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Objective: The purpose of this study was to develop and validate a predictive 
model based on a machine learning (ML) approach to identify patients with DKA 
at increased risk of AKI within 1 week of hospitalization in the intensive care unit 
(ICU).

Methods: Patients diagnosed with DKA from the Medical Information Mart 
for Intensive Care IV (MIMIC-IV) database according to the International 
Classification of Diseases (ICD)-9/10 code were included. The patient’s medical 
history is extracted, along with data on their demographics, vital signs, clinical 
characteristics, laboratory results, and therapeutic measures. The best-performing 
model is chosen by contrasting the 8 Ml models. The area under the receiver 
operating characteristic curve (AUC), sensitivity, accuracy, and specificity were 
calculated to select the best-performing ML model.

Results: The final study enrolled 1,322 patients with DKA in total, randomly split 
into training (1,124, 85%) and validation sets (198, 15%). 497 (37.5%) of them 
experienced AKI within a week of being admitted to the ICU. The eXtreme Gradient 
Boosting (XGBoost) model performed best of the 8 Ml models, and the AUC of 
the training and validation sets were 0.835 and 0.800, respectively. According 
to the result of feature importance, the top 5 main features contributing to the 
XGBoost model were blood urea nitrogen (BUN), urine output, weight, age, and 
platelet count (PLT).

Conclusion: An ML-based individual prediction model for DKA-associated AKI 
(DKA-AKI) was developed and validated. The model performs robustly, identifies 
high-risk patients early, can assist in clinical decision-making, and can improve 
the prognosis of DKA patients to some extent.
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1. Introduction

Diabetic ketoacidosis (DKA) is a serious acute complication of diabetes mellitus that can 
be  fatal if left untreated. DKA is characterized by uncontrolled blood glucose (BG) levels, 
acidosis, and ketosis. It can also cause imbalances in electrolytes and fluids, leading to 
complications such as cerebral edema, acute kidney injury (AKI), and even renal failure in severe 
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cases (1, 2). AKI is a common complication, affecting 40 to 50 percent 
of DKA patients. Unfortunately, AKI can result in increased morbidity 
and mortality, prolonged intensive care unit (ICU) stays, a greater 
susceptibility to chronic kidney disease (CKD), and recurrent AKI 
episodes during ICU treatment. Therefore, it is critical to closely 
monitor DKA patients for signs of AKI and promptly intervene to 
mitigate its potential negative impact (3, 4). The diagnosis of AKI is 
typically based on the dynamic changes in serum creatinine (SCr) and 
urine output, following the clinical practice recommendations 
established by the Kidney Disease Improving Global Outcomes 
(KDIGO) organization (5). However, renal damage usually precedes 
the elevation of SCr levels, so that renal damage has already begun by 
the time AKI is diagnosed (6). DKA-associated AKI (DKA-AKI) 
usually occurs after hypoperfusion of the kidney due to hypovolemia. 
Renal function can be improved to some extent by effective prevention 
and treatment, such as applying vasoactive drugs, ensuring adequate 
renal perfusion, and avoiding nephrotoxic drugs (7). Consequently, it 
is necessary to explore predictors for AKI and monitor the population 
at risk for DKA-AKI. Clinicians can improve the prognosis of DKA 
patients with timely management.

Several studies have demonstrated that various factors, including 
age, type of diabetes, comorbidities, respiratory rate (RR), blood 
pressure, baseline Scr, blood urea nitrogen (BUN), and urine output, can 
be used to predict the risk of DKA-AKI (3, 4, 8). In our previous work 
(9), a model for predicting DKA-AKI risk based on logistic regression 
was developed and a nomogram was drawn. Besides, numerous models 
for predicting AKI have been developed (10–13). However, few 
publications have identified the specific risk of AKI in DKA patients.

In recent years, machine learning (ML) algorithms have been 
found to have excellent predictive performance (14). ML has also 
demonstrated excellent performance in the administration of ICU 
patients, and combining it with electronic health record systems can 
increase the reliability of technological support for critical care.

In the administration of ICU patients, ML has demonstrated 
excellent performance and, when combined with electronic health 
record systems, can increase the reliability of technological support for 
critical care (15). Unfortunately, to our knowledge, there are no 
relevant studies that apply machine learning algorithms to build a 
model and identify risk factors for DKA-AKI. Therefore, in this 
research, we developed a model for predicting DKA-AKI in real-time 
using ML algorithms and validated its performance. This is an 
important step toward identifying and managing DKA-AKI, as it 
could help clinicians intervene early and prevent further complications.

