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Introduction: Evaluating the potential e�ects of non-pharmaceutical

interventions on COVID-19 dynamics is challenging and controversially discussed

in the literature. The reasons are manifold, and some of them are as follows. First,

interventions are strongly correlated, making a specific contribution di�cult to

disentangle; second, time trends (including SARS-CoV-2 variants, vaccination

coverage and seasonality) influence the potential e�ects; third, interventions

influence the di�erent populations and dynamics with a time delay.

Methods: In this article, we apply a distributed lag linear model on COVID-19 data

from Germany from January 2020 to June 2022 to study intensity and lag time

e�ects on the number of hospital patients and the number of prevalent intensive

care patients diagnosed with polymerase chain reaction tests. We further discuss

how the findings depend on the complexity of accounting for the seasonal trends.

Results and discussion: Our findings show that the first reducing e�ect of non-

pharmaceutical interventions on the number of prevalent intensive care patients

before vaccination can be expected not before a time lag of 5 days; themain e�ect

is after a time lag of 10–15 days. In general, we denote that the number of hospital

and prevalent intensive care patients decrease with an increase in the overall non-

pharmaceutical interventions intensity with a time lag of 9 and 10 days. Finally, we

emphasize a clear interpretation of the findings noting that a causal conclusion is

challenging due to the lack of a suitable experimental study design.

KEYWORDS

lag-time e�ects, non-pharmaceutical interventions, distributed lag linear model, COVID-

19 dynamics, Germany

Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (1), entered the world unexpectedly in 2019,

dramatically changing human life (2). Infection occurs through respiratory droplets and

contact routes during the incubation period. Outbreaks of the disease first appeared in

Wuhan, Hubei Province, China (3), then spread to the United States, Europe, and Asia,

reaching all continents. Since the World Health Organization (WHO) declared the disease a

pandemic on March 11, 2020 (4), as of June 27, 2022, there have been more than 547 million

confirmed cases worldwide and more than 6 million reported deaths (5). However, many
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confirmed cases required hospitalization for several weeks while

others require Intensive Care Unit (ICU) treatment (6). Due to a

limited number of hospital beds, mainly ICU beds, many countries

have adopted early control measures to prevent viral transmission

and to avoid overloading the healthcare system (7, 8). Germany,

the largest economic producer in Europe, has also inevitably

experienced this pandemic. The first confirmed COVID-19 case

in Germany was reported in late January 2020 following contact

with an infected colleague from China (9). Afterwards, as of April

17, 2020, the Robert Koch-Institute (RKI) counts over 130,000

confirmed infections and about 4,000 deaths in Germany (10). To

anticipate the massive flow of COVID-19, the federal government

introduces public closures by closing public spaces such as schools,

universities, and restaurants. Additional measures such as the

national curfew ban and restrictions on people gatherings were also

applied. In principle, people were advised to stay home as long as

possible and leave home only for basic needs (11).

Several mathematical and statistical approaches have been

developed to investigate the effectiveness of NPIs. Among these

studies, Brauner et al. (12) applied a semi-mechanistic hierarchical

Bayesian model to estimate the impact of NPIs on the time

reproduction numbers in 41 countries during the first wave of

the pandemic. They found that closing all educational institutions,

limiting gatherings to 10 people or less, and closing face-to-

face businesses reduced transmission considerably. The additional

effect of stay-at-home orders was comparatively small. Nader

et al. (13) used a non-parametric machine learning model to

assess the effects of NPIs in relation to how long they have

been in place and the effectiveness of NPIs in relation to their

implementation date on the daily growth rate (relative increase

in cumulative confirmed COVID-19 cases from 1 day to the

next). They found that the closure and regulation of schools was

the most important NPI, associated with a pronounced effect

about 10 days after implementation. Sharma et al. (14) considered

a semi-mechanistic hierarchical Bayesian model to examine the

effect estimates for individual NPI during Europe’s second wave

of COVID-19 on daily cases and deaths. They concluded that

business closures, educational institution closures, and gathering

bans reduced transmission but less than they did during the first

wave. Ge et al. (15) used a Bayesian inference model to assess

the changing effect of NPIs and vaccination on reducing COVID-

19 transmission based on the time reproduction numbers. Their

results demonstrate that NPIs were complementary to vaccination

in an effort to reduce COVID-19 transmission, and the relaxation

of NPIs might depend on vaccination rates, control targets, and

vaccine effectiveness concerning extant and emerging variants.

