implement HAR using the popular UniMiB-SHAR

public dataset, containing 11,771 measurement segments from 30 users ranging

in age between 18 and 60 years. We present a unified deep learning approach

based on a Resnet architecture that consistently exceeds the state-of-the-art

accuracy and F1-score across all classification tasks and evaluation methods

mentioned in the literature. The most notable increase we disclose regards

the leave-one-subject-out evaluation, known as the most rigorous evaluation

method, where we push the state-of-the-art accuracy from 78.24 to 80.09% and

the F1-score from 78.40 to 79.36%. For such results, we resorted to deep learning

techniques, such as hyper-parameter tuning, label smoothing, and dropout, which

helped regularize the Resnet training and reduced overfitting. We discuss how our

approach could easily be adapted to perform HAR in real-time and discuss future

research directions.

KEYWORDS

digital health, deep learning, data science, public health, smartphone, activity recognition,

physical activity, wearable technology

Introduction

Human activity recognition (HAR) is an emerging field in health research that

seeks to better understand human movements and behaviors (1). Researchers are

increasingly working on HAR systems to translate measurements from wearable devices

and smartphones into physical activity (2, 3). Analyzing data collected via the HAR systems

remain challenging (4, 5). Moreover, understanding andmodeling HAR data across different

situations are needed for more personalized and effective interventions to improve health

and wellbeing (6).

Digital phenotyping is defined as the moment-by-moment quantification of the

individual-level human phenotype in situ using data from personal digital devices (7).

Smartphones have become the device of choice for conducting digital phenotyping (6), as

they have become a growing trend concerning the adoption rate over the last decade, even

among senior adults (8). Beyond the pervasiveness of the smartphone, it has also improved
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many dimensions that make digital phenotyping with it

increasingly convenient, notably its quantity and diversity of

sensors, its sensor accuracy, its connectivity, its computing power,

and its memory.

Studies have determined that users have their smartphones on

them on average 36% of the daytime, a rate that increases when

considering movement phases (9). Thus, the smartphone can easily

transform into a convenient monitoring tool whose usage can be

used in the form of apps covering several areas, such as mental

health (9), regular health (10), or even fitness (11). The review

by Straczkiewicz et al. (2) on HAR underlines the importance of

finding a method that has the potential to generalize well, for

example, from subjects in the laboratory to a free-living setting. It

was also pointed out that HAR research should use make a more

systemic use of publicly available dataset to benchmark their HAR

recognition approach, a hint that we chose to follow for our study.

Some research also follows a multi-sensor approach for HAR,

where the outputs of multiple sensors are conjointly analyzed to

classify an activity (12). While this approach is likely to offer,

in theory, a better performance perspective, it needs to be more

practical. We will focus on a dataset employing the smartphone

exclusively as a sensor.

In parallel, machine learning has greatly evolved during

the last decade regarding performance and accessibility. Digital

phenotyping revolves around types of tasks that machine learning

is particularly well suited to tackle in a systematic way, such as

regression or classification. In terms of time-series analysis, the

focus of this article, deep learning architectures have replaced the

paradigm of handcrafted feature engineering. Different families

of neural net architectures such as CNN and RNN have been

shown to outperform classical methods on benchmarks of more

than 128 time-series datasets (13). As neural nets have evolved to

deeper and more complex architectures, new architectures, such as

Resnet, have emerged that incorporate features such as connecting

non-contiguous activation layers, to address numerical problems

such as vanishing or exploding gradient calculations. Therefore, we

sought to optimize Resnet for HAR using data from a smartphone’s

accelerometer.

Developing robust models for HAR is challenging, and here,

we attempt to optimize the development of these models. In this

study, we will explore the use of deep learning for HAR and

how it can be brought to improve state-of-the-art results. We

will additionally discuss the challenges and limitations of our

approach. The essential steps to conducting a deep learning-based

HAR system will be addressed to pave the future development

of this field.

Method

We present below a description of the data and the deep

learning architecture used for this research.