2. Methods

2.1. Database

Patients’ information for this retrospective investigation was 
obtained from the database called Marketplace for Medical 
Information in Intensive Care IV (MIMIC-IV). It is consisted of the 
medical history for the ill critical patients at Beth Israel Deaconess 
Medical Center (Boston, MA), including demographic information, 
disease diagnosis, vital signs, laboratory tests, treatment information, 
survival status, and other comprehensive clinical records. The 
inclusion of the MIMIC-IV database has been expanded from 2008–
2012 to 2008–2019, compared to the previous version of the 
MIMIC-III (Certificate number: 9168028).

2.2. Study population

DKA patients in the MIMIC-IV databases identified with the 
International Classification of Diseases (ICD) -9/10 code were 
included. The excluded criteria were: (1) patients with a diagnosis of 
CKD stage 5; (2) if a patient was admitted to the ICU repeatedly 
during one hospitalization, only the first hospitalization information 
was retained; and (3) patients with more than 20% missing data. The 
overall flowchart is shown in Figure 1.

2.3. Data extraction and pre-processing

The following patient data were retrieved from the MIMIC-IV 
database: demographics, vital signs, comorbidities, laboratory tests, 
interventions, prognosis, and scoring systems, as shown in 
Supplementary Table S1. Features missing greater than 20% were 
excluded in the follow-up study, and other variables were duplicated 
using nearest neighbor imputation algorithms (excluded missing 
variables were shown in Supplementary Table S2). All items were 
recorded within 24 h of admission to the ICU. And due to repeat 
sampling, we only retained the results of the first test.

2.4. Outcome

Our study’s primary outcome was the occurrence of AKI of DKA 
patients receiving ICU care within a week. Utilizing KDIGO criteria, 
a diagnosis of AKI was determined (5).

2.5. Model development and validation

Supervised ML algorithms have been playing an important 
role in various clinical prediction models. In the present study, 
supervised ML algorithms were used to construct later predictions 
of the risk of AKI in DKA patients. The least absolute shrinkage 
and selection operator cross-validation (LASSO CV) method was 
used for model selection in order to reduce model complexity and 
the risk of overfitting and to optimize model training speed. 
Machine learning has contributed massively applications in 
medical diagnosis, treatment, and prediction (16). In our present 
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study, the overall dataset was divided into 2 groups randomly, 85% 
in training cohort and 15% in validation cohort, respectively. To 
minimize overfitting and identify the optimization 
hyperparameters, 10-fold cross-validation (CV) was also 
performed. And then, 8 Ml model algorithms, including eXtreme 
Gradient Boosting (XGBoost); logistic regression, Light BGM, Ada 
Boost, Gaussian Naïve Bayes (GNB), multi-layer perceptron neural 
network (MLP), Complement Naive Bayes (CNB), support vector 
machine (SVM). Before establishing the models, the Lasso CV 
features selection method was applied to better select feature 
parameters. Furthermore, we reported several parameters related 
to model performance in this study, including area under the 
receiver operating characteristic curve (AUC), sensitivity, 
specificity, and accuracy. The final model was determined 
according to the highest AUC value after comparing the 
performance of the 8 different ML models. Finally, feature 
importance was calculated for the final models to evaluate the 
contribution of the candidate predictors. The programming 
written using Python (package version 3.8) was used to exert 
data analysis.

2.6. Statistical analysis

Variables that followed a normal distribution were expressed as 
the mean ± standard deviation (SD); if they did not follow a normal 
distribution the quartiles were generally used. Student’s t-test or 
Mann–Whitney U-test was used to analyze continuous variables. In 
the case of categorical variables, the χ2 test or Fisher’s exact test was 
generally used. All Statistical analyses were performed using R version 
3.6.3 and python version 3.7. The core code for model construction 

was provided by the Extreme Smart Analysis platform1 and uploaded 
to the supplemental material.