All the studies cited above have shown the effectiveness of

NPIs. However, they did not consider the delay effects related to

the NPIs implementation. A health effect is frequently associated

with protracted exposures of varying intensity sustained in the

past (16). The effects of exposing a particular event may not

always be limited to the time of its occurrence and may appear

with lag times (17). Policy lags are generally understood as

unavoidable time delays. While there may exist several possible

reasons for a lag, there is no general agreement on its length (18).

This can be explained by the high sensitivity of the lagged and

baseline exposure terms and also the implication of time-varying

confounding variables in the models (19). Similar time lags have

been noticed during the COVID-19 outbreak when various non-

pharmaceutical interventions (NPIs) were implemented. Different

policies may have different levels of effectiveness on disease spread,

and the response to these policies is still unclear (20).

The main complexity of modeling and interpreting such

phenomena lies in the additional temporal dimension needed

to express the association, as the risk depends on both the

intensity and timing of past exposures. This type of dependency

is defined here as NPIs intensity-lag-response (Hospitalized cases

and ICU cases) association. Statistical regression models are used

to determine the relationship between predictors and outcomes

and then estimate their effects. The Distributed Lag Model (DLM)

models the exposure–response relationship and then introduces

a series of consequences caused by this exposure to events. In

addition, the method is used as well to determine the distribution of

the subsequent effects after the occurrence of events (in lag times).

This method has been developed for time series data and used in

studies of various designs and data structures, cohort, case-control,

or longitudinal studies (17). Distributed Lag Models have been

successfully applied in epidemiological research (21–24).

Changes in the coronavirus infection dynamic in Germany led

to the implementation of a policy like NPIs. The effect of NPIs

may not be immediate since NPIs need some time to affect the

pandemic situation. Then, it is reasonable to use the time lag

concept in the analysis of COVID-19 research. This work aims to

study intensity and lag time effects on the numbers of COVID-

19 hospital and prevalent intensive care patients diagnosed with

polymerase chain reaction tests in Germany from 10 January 2020

to June 2022. In this study, we applied a DLM to the number

of COVID-19 hospital patients (Hospitalized cases) in Germany

and the number of COVID-19 prevalent intensive care patients

(ICU cases), considering all non-pharmaceutical interventions

implemented in Germany and estimated their delayed effects. The

results provide policymakers with essential information to make

more informed decisions, considering the effect of NPIs, and their

lag time in managing possible future pandemics.

Methods

Data description

Real data about the number of hospital patients (Hospitalized

cases), prevalent intensive care patients (ICU cases), overall

non-pharmaceutical intervention intensity (NPIs) for each of

the 16 German states, the proportion of people who received

at least two doses (V2) in Germany from January 2020 to

June 2022, were extracted from the corona Daten platform site

(https://www.corona-datenplattform.de). The first two variables

(i.e., Hospitalized and ICU cases) were summed over states to

obtain German countrywide data for our analysis.

The overall intensity of non-pharmaceutical interventions for

Germany was computed using

NPIst =

16
∑

f=1

ℑfNPIf ,t (1)
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where ℑf is state f relative population share in Germany, and

NPIf ,t is the intensity of all NPIs implemented in the state f at time

t. The whole German data was split into two sets to obtain a dataset

before vaccination (from January 2020 to December 2020 data), a

dataset with vaccination (from December 2020 to June 2022 data),

and the entire dataset (from January 2020 to June 2022).