Dataset choice

We chose to work with the UniMiB-SHAR dataset (14), whose

data were collected in 2016. A prompt comparison with other

popular datasets for human activity recognition from the literature

is found in Table 1. Our main motivations for choosing the

UniMiB-SHAR dataset are the following:

Popularity: It has over 300 citations, which indicates

its intrinsic quality and provides a good opportunity to

benchmark our results.

Subjects: It has a relatively high number of subjects and

includes older people.

Data quantity: It contains 11,771 segments of both human

activity and falls, covering nine classes of cleaned activity of

daily living and eight classes of falls in total.

Data quality: It provides pre-processed data that are

formatted, cleaned, and labeled.

Availability: It is publicly available and downloadable directly

from the following website: http://www.sal.disco.unimib.it/

technologies/unimib-shar/.

This dataset was built from scratch by researchers from the

University of Milano Bicocca. They asked volunteers to place a

smartphone in their pant pockets and to perform a series of

activities and falls according to the protocol they established.

Experiments were supervised by the researchers, and a queen-sized

mattress was laid on the ground to prevent volunteers from injuring

themselves by falling. Elders were excluded from falling activities

due to safety concerns.

The recording device was a Samsung Galaxy Nexus I9250 with

Android Version 5.1.1 equipped with a Bosh BMA220 acceleration

sensor. The Android OS limits the acceleration range, and the

sampling rate is capped at 50 Hz. The smartphone was alternatively

placed in the front right and front left pant pockets.

Data segmentation

Once time series were recorded, the researchers extracted the

3-s time windows from them to create segments for each activity

or fall type. The rule followed was to search for a peak of 1.5 g

in the data and to center a time window when one was found.

If several consecutive values were above 1.5 g, the time window

was centered on the first one. Notably, such preprocessing has one

consequence to consider for the rest of the study: data leakage.

Indeed, different segments can partially overlap and share common

timestamps, which can lead to data leakage between the training

and test sets. This point has been overlooked by all studies that have

not performed leave-one-subject-out to assess the results.

We first introduced the data from the UniMiB-SHAR dataset

in Figure 1 with a plot of a few segments from the dataset. The

acceleration value was plotted against the time (total duration of

3 s) and varied based on the movements of the phone carrier. The

segments are centered on amaximum acceleration. One can already

notice significant differences in patterns between ADLs and falls.

Subsequently, we counted the number of segments for the

nine classes of activities of daily living (ADLs) and eight classes

of falls on two separate plots. Figure 2 shows how many segments

from each ADL were in the dataset and how many ADL segments

corresponded to each subject. We noticed a strong class imbalance.

Cumbersome activities have fewer segments than the easiest ones,

such as walking or running. Such imbalance will be addressed later

by our choice of evaluation method. Figure 3 depicts how many
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TABLE 1 Most popular datasets for human activity recognition and fall detection with accelerometer data.

Dataset Year Nr. Of citations∗ ADLs Falls Nr. Of Subjects Age

MobiFall (15) 2014 104 Yes Yes 24 22–47

tFall (16) 2013 151 Yes Yes 10 20–42

MobiAct (17) 2016 173 Yes Yes 57 20–47

RealWorld (18) 2016 215 Yes No 16 16–62

UniMiB-SHAR (14) 2016 321 Yes Yes 30 18–60

We selected the most popular containing falls in terms of the number of citations. *According to Google Scholar search on 5 August 2022.

Bold values emphasize the dataset we picked for our study.

FIGURE 1

Acceleration segments from the UniMiB-SHAR dataset (14). Patterns and amplitudes variations are significantly di�erent across various activities. For

example, the walking activity features low amplitude and periodic patterns, whereas the falling back activity features a sudden burst of acceleration.

segments from each fall type are in the dataset and how many fall

segments correspond to each subject. There is only a minor class

imbalance in the case of falls here. To cross-check whether each

subject performed enough of each activity, we can dive one level

of granularity deeper and plot the count of each ADL and fall per

subject. Figure 4 demonstrates this distribution using a heat map.