3. Results

3.1. Patients’ characteristics

1,322 patients diagnosed with DKA in total were eventually 
enrolled in our study. Among the total cohort, 689 (52.1%) were 
female, and the median age was 50 [IQR 35, 62] years. Within a week 
of admission to the ICU, 497 (37.6%) progressed to DKA-AKI. The 
incidence of DKA-AKI was 36.4% (181/497) in stage 1, 34.4% 
(171/497) in stage 2, and 29.2% (145/497) in stage 3. CRRT was 
applied to 17.4% (73/497) of AKI patients. The AKI group had higher 
ventilator utilization, hospital length of stay (HLOS), and in-hospital 
mortality. Except for gender, systolic blood pressure (SBP), liver 
disease, history of hypertension, platelet count (PLT), calcium, BG, 
and infusion volume, the statistical analysis of the candidate predictors 
revealed significant differences between the AKI and non-AKI groups 
(Table 1).

3.2. Predictive model performance

The results of LASSO CV screened seven variables as input 
variables for the model (Figure 2). Eight Ml-based models have been 

1 https://www.xsmartanalysis.com/

FIGURE 1

Overall flowchart of this study. MIMIC-IV, Medical Information Mart for Intensive Care IV; CKD, chronic kidney disease; ICU, intensive care unit; DKA, v; 
AKI, acute kidney injury; HR, heart rate; RR, respiratory rate; WBC, white blood cell count; PLT, Platelet count; Hb, hemoglobin; CHF, congestive heart 
failure; XGBoost, eXtreme Gradient Boosting; GNB, Gaussian Naïve Bayes; CNB, Complement Naive Bayes; MLP, multi-layer perceptron neural 
network; SVM, support vector machine; LASSO CV, least absolute shrinkage and selection operator cross-validation.
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TABLE 1 Characteristic at baseline between AKI and non-AKI group.

Variable Total (n = 1,322) Non-AKI (n = 825) AKI (n = 497) p value

Age, years 50 [35, 62] 43 [30, 57] 58 [46, 68] <0.001

Gender (Female) 689 (52.1) 425 (51.5) 264 (53.1) 0.572

Weight, Kg 73.2 [62.0, 87.1] 70.0 [60.3, 83.6] 78.5 [66.0, 94.0] <0.001

Ethnicity 0.028

White 742 (56.1) 474 (57.4) 268 (53.9)

African-American 364 (27.5) 223 (27.0) 141 (28.3)

Hispanic-American 76 (5.7) 51 (6.2) 25 (5.0)

Asian 28 (2.1) 21 (2.5) 7 (1.4)

Other 112 (8.5) 56 (6.8) 56 (11.3)

DM type <0.001

T1DM 821 (62.1) 546 (66.2) 275 (55.3)

T2DM 373 (28.2) 209 (25.3) 164 (33.1)

Other 128 (9.7) 70 (8.5) 58 (11.7)

HR, beats/min 100 [88, 111.000] 101 [89, 113] 98 [85, 109] <0.001

RR, breaths/min 19 [16, 23] 19 [16, 23] 20 [17, 24] 0.002

SBP, mmHg 129 [114, 145] 128 [115, 144] 130 [111, 147] 0.907

DBP, mmHg 71 [60, 83] 72 [62, 83] 69 [56, 82] 0.002

Microangiopathy (Yes) 691 (52.3) 411 (49.8) 280 (56.3) 0.022

Macroangiopathy (Yes) 319 (24.1) 260 (31.5) 59 (11.9) <0.001

Preexisting CKD <0.001

Non-CKD 1,006 (76.1) 704 (85.3) 302 (60.8)

Stage1-3 251 (18.9) 115 (13.9) 136 (27.4)

Stage3-4 65 (4.9) 6 (0.7) 59 (11.9)