Distributed lag generalized linear model
based regression

To assess the lag time effects of non-pharmaceutical

interventions on COVID-19 dynamics, we used a DLM on

each of the three datasets, considering the daily number of

hospital patients (Hospitalized cases) and the number of prevalent

intensive care patients (ICU cases) as response variables and

overall NPIs intensity as exposure (predictor). Only time (variable

date) is considered as a confounding variable for the data before

vaccination. In addition to the time, the proportion of people who

received at least two doses (V2) was considered a confounding

variable for the data with vaccination and the entire data. The

analyses were conducted within the statistical environment R

version 4.0.3 (25) using the package dlnm (26).

Mathematically, a general model for time series data of

outcomes yt at time t can be written as:

g (µt) = α +

J
∑

j=1

sj

(

xtj;β j

)

+

K
∑

k=1

φkutk, (2)

where µt = E
(

yt
)

is the expected response for the day t, g is a

monotonic link function (here g = log), and yt (t = 1, . . . n) arises

from a time series which is assumed to have an exponential family

distribution (27). The function sj is a smoother of the relationships

between the variables xj and the linear predictor, expressed by

the parameter βj. Lastly, the uk variables include other predictors

with effects specified by the related coefficients φk. In this paper,

we considered a set of variables x, which is overall NPIs intensity

(NPIs) and two sets of variables u1 and u2, which are, respectively,

date (t) and the proportion of people who received at least two

doses (V2). We did a transformation to use nonlinear influences

of the variable date (t) and captured its effect changing over time.

This transformation is described in matrix notation as

f (t,α) = ztα

where zt is the tth row of the matrix Z. The transformation

on a variable date (time) consists of using ns(t, df ), where df

corresponds to the degree of freedom and ns, the natural spline

function. The parameters for the natural spline are implicitly

captured in the ns function of the R package splines. The matrix Z is

generated automatically, and the parameters for the natural spline

are implicitly captured by the function ns.

For the models considered, we assumed the influence of NPIs

and the proportion of people who received at least two doses

(V2) to be linear, with no basis transformation. We assumed

this since, from a preliminary investigation based on the Akaike

Information Criterion (AIC), the linear model outperforms the

non-linear model. The general notation for exposure-response

linear relationships could be

s(xt;β) =

L
∑

ℓ=0

βℓxt−ℓ (3)

where ℓ ∈ [0, L] is the lag duration, L (here L = 30) is the

lag period over which exposure to x is assumed to affect the count

change at time t, xt−ℓ is exposure intensity at time t−ℓ, and βℓ is the

contribution from a unit increase in exposure x occurring at time

t − ℓ in the past to a given count change measured at time t. For

a more detailed description of the general theory on time-lagged

models, we refer the reader to Gasparrini (26). The models are

specified as indicated in Table 1 for the three datasets, along with

the maximum number of degrees of freedom (df max) considered.

To implement delayed effects, the variables NPIs, V2, and date

(t) are used to predict the two response variables (Hospitalized

cases, ICU cases). The analysis is based on the models in Table 1,

fitted through a generalized linear model with the Quasi-Poisson

family, with natural splines of time with different degrees of

freedom (df = 1 to df max) to describe long-time trends. A

comparison was made between models with varying numbers of

degrees of freedom using modified Akaike information criterion

for models with overdispersed responses fitted through quasi-

likelihood (28), given by:

QAIC = −2L(θ̂)+ 2φ̂k, (4)

where k is the number of parameters, whereas L is the log-

likelihood of the fitted model with parameters θ̂ and φ̂, the

estimated overdispersion parameter. Minimizing this criterion has

led to the best model.

Sensitivity analyses were conducted to assess the impact of

choices regarding the number of degrees of freedom (df ) of

the models. Specifically, we examine changes in the estimated

overall effect associated with varying df for specifying the date or

seasonal trend.

Results

Results for simple DLMs, assuming a linear relationship

between response variables (number of hospital patients

and number of prevalent intensive care patients) and all

non-pharmaceutical interventions implemented in Germany

(data before vaccination), and the proportion of people who

received at least two doses (data with vaccination and entire

Germany data) with a maximum lag equal to 30 days are

summarized as follows. The Quasi AIC values for the number

of degrees of freedom, df = 1 to df max (Table 1), are shown

in Supplementary Figure S6. When used to compare different

modeling choices with varying numbers of degrees of freedom,

the Quasi AIC led to a parsimonious model, with 7 df for the

data before vaccination (Supplementary Figures S7A, D), 15

df for the data with vaccination (Supplementary Figures S7B,

E), 23 df for the whole German COVID-19 Hospitalized cases

(Supplementary Figure S7C), and 19 df for whole German

COVID-19 ICU cases (Supplementary Figure S7F) to describe the

overall effect of exposures-lag on response variables.
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TABLE 1 Summary of model features. df max is the maximum degree of freedom considered.