Beyond some strong class imbalances, we also notice that subjects

4, 7, 8, 10, 12, 18, 26, 27, 28, and 30 are missing at least one type of

ADL or fall. We again noticed that walking and running were the

activities with the most segments in the dataset.

Statistical analysis

Since segments are in the form of time-series data, we can

conduct a statistical analysis to better grasp the differences between

the ADLs and the fall groups. The core insight is that the maximum

acceleration (i.e., the maximummagnitude value that can be found

in a 3-s segment) tends to be higher for falls, especially on the x-

axis and z-axis. We illustrate this with a boxplot of these maximum

values for the whole dataset in Figure 5. Notably, because of the

Android recording limitations, acceleration recordings are capped

at 2 g, while some values could have been higher. The means of the

three maximum distributions are rigorously compared with a t-test

(19) in Table 2, which confirms falls that have higher accelerations.

Leveraging these distinctions is not sufficient to build a

classification algorithm. Some ADL segments may still have high

maximum acceleration values; similarly, some fall segments may

still have low maximum acceleration values. This is enough to rule

out a classification approach entirely based on thresholds despite

such an approach being present in the literature, as seen in the

literature review.
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FIGURE 2

Distribution of daily living activities, with a strong class imbalance. Daily activities that are less cumbersome to perform are predominant (walking,

running, going up, and downstairs).

FIGURE 3

Distribution of fall activities. Classes are fairly balanced as all falls are about equivalent to perform.

Deep learning Architecture

We leverage deep learning to tackle this complex classification

task. Deep neural networks have demonstrated remarkable

performance across various datasets, such as image datasets. One

family of deep networks, known as Resnets (20), often achieves

state-of-the-art results on benchmark datasets. They enable better

backpropagation in deeper architectures using skip connection

over Resnet blocks. Ismail Fawaz et al. (13) have investigated a wide

range of deep learning architectures for time-series classification,

and they have proven that a Resnet would deliver the best results

in most cases. After using a CNN, a Resnet, an encoder, and

hybrid architectures, we chose a Resnet as our classifier for fall

detection (binary classification) or human activity recognition

(17 classes classification). The network architecture is shown in

Figure 6, and it was originally published by Ismail Fawaz et al. (13).

It differs from previously published Resnet architectures (21–23)

benchmarked on the UniMiB-SHAR dataset in two main points:

(i) Skip connections implement Conv1D operations (instead of a

simple addition) to expand the number of channels and (ii) the

kernels analyze more timestamps at once as we made them bigger

(we use kernel of sizes 8 and 7 instead of the usual sizes 5 and 3).

We call our approach optimized Resnet due to these changes and

the further optimizations we introduced, which are detailed in the

Discussion Section.

Training and evaluation procedure

We leverage cloud computing on the Google Cloud platform

to train our models. We created a notebook on the AI platform,

running on the following software and hardware environment:

• Tensorflow Environment: Tensorflow 2.8

• Machine Type: 8 vCPUs, 30 GB RAM

• GPU: One NVIDIA Tesla T4

Several factors justify the need for cloud computing on a GPU

for this task. From a deep learning perspective, the depth of the
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FIGURE 4

Heat map of the number of segments for each ADL or fall and subject. Subjects 4, 7, 8, 10, 12, 18, 26, 27, 28, and 30 are missing at least one type of

ADL or fall. Walking, running and going downstairs are clearly the predominant activities by the number of segments.

network, the use of dropouts, the number of segments (11,771), and

the number of epochs (120) lead to high training time. From an

evaluation perspective, cross-validation, and especially leave-one-

subject-out (LOO), is time expensive, as the network may need to

be retrained up to 30 times. Overall, the training and evaluation for

each method can range from an hour to 2 days in the LOO case.

Results

We now expose evaluation methods used and results and show

our approach exceeds the current state of the art.

Evaluation of binary and multi-class
classifications

Binary classification
The binary classification is straightforward to explain; the

network attempts to classify segments into two categories: ADL

(0) and falls (1), while disregarding the activity or fall type.