UTI (Yes) 147 (11.120) 71 (8.606) 76 (15.292) <0.001

Pneumonia (Yes) 58 (4.387) 18 (2.182) 40 (8.048) <0.001

Liver disease (Yes) 124 (9.4) 73 (8.8) 51 (10.3) 0.393

History of hypertension (Yes) 513 (38.8) 305 (37.0) 208 (41.9) 0.078

History of CHF (Yes) 208 (15.7) 69 (8.4) 139 (27.9) <0.001

History of AMI (Yes) 213 (16.1) 83 (10.1) 130 (26.2) <0.001

History of ACI (Yes) 91 (6.9) 28 (3.4) 63 (12.7) <0.001

Malignant Cancer (Yes) 59 (4.463) 33 (4.000) 26 (5.231) 0.294

Bicarbonate, mEq/L 21.0 [18.0, 25.0] 21.0 [17.0, 25.0] 22.0 [18.0, 25.0] 0.005

WBC, K/μL 8.2 [5.9, 11.9] 7.8 [5.8, 11.0] 9.0 [6.4, 13.5] <0.001

PLT, K/μL 228.0 [175.0, 289.0] 227.0 [177.0, 283.0] 229.0 [167.0, 298.0] 0.711

Hb, g/dl 10.9 [9.3, 12.3] 11.4 [10.1, 12.6] 9.8 [8.5, 11.3] <0.001

Sodium, mEq/L 138.0 [135.0, 140.0] 137.0 [135.0, 140.0] 138.0 [135.0, 141.0] 0.006

Chloride, mEq/L 104.0 [100.0, 108.0] 104.0 [101.0, 108.0] 103.000 [99.0, 109.0] 0.004

Calcium, mEq/L 8.400 [8.0, 8.8] 8.400 [8.0, 8.8] 8.400 [7.9, 8.8] 0.339

Phosphate, mEq/L 2.7 [1.900, 3.700] 2.400 [1.7, 3.2] 3.300 [2.3, 4.5] <0.001

AG 14.0 [12.0, 17.0] 14.0 [12.0, 17.0] 15.000 [12.0, 18.0] 0.015

Total osmotic pressure 494.600 [440.0, 560.2] 492.0 [437.6, 555.2] 498.400 [447.4, 570.6] 0.024

BUN, mg/dl 16.0 [9.0, 31.0] 13.0 [8.0, 20.0] 28.0 [14.0, 46.0] <0.001

Scr, mg/dl 0.9 [0.7, 1.5] 0.8 [0.6, 1.1] 1.4 [0.9, 2.5] <0.001

Potassium, mEq/L 4.1 [3.7, 4.5] 4.0 [3.7, 4.4] 4.2 [3.8, 4.7] <0.001

(Continued)
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developed and validated, and the XGBoost model performed the 
strongest in predicting DKA-AKI with the highest AUC value (0.835) 
(Figure  3A). In addition, the XGBoost model had a sensitivity of 
0.716, a specificity of 0.823, and an accuracy of 0.782 in the training 
set (Table 2). When internal validation was performed, the XGBoost 
model still showed optimal performance with an AUC of 0.800 
(Figure 3B), and its sensitivity, specificity, and accuracy were 0.718, 
0.790, and 0.749, respectively (Table 3). Therefore, the XGBoost model 
was selected as the final mode. Furthermore, decision curve analysis 
(DCA) (Figure  4A) and calibration plots (Figure  4B) were also 
performed to further demonstrate the performance of the 
XGBoost model.

3.3. Relative importance of variables

Based on the XGBoost model with superior performance, 7 
characteristics of interest were finally obtained in this study. Feature 
importance analysis was conducted to interpret the importance of the 
variables, which revealed that the top 5 contributing variables were 
blood urea nitrogen (BUN), urine output, weight, age, and platelet 
count (PLT), in that order (Figure 5 and Supplementary Table S3).

4. Discussion

Although the incidence of DKA-AKI was lower than in previous 
studies by Junzhe Chen (3) and Jean-Christophe Orban (8), it was 
comparable to the findings of our previous study in the MIMIC-III 
database (9). Thirty-eight candidate predictors were applied to train 
and validate 8 Ml models to predict the risk of DKA-AKI. The 
XGBoost model outperforms all other ML method in terms of 
discrimination and accuracy, with an AUC value of 0.835  in the 
training set and 0.800 in the validation set. BUN, urine output, weight, 
age, PLT, fluid volume, and glucose were the 7 variables that 
contributed to the XGBoost model orderly. The mortality rate among 
patients in the AKI group was found to be 10 times higher than that 
of the non-AKI group, with rates of 10.1 and 1.3%, respectively. 
Additionally, patients who suffered from AKI were more likely to 
require mechanical ventilation and spend longer periods of time in 
the ICU, leading to increased medical expenses. Accurately predicting 
the incidence of DKA-AKI can assist clinicians in identifying high-
risk DKA-AKI patients in the ICU, and timely treatment and 
management can significantly improve the prognosis of these patients.