Dataset Model df max

Data before vaccination g (µt) = α + ns(t, df )+
∑L

ℓ=0 βℓNPIst−ℓ 10

Data with vaccination
g (µt) = α + ns(t, df )+

∑L
ℓ=0 β1ℓNPIst−ℓ +

∑L
ℓ=0 β2ℓV2t−ℓ

15

Entire data 25

An overall graph of the effect of NPIs on the number of hospital

patients (Hospitalized cases) and the number of prevalent intensive

care patients (ICU cases) is provided in Figure 1, showing heat

maps of the relative count change (RCC) of response variable

along overall NPIs intensity and lags. Overall, the figure indicates

that NPIs have an effect on the response variables before the

vaccination program (Figures 1A, D) than on the response variables

in the other two datasets (data with vaccination and the entire

Germany data). The effect of NPIs is somewhat more immediate

on Hospitalized cases before vaccination than on ICU cases. From

40% to 60% overall NPIs intensity, the mean relative count change

of hospitalization before vaccination decreased from 1 to 0.85. In

addition, a delay of 5 days was observed in the effect of overall NPIs

on the ICU cases before vaccination, with a relative count change

of 0.85 from 45% overall NPIs intensity.

Concerning data with vaccination and the entire German data,

the lag time effects of non-pharmaceutical interventions on the

number of hospital patients (Hospitalized cases) are immediate.

However, the relative count change in hospitalization (data with

vaccination) is high between lags 9 and 10 days from 55% to 60%

overall NPIs intensity in Germany (see Figure 1B). The maximum

effect of all non-pharmaceutical interventions implemented in

Germany on Hospitalized and ICU cases during the vaccination

programme is reached approximately at lag 25–30 days at 45–60%

overall NPIs intensity.

Figure 2 presents the results from the sensitivity analyses,

showing the overall effect of all NPIs implemented in Germany,

summing up the contributions for the 30 days of lag considered

in the analysis. There was an overall decrease in the number of

patients in hospital and intensive care units with increasing overall

NPIs intensity. This relative count change (RCC) was canceled out

for the data before vaccination and reached its minimum value

of around 0.3 for the data with vaccination and the entire data at

55–60% overall NPIs intensity.

Discussions

This study used a Distributed Lag Linear Model (DLM) to

evaluate the lag time effects of non-pharmaceutical interventions

on the number of COVID-19 hospital patients and the number of

prevalent COVID-19 intensive care patients. Based on the results

of this analysis, it is important to investigate both the lag and

magnitude of NPIs impact jointly (17).

An epidemiological discussion of DLM choice emphasized the

need to balance capturing detail and allow for interpretation (23).

Despite its conceptual simplicity, DLM specifications allow for a

wide range of models, including simple previously used models and

more complex variants. There is a challenge in choosing between

alternatives when there is an abundance of choices (number

of degrees of freedom, maximum lag). We used quasi-Akaike

information criteria to guide the selection of the number of degrees

of freedom (df ) of the variable time. Due to the lack of consensus

about what constitutes an optimal model, sensitivity analyses are

particularly important for assessing how key conclusions depend

on the model’s number of degrees of freedom.