Obtaining high accuracy here is less challenging than in multi-class

classification because there are only two possible output classes.

As is often the case in the literature (as seen in the literature

review) regarding human activity recognition, rather high figures

can be achieved for the metrics presented. Our results are presented

against various possible evaluation metrics in Table 3. The metrics

are defined below for binary classification:

We writem the total number of segments. We use the following

notations: True positive (TP): A fall is correctly classified as a

fall. True negative (TN): A non-fall activity is correctly classified

as a non-fall activity. False positive (FP): A non-fall activity

is incorrectly classified as a fall. False negative (FN): A fall is

incorrectly classified as a non-fall activity.

Accuracy =
TP+ TN

m
F1-score =

TP

TP+
1
2 (FP+ FN)

Sensitivity =
TP

TP+ FN
Specificity =

TN

TN+ FP
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FIGURE 5

Boxplots of the maximum acceleration value along the x-, y-, and z-axis for each type of ADL and falls. Falls have significantly higher maximum

accelerations than ADLs. Moreover, the direction of the fall is reflected in the di�erences of x-, y-, and z-axis accelerations.

TABLE 2 t-test of the means of maximum acceleration values for ADLs

and falls, split by axis.

Accelerometer
axis

ADL
mean
(n =

7,579)

Fall
mean
(n =

4,192)

T-test p-value

x 7.72 12.31 –40.69 <1e-6

y 10.10 12.89 –18.65 <1e-6

z 7.22 13.56 –61.04 <1e-6

The two groups are significantly different.

We benchmark our approach against the results from Micuci

et al. in the original article with the UniMiB-SHAR dataset.

For further reference, we share metrics obtained for leave-one-

subject-out (LOO). The implementation difference between cross-

validation and LOO is that, in cross-validation, segments are

randomly assigned between the train and validation set whereas in

the LOO case, we ensure additionally that the train and validation

sets of subjects (each subject has several recorded segments) are

rigorously disjoint. In short, in LOO, the validation set is exclusively

made of segments whose subjects were not in the train set. Thus,

the LOO evaluation setting better represents the generalization

potential of the algorithm as it faces entirely new data from entirely

new subjects in the validation set.

However, these results should still be taken with a grain of salt.

Indeed, a specificity that is not 100% will lead to the detection

of false positives. For instance, in a case in which someone never

falls, one false alarm will be triggered every 100 analyses. This rate

can be computed simply by rewriting the formula that gives the

sensitivity in the case of only negative segments, whereas in this

case,m = TN + FP:

Sensitivity =
TN

TN+ FP
H⇒ FP = m× (1− Sensitivity)

Multi-class classification
We move to the case where we do not have two but 17 classes

to classify. There are nine types of activities of daily living and

eight types of falls. Classifying that many classes is more challenging

and introduces more discrepancies into the literature. Near-perfect
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FIGURE 6

Neural architecture for our optimized Resnet. This is similar to both binary and multi-class classifications. The number of filters and the kernel sizes

are di�erent from the original architecture from Ismail Fawaz et al. (13). BN, batch-normalization; Conv1D, convolution 1D; ReLU, rectified linear

unit; Conv1D(F, K), conv 1D with F filters and kernel size K.

TABLE 3 Benchmark for binary classification of ADLs and falls.

Evaluation method Method Algorithm Accuracy (%) F1 (%) Sensitivity Specificity

5-fold CV

Micuci et al. (14) SVM 98.71 N/A N/A N/A

Proposed method MLP 99.31 99.31 98.90 99.54

Proposed method Opt. Resnet 99.87 99.87 99.90 99.85

LOO Proposed method Opt. Resnet 98.48 98.48 97.70 98.84

Our approach yielded higher accuracy than the original UniMiB-SHAR article.

CV, cross-validation; LOO, leave-one-out; SVM, support vector machine; MLP, multi-layer perceptron; Opt. Resnet, optimized Resnet.