With the evolution of electronic medical and advent of the Big 
Data era, ML has already achieved remarkable achievements in the 
diagnosis and prognosis of diseases (17). For instance, ML methods 
have been maturely applied to develop predictive models for AKI in 

FIGURE 2

Lasso CV method was used to conduct feature selection. LASSO CV, 
least absolute shrinkage and selection operator cross-validation, 
BUN, blood urea nitrogen; BG, blood glucose; PLT, platelet count.

TABLE 1 (Continued)

Variable Total (n = 1,322) Non-AKI (n = 825) AKI (n = 497) p value

Blood glucose, mg/dl 188.0 [135.0, 257.000] 191.0 [139.0, 258.0] 183.000 [130.0, 251.0] 0.174

Infusion volume, mL 12020.0 [7700.0, 17320.000] 11890.0 [7700.0, 16600.0] 12400.000 [7805.0, 18010.0] 0.061

Urine output, mL 1950.0 [1085.0, 3000.0] 2300.0 [1470.0, 3440.0] 1300.000 [600.0, 2250.0] <0.001

eGFR 0.992 [0.854, 1.093] 1.000 [0.882, 1.114] 0.930 [0.829, 1.067] <0.001

Use of NaHCO3 (Yes) 123 (9.304) 41 (4.970) 82 (16.499) <0.001

Mechanical ventilation (Yes) 152 (11.498) 31 (3.758) 121 (24.346) <0.001

GCS 15.000 [15.000, 15.000] 15.000 [15.000, 15.000] 15.000 [15.000, 15.000] <0.001

CRRT (Yes) 77 (5.825) 4 (0.485) 73 (14.688) <0.001

OASIS 25.000 [21.000, 31.000] 23.000 [20.000, 27.000] 30.000 [25.000, 39.000] <0.001

SOFA 3.000 [1.000, 5.000] 2.000 [1.000, 3.000] 5.000 [3.000, 8.000] <0.001

SAPSII 26.000 [19.000, 36.000] 22.000 [16.000, 29.000] 36.000 [26.000, 45.000] <0.001

HLOS, days 4.838 [2.969, 8.487] 3.890 [2.647, 6.051] 7.654 [4.158, 13.670] <0.001

Hospital mortality (Yes) 61 (4.614) 11 (1.333) 50 (10.060) <0.001

AKI, acute kidney injury; DM, diabetic mellitus; T1DM, type 1 DM; T2DM, type 2 DM; HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure, DBP, diastolic blood pressure, CKD, 
chronic kidney diseases, UTI, urinary tract infection; CHF, congestive heart failure; AMI, acute myocardial infarction; ACI, acute cerebral infarction; WBC, white blood cell; PLT, platelets 
count; Hb, hemoglobin; AG, anion gap; BUN, blood urea nitrogen; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; GCS, Glasgow coma scale; OASIS, oxford acute severity of 
illness score; SOFA, sequential organ failure assessment; SAPS-II, simplified acute physiology score II; HLOS, hospital length of stay.
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patients with sepsis, as well as in those undergoing cardiac and liver 
surgeries (13, 18–21).

BUN and urine output at baseline were included in our final 
model and were ranked higher in importance, so more attention 
should be given to patients with DKA who already had abnormal 
BUN and urine volume at ICU admission. Additionally, body weight 
was found to be a predictor for DKA-AKI in our study, with a median 
weight of 70.0 [IQR 60.3, 83.6] (Kg) in the AKI group compared to 
78.5 [IQR 66.0, 94.0] (Kg) in the non-AKI group. Shi et  al. (22) 
reported that overweight and obese patients were at a significantly 
higher risk of cardiac surgery-related AKI. However, since height is 
largely absent of ICU patients from the database, we were unable to 
calculate body mass index (BMI). Notably, increased intra-abdominal 
pressure in critically ill obese patients causes venous obstruction and 
insufficient blood flow to arterial organs, which may account for why 

obese patients are more likely to experience AKI (22–24). Age was also 
found to be significantly associated with AKI in our study, consistent 
with previous research (3, 8). The median age was higher in the AKI 
group (58 years [IQR 46, 68]) compared to the non-AKI group 
(43 years [IQR 30, 57]). Age-related structural and functional changes 
in the kidney include glomerulosclerosis, a decline in estimated 
glomerular filtration rate (eGFR), and an increase in glomerular 
capillary pressure. The kidney becomes more vulnerable to acute 
injury as it ages because its capacity to self-regulate declines (25). 
Long-term poor glycemic control, which is common in older patients 
with diabetes, can also lead to persistent kidney damage through 
inflammation, oxidative stress, and glycosylation (26). Both fluid 
therapy and low-dosage insulin are crucial treatments for DKA. Our 
study found that patients with AKI received more fluid infusions and 
experienced less urination compared to patients without AKI, leading 