The results of our study revealed that NPIs have a positive

effect on the number of hospital patients (Hospitalized cases) and

of prevalent intensive care patients (ICU cases) for all the datasets

(data before vaccination, data with vaccination or the entire

COVID-19 German data) since the overall non-pharmaceutical

intervention decrease the number of incident hospital patients

(Hospitalized cases) and the number of prevalent intensive care

patients (ICU cases). These results are similar to a previous study

which showed that some interventions are effective in reducing the

advent of the pandemic (29). We found that the first reducing effect

of NPIs on the number of prevalent intensive care patients before

vaccination cannot be expected before a time lag of 5 days. As 5 days

seems to be a short delay effect, it might be possible that already the

announcement of planned NPI introductions from policy makers

have an impact on the social behavior such as contact activities and

hence on the pandemic dynamics. However, our results also suggest

that the main effect is after a time lag of 10–15 days.

However, the results contrast with a previous study which

evaluated NPIs effects on the COVID-19 pandemic in Germany

and three other European countries using the Granger Causality

test (30). In addition, previous studies have focussed on the effect

of NPIs on infectious cases and death (11, 14), recovered cases

(11), daily growth rate (13), or time-varying reproduction number

(12, 15) contrary to this study. The contradiction could be due

to the fact that the previous study took into account the effect of

NPIs on the number of infections in the second wave, whereas we

evaluated the way how NPIs are associated with a decrease in the

number of patients in hospitals and intensive care units diagnosed

with PCR in several waves. We note that the number of infections

in the general population usually depends on several non-infection-

related factors, such as testing behavior and the day of the week and

is therefore often subject to reporting bias and delays. Thus, this

outcome is less specific and prone to higher statistical noise than the

number of patients in hospital and intensive care units. In addition

to the DLM analyses, the Granger causality test methodology has

been applied to our data set. They resulted in a similar conclusion,

even though all-time series have to be transformed by the second

differences to reach stationarity and decomposed with respect to

time trends and seasonality (data not shown).

The advantage of applying DLM is that it is flexible and

provides a comprehensive scheme for interpreting outcomes from

exposure-lag-response associations contrary to other statistical
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FIGURE 1

2-D plot of relative count change (RCC) along NPIs and lags on the number of hospital patients (Hospitalized cases) and the number of prevalent

intensive care patients (ICU cases). (A) RCC of Hospitalization (df = 7), (B) RCC of Hospitalization, df = 15, (C) RCC of Hospitalization, df = 23, (D)

RCC of ICU cases (df = 7), (E) RCC of ICU cases, df = 15, and (F) RCC of ICU cases, df = 19.

approaches (16). The main limitation of our analysis is that

our results cannot—strictly speaking—be interpreted as causal

effects; they are associations. To increase the ability to infer

causality, pragmatic study designs such as the SMART (Sequential,

Multiple-Assignment Randomized Trial), stepped wedge, and

preference designs could have been an option (31). An interesting
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FIGURE 2

Overall lag e�ect of NPIs intensity on the number of incident hospital patients (Hospitalized cases) and the number of prevalent intensive care

patients (ICU cases) with 95% confidence intervals. (A) Overall e�ect, 30 days lag, df = 7, (B) overall e�ect, 30 days lag, df = 15, (C) overall e�ect, 30

days lag, df = 23, (D) overall e�ect, 30 days lag, df = 7, (E) overall e�ect, 30 days lag, df = 15 and (F) overall e�ect, 30 days lag, df = 19.

design and analysis is also the trial emulation approach (32),

where cluster-randomized trials are mimicked. However, in

Germany, the introduction, timing, and intensity of NPIs

were quite homogeneously distributed across Germany (see

Supplementary material); hence, the above-mentioned designs

were hardly feasible in practice.

Obtaining “zero Hospitalized or ICU COVID-19 cases” may

not be achievable, but reducing the number to a level that can be

managed by the health system might be a feasible goal. This paper

considered a bundle or the overall intensity of NPIs implemented in

Germany; an isolation of specific NPIs is hardly feasible due to high

correlations. However, a society’s ability to fight a pandemic can be

influenced by various factors, including how well the public health

care systemworks, how the governmentmanages risk, transparency

of information flow, how it is driven by politics, corporate and

citizen compliance, etc. Consequently, further studies are needed

to investigate what determines whether or not the COVID-19

pandemic is controlled.

An application to the COVID-19 data from Germany indicates

that the Distributed Lag Model can be used to assess the
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effect of control measures dictated by health policies with

changes in the transmission dynamics of the studied disease.