Bold values emphasize report results from our method.

results of over 99% are far more challenging to attain, especially

with the most rigorous evaluation methods. We use the two most

common metrics that can be found in the literature, that is,

accuracy and the weighted F1-score, which are defined later.We use

the following notation: correctly classified (CC): The segment has

been classified in its correct class. weight of class i (wi): Proportion

of segments labeled i in the dataset. F1-score of class i (F1-scorei):

F1-score considering class i as positive and the rest as negative.

Accuracy =
CC

m
Weighted F1-score =

17∑

i=1

wi · F1-scorei

We benchmark our results to compare approaches in Table 4

for the UniMiB-SHAR dataset. We structure and regroup the

results from the literature based on their evaluation methods and

compare them with our results. We found our approach to be state

of the art in all cases.

Discussion

We discuss here the key differences and improvements our

approach brings compared with other approaches from our

benchmark. We eventually underline some machine-learning-

related limitations.

Optimization and deployability of deep
learning

We started from the base Resnet architecture of Ismail

Fawaz et al. (13), which is available at the following GitHub

repository: dl-4-tsc. We only considered the architecture and

did not perform in any kind of transfer learning. Subsequently,

we conducted a series of hyperparameter optimizations, which

are summarized in Table 5. A simple ablation study to show

the contributions of the different techniques used is given in

Table 6, for the case of leave-one-subject-out as this is the most

challenging case to regularize. For optimizations regarding the

network, we mostly increased the number of parameters of the

filters and the kernels from 581,698 parameters for the standard

Resnet to 11,567,362 parameters for our optimized Resnet. This

mostly made training and evaluation time rise (the 30-fold cross-

validation took approximately 36 h to complete). However, despite

11 million parameters being seemingly daunting for deployment

purposes, our model could still be successfully run live with no
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TABLE 4 Benchmark of multi-class classification on the UniMiB-SHAR dataset.

Evaluation method Details Authors Algorithm Accuracy (%) Weighted F1 (%)

Validation set 30% validation

Tang et al. (21) Triplet attention Resnet N/A 78.55

Tang et al. (24) Lego CNN 72.80 74.46

Gao et al. (25) SK-CNN 76.84 N/A

Teng et al. (23) Local Resnet 80.90 80.66

Al-qaness et al. (22) Multi-ResAtt RNN 84.99 85.06

Cheng et al. (26) Conditional CNN 88.63 N/A

Proposed method Opt. Resnet 96.18 96.17

Test set

10% test
Tang et al. (27) HS-CNN 79.02 79.19

Proposed method Opt. Resnet 98.71 98.71

20% test
Xu et al. (28) Deformable Resnet 80.02 N/A

Proposed method Opt. Resnet 98.64 98.65

CV

5-fold

Huang et al. (29) Shallow CNN 75.42 N/A

Teng et al. (30) Layer-wise CNN 78.07 77.82

Mekruksavanich et al. (31) LSTM-XGB 92.59 N/A

Lv et al. (32) ConvLSTM 95.30 97.30

Proposed method Opt. Resnet 97.39 97.45

10-fold
Vong et al. (33) XGBoost 91.22 86.40

Proposed method Opt. Resnet 98.07 97.98

LOO 30-fold

Lv et al. (32) ConvLSTM N/A 78.40

Li et al. (34) Hybrid CNN-LSTM 77.03 75.93

Jin et al. (35) CNN-D 78.24 77.59

Proposed method Opt. Resnet 80.09 79.36

Our approach outperforms the state-of-the-art approach across all kinds of evaluation methods. CV, cross-validation; LOO, leave-one-out; CNN, convolutional neural network; SK, selective

kernel; Multi-ResAtt, multi-level residual network with attention; RNN, recurrent neural network; Opt. Resnet, optimized Resnet; LSTM, long-short term memory; XGB, extreme gradient

boosting; CNN-D, CNN with distance loss.

Bold values emphasize report results from our method.

prediction delays when we deployed it on a Samsung Galaxy

A22 5G smartphone running Android 11. For optimizations

regarding training, we found increasing the number of epochs

necessary due to the higher number of parameters, and we

could partially compensate for the training time by increasing

the batch size (i.e., the number of segments given simultaneously

to the network during the training phase). Smoothing labels is

a common trick to boost deep learning network performance.