A B

FIGURE 3

Comparing the different ML models’ AUC in the training (A) and validation (B) sets. ML, machine learning; AUC, area under the receiver operating 
characteristic curve; XGBoost, eXtreme Gradient Boosting; GNB, Gaussian Naïve Bayes; CNB, Complement Naive Bayes; MLP, multi-layer perceptron 
neural network; SVM, support vector machine.

TABLE 2 Model parameters in training set.

Model AUC Cutoff Accuracy Sensitivity Specificity PPV NPV F1-Score

XG Boost 0.835 (0.004) 0.463 (0.013) 0.782 (0.007) 0.716 (0.025) 0.823 (0.025) 0.714 (0.022) 0.824 (0.009) 0.714 (0.007)

Logistic 0.773 (0.004) 0.468 (0.033) 0.744 (0.012) 0.627 (0.040) 0.817 (0.042) 0.679 (0.036) 0.782 (0.012) 0.649 (0.007)

Light GBM 0.547 (0.079) 0.600 (0.800) 0.634 (0.031) 0.343 (0.322) 0.777 (0.292) NA 0.666 (0.052) NA

AdaBoost 0.820 (0.005) 0.467 (0.002) 0.743 (0.008) 0.770 (0.013) 0.729 (0.019) 0.634 (0.016) 0.837 (0.007) 0.695 (0.006)

GNB 0.795 (0.005) 0.351 (0.032) 0.742 (0.010) 0.720 (0.031) 0.757 (0.031) 0.642 (0.020) 0.817 (0.011) 0.678 (0.010)

CNB 0.678 (0.005) 0.993 (0.022) 0.664 (0.013) 0.660 (0.010) 0.674 (0.007) NA 0.754 (0.042) NA

MLP 0.607 (0.074) 0.397 (0.029) 0.612 (0.097) 0.614 (0.282) 0.588 (0.330) NA 0.710 (0.063) NA

SVM 0.518 (0.061) 0.449 (0.057) 0.573 (0.101) 0.409 (0.322) 0.673 (0.347) 0.491 (0.084) 0.667 (0.037) 0.363 (0.146)

Data are shown as means ± standard deviations (SD). 
AUC, area under the receiver operating characteristic curve; PPV, positive prediction value; NPV, negative prediction value; GNB, Gaussian Naïve Bayes; CNB, Complement Naive Bayes; 
GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron neural network; SVM, support vector machine; NA, not applicable.
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to a higher cumulative fluid balance. Similar findings have been 
reported in earlier studies (27–29). Furthermore, Inkinen et al. (30) 
demonstrated that this phenomenon is linked to a lack of recovery 
from AKI. Excessive fluid intake may result in interstitial renal edema, 
which can raise renal perfusion pressure and impair kidney function. 
Ischemia–reperfusion (I/R) injury represents one of the crucial 
mechanisms of AKI. Following this, coagulation and inflammation are 
activated, and platelets are crucial to this process. In an animal model 
of AKI induced by I/R, Jansen et al. demonstrated that a significant 
proportion of activated platelets were present in the necrotic zone. 
Furthermore, the application of clopidogrel prior to modeling reduced 
tubular necrosis and preserved some renal function in mice (31). Also, 
an observational cohort study discovered that a significant connection 
between preoperative aspirin use and a reduced risk of AKI linked to 
cardiac surgery (32). Further research is necessary to determine 
whether antiplatelet medications can be utilized to prevent and treat 
other causes of AKI. BG was still included in the final XGBoost model 

TABLE 3 Model parameters in validation set.