The idea is to change the one-hot vector class representation

to a probabilistic representation where other classes have small

yet non-zero probabilities. Consequently, the following has been

demonstrated:

Label smoothing influences representations learned by the

penultimate layer of the network and encourages representations

of training examples from the same class for grouping in tight

clusters (36). This results in the network’s enhanced ability to

distinguish classes. The principle for label smoothing is to change

the encoding of classes from one-hot vectors to smooth vectors

(36). Smoothing can be seen as a function fα , with smoothing

parameter α, that for a one-hot vector vk : = (δi,k)i representing

class k (among K possible classes) returns ṽk, the α-smoothed

vector. In our case, we found the case α = 0.1 to yield the best

results.

TABLE 5 Our hyperparameters tuning of the proposed optimized Resnet

network.

Category Element Description

Network
Conv1D Increased filter sizes from (64,128,128)

to (256, 512, 512) for all Resnet blocks

Conv1D Increased kernel sizes from (8,5,3) to

(8,7,7) in all Resnet blocks

Training

Labels Smoothed labels with α = 0.1

Batch size Increased training batch size to 256

Dropout Introduced Dropout with rate = 0.5

Epochs Set training epochs to 120

We found these values to yield the best accuracy and F1-score.

fα : vk = (0, ..., 0, 1, 0, ..., 0) −→ ṽk = (
α

K
, ...,

α

K
, 1−α+

α

K
,
α

K
, ...,

α

K
)

Dropout is an another common supervised deep learning

trick that prevents the network from overfitting (37). Randomly

dropping activation units during the training phase forces the

network to not be overreliant on only a few of them and makes

it more robust. We found it very useful in our case; accuracy on
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the training set was always near 100% at the end of the training but

much lower on the validation set.

Related work from benchmark

Our benchmark regroups head-to-head 17 articles (21–

35) by sharing their approach concerning the human activity

recognition task evaluated on the UniMiB-SHAR dataset. Deep

learning was the method of choice in almost every case (21–

26, 28–32, 34, 35) to try to achieve state-of-the-art results.

Only Vong et al. (33) employed a more standard machine

learning and feature engineering approach. When choosing

deep learning, the focus of studies was split into two parts.

First, the developed classification method should achieve the

highest accuracy or F1-score known to the authors. Second,

some authors mentioned that their deep learning architecture

TABLE 6 Simple ablation study on multi-class classification with LOO

evaluation for the optimized Resnet.

Evaluation
method

Authors Steps Accuracy
(%)

F1 (%)

LOO

Ismail Fawaz

et al. (13)

Resnet base

architecture

77.89 76.85

- + Increase

kernel and

filter sizes

79.02 78.17

- + Label

smoothing

79.33 78.54

Proposed

method

+ Dropout 80.09 79.36

Epochs are 120, and batch size is 256. The biggest improvement is brought by increasing the

number of parameters (in kernels and filters) in the network.

Bold values emphasize report results from our method.

should be kept reasonable in terms of memory consumption and

computation time (23, 24, 26, 29, 30). This is only logical from

an operational perspective, as the final goal of the algorithm

is to be embedded into a portable device and to run live,

which some studies have tested with their solutions (21, 26, 28,

29).

The question of feature representation in the case of

human activity recognition was also raised as is often the

case in deep learning studies. Li et al. argued that their

hybrid CNN-LSTM allowed the extraction of both long-

and short-term dependencies in the data (34). Tang et al.

and Al-qaness et al. both leveraged attention mechanisms in

their network (21, 22), and Lv et al. designed a module to

specifically maximize information through the network by

adding connections (32). Kernels and filters are hyperparameters

found in CNN or LSTM architectures and are particularly

appropriate for analyzing time-series data. Filters were the

focus of a dimensional optimization by Tang et al. (24)

and Gao et al. (25) introduced a selective kernel mechanism

for convolutions.