Model AUC Cutoff Accuracy Sensitivity Specificity PPV NPV (SD) F1-Score

XGBoost 0.800 (0.019) 0.463 (0.013) 0.749 (0.017) 0.718 (0.060) 0.790 (0.036) 0.643 (0.035) 0.812 (0.026) 0.677 (0.035)

Logistic 0.773 (0.025) 0.468 (0.033) 0.738 (0.028) 0.650 (0.065) 0.821 (0.064) 0.649 (0.051) 0.788 (0.045) 0.648 (0.050)

Light GBM 0.531 (0.081) 0.600 (0.800) 0.626 (0.042) 0.350 (0.308) 0.751 (0.292) NA 0.651 (0.038) NA

AdaBoost 0.791 (0.028) 0.467 (0.002) 0.714 (0.031) 0.695 (0.065) 0.782 (0.053) 0.584 (0.056) 0.820 (0.036) 0.633 (0.052)

GNB 0.790 (0.031) 0.351 (0.032) 0.738 (0.037) 0.694 (0.065) 0.807 (0.073) 0.639 (0.066) 0.809 (0.045) 0.664 (0.057)

CNB 0.671 (0.029) 0.993 (0.022) 0.653 (0.031) 0.677 (0.042) 0.661 (0.028) NA 0.739 (0.066) NA

MLP 0.606 (0.077) 0.397 (0.029) 0.617 (0.107) 0.548 (0.305) 0.664 (0.289) NA NA NA

SVM 0.524 (0.093) 0.449 (0.057) 0.569 (0.100) 0.554 (0.292) 0.576 (0.316) 0.467 (0.126) 0.717 (0.146) 0.456 (0.155)

Data are shown as means ± standard deviations (SD). 
AUC, area under the receiver operating characteristic curve; PPV, positive prediction value; NPV, negative prediction value; GNB, Gaussian Naïve Bayes; CNB, Complement Naive Bayes; 
GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron neural network; SVM, support vector machine; NA, not applicable.

A B

FIGURE 4

DCA (A) and calibration curve (B) of the XGBoost and simplified model. DCA, decision curve analysis; XGBoost, eXtreme Gradient Boosting.

FIGURE 5

BUN, blood urea nitrogen; PLT, platelet count, BG, blood glucose.
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and was negatively correlated with the outcome even though there was 
no statistically significant difference between the AKI (191.0 mg/dl 
[IQR 139.0, 258.0]) and the non-AKI groups (183 mg/dl [IQR 130.0, 
251.0]) in terms of BG level. This could be  due to the fact that 
individuals with kidney damage are more likely to experience 
hypoglycemia when taking insulin (33).

In contrast to previous clinical studies, we  have successfully 
constructed a tool for assessing the risk of DAK-AKI based on several 
supervised ML algorithms. This model is constructed using a large 
real-world database and plays a crucial role in risk assessment and 
stratification of AKI, particularly in critically ill patients. To our 
knowledge, our study is the first to develop and validate a ML-based 
model of DKA-AKI, assisting clinicians in identifying high-risk 
individuals’ early and addressing associated risk factors promptly. 
Furthermore, our sample size of DKA patients is the largest compared 
to similar studies, ensuring more robust results. Encouragingly, the 
prediction models constructed in our study exhibit promising 
performance in both the training and validation sets.

Limitations of our present study should be noted. Firstly, our 
research was conducted as a single-center study on ICU patients, and 
we obtained data from the MIMIC-IV database. Further research will 
require data collection on patients from various nations or regions as 
well as general medical wards to enhance the generalizability of 
the findings.

Second, missing data were present in this study, and some 
variables with missing data of >20% were excluded. However, 
we made every effort to address the limitations of missing data by 
applying the KNN algorithm to the dataset for interpolation. Third, 
this is a retrospective study based on a public database the results 
have some limitations. Finally, in the absence of prior monitoring 
data in the MIMIC-IV database, it becomes challenging to assess if a 
patient with DKA has developed AKI. Hence, we cannot exclude this 
group of patients from the study, which may result in biased results.

5. Conclusion

Collectively, we extracted the data from the MIMIC-IV database 
to build ML-based model to predict the DKA-AKI. The results showed 
that BUN, urine output, weight, age, PLT, infusion volume, and 
glucose, in order of importance, were predictors of the occurrence of 
DKA-AKI. This model can identify high-risk patients at an early stage, 
assist clinical decision-making, and may improve the prognosis of 
DKA patients to some extent.
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