Beyond architecture and operations, training loss was

researched, and a clear trend toward building local losses

and layer-wise training appeared in three selected studies

(23, 24, 30). The creation of a clustering loss, the class

anchor clustering (CAC) loss, was published in Jin et al.

(35)

Finally, despite the UniMiB-SHAR dataset being seen as

a benchmark dataset by all of the aforementioned studies,

discrepancies remain between evaluation methods. This

means that the results and metrics reported by one study

cannot always be rigorously compared with all the others, as

they must use the same evaluation methods. The evaluation

methods featured in these articles are as follows: the evaluation

of a validation set (21–26), the evaluation of a test set

(27, 28), cross-validation (29–32), and leave-one-subject-out

(32, 34, 35).

FIGURE 7

One-step in our proposal for real-time fall detection. This step can then be re-executed at the desired frequency, up to the smartphone’s computing

power limitations.
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Hyperparameters and performance

The benchmark from Table 4 shows that no a priori

performance ranking of the various algorithms could be made

solely based on the type of neural network architecture. Despite

our optimized Resnet coming always first, the second best option

(where more than three are present) is dependent on the case

either based around a CNN architecture (26, 35) or a hybrid-LSTM

architecture (32).

This reinforces the claim that hyperparameter search, beyond

neural architecture, is key to tune a network specifically to a

given dataset and make it reach its best performance. Such

hyperparameter studies have systematically been in the focus

of top performers (26, 32, 35). They all conducted ablation

studies, did trial and errors, or followed best practices from the

literature to tune optimally their respective chosen architectures.

Cheng et al. found similar results in that regard than our

study, that is adding complexity to the network, such as by

increasing kernel sizes, leads to higher accuracy and F1-score

(26). Lv et al. studied as well as influence of the kernel sizes,

the number of layers, and possible fusion modes of outputs of

analyzing modules of their hybrid network (32). Jin et al. research

mostly focused on designing a custom loss for HAR, the anchor-

based loss function that has two loss components balanced by

a simple scalar hyperparameter λ that has been investigated and

optimized (35).

Continuous time classification

Thus far, we have built a classification method based

on pre-formatted segments that displays good performance

with this framework. We would like to provide perspectives

on how a deep learning classifier can be adapted to analyze

accelerometer signals in continuous time. We describe

the steps of our proposal in Figure 7. This step must be

iterated with the desired frequency for real-time analysis.

Significantly, the proper implementation of this live analysis

could already be tested only with the dataset. All that

needs to be done is to concatenate segments of activities

beside each other to gain a longer time series featuring

multiple activities. For the concatenation to go smoothly

and not have abrupt changes, we ensure that distances

between the last x, y, and z values of the acceleration of

the current time series are near the first ones of the next

time series.

Limitations

Using machine learning for human activity recognition brings

up several limitations. First, there is potential for bias in the

training data. If the data used to train the model are not

representative of the diverse range of activities and individuals,

the model may lack robustness and generalizability. A second

limitation is a dependence on the quality of the sensors and

processing used for recognition. Factors such as noise, sensor

placement, and data resolution can all impact the model’s accuracy.

The third limitation is the computing resources requirement,

which corresponds to a machine learning model, to be trained

and run effectively. Finally, a fourth limitation revolves around

ethical consideration, where privacy, fairness, and transparency

should be as carefully considered as performance when deploying

such systems running on personal data. In addressing these

limitations, it is also important to consider the power consumption

implications of using the internal sensors and also processing the

data.

Conclusion

Our research has highlighted the main steps in conceptualizing

a deep learning-based human activity recognition classifier. We

showed that our optimized Resnet was remarkably fit for this task

and that deep learning best practices such as dropout and label

smoothing worked well to improve accuracy and the F1-score for

fall detection. Our approach raised the state-of-the-art accuracy to

80.09% on the UniMiB-SHAR dataset using the rigorous leave-one-

subject-out evaluation method. However, there are still challenges

to be addressed on a more global scale, such as collecting data via

different types of smartphones and diverse populations to reduce

bias and increase generalizability.
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