In addition, using them can assist policymakers in planning

appropriate and timely strategies and allocating resources (20).

Our results can inform political decision makers regarding

how long NPIs need to be implemented to take effect on

controlling the COVID-19 dynamics in hospitals. However,

we focused only on this aspect. Beyond that, NPIs create

tremendous economic and social collateral damages of multifaceted

dimensions such as psychological long-term effects on mental

health of children due to long school closures and contact

distancing. Thus, political decision makers need to trade off

NPIs effects on hospitals against the collateral damages of NPIs

in the society.
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T, et al. Inferring the effectiveness of government interventions against COVID-19.
Science. (2021) 371:eabd9338. doi: 10.1126/science.abd9338

13. Nader IW, Zeilinger EL, Jomar D, Zauchner C. Onset of effects of non-
pharmaceutical interventions on COVID-19 infection rates in 176 countries. BMC
Public Health. (2021) 21:1472. doi: 10.1186/s12889-021-11530-0

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1087580
https://www.corona-datenplattform.de
https://www.corona-datenplattform.de
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1087580/full#supplementary-material
https://doi.org/10.3389/fmed.2021.701836
https://doi.org/10.3390/ijerph18115645
https://doi.org/10.2807/1560-7917.ES.2020.25.9.2000178
https://doi.org/10.15585/mmwr.mm6912e2
https://covid19.who.int/
https://doi.org/10.1016/S2213-2600(20)30161-2
https://doi.org/10.1016/j.jcrc.2020.04.012
https://doi.org/10.1093/infdis/jiaa123
https://doi.org/10.1016/S1473-3099(20)30314-5
https://doi.org/10.1371/journal.pone.0238559
https://doi.org/10.1101/2020.12.21.20248605
https://doi.org/10.1126/science.abd9338
https://doi.org/10.1186/s12889-021-11530-0
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Montcho et al. 10.3389/fpubh.2023.1087580

14. Sharma M, Mindermann S, Rogers-Smith C, Leech G, Snodin B, Ahuja J, et al.
Understanding the effectiveness of government interventions against the resurgence of
COVID-19 in Europe.Nat Commun. (2021) 12:5820. doi: 10.1038/s41467-021-26013-4

15. Ge Y, Zhang WB, Wu X, Ruktanonchai CW, Liu H, Wang J, et al.
Untangling the changing impact of non-pharmaceutical interventions and
vaccination on European COVID-19 trajectories. Nat Commun. (2022) 13:3106.
doi: 10.1038/s41467-022-30897-1

16. Gasparrini A. Modeling exposure–lag–response associations with distributed lag
non-linear models. Stat Med. (2014) 33:881–99. doi: 10.1002/sim.5963

17. Entezari A, Mayvaneh F. Applying the distributed lag non-linear model (DLNM)
in epidemiology: temperature and mortality in Mashhad. Iran J Public Health. (2019)
48:2108. doi: 10.18502/ijph.v48i11.3539

18. Jovanovski T, MuricM. The phenomenon of lag in application of the measures of
monetary policy. Econ. Res. (2011) 24:154–63. doi: 10.1080/1331677X.2011.11517463

19. Mansournia MA, Naimi AI, Greenland S. The implications of using lagged and
baseline exposure terms in longitudinal causal and regression models. Am J Epidemiol.
(2019) 188:753–9. doi: 10.1093/aje/kwy273

20. Bian Z, Zuo F, Gao J, Chen Y, Venkata SSCP, Bernardes SD, et al. Time
lag effects of COVID-19 policies on transportation systems: a comparative study
of New York City and Seattle. Transport Res A Policy Pract. (2021) 145:269–83.
doi: 10.1016/j.tra.2021.01.019

21. Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, et al.
Effects of cold weather onmortality: results from 15 European cities within the PHEWE
project. Am J Epidemiol. (2008) 168:1397–408. doi: 10.1093/aje/kwn266

22. Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and
heat waves affect mortality in the United States. Epidemiology. (2009) 20:205–13.
doi: 10.1097/EDE.0b013e318190ee08

23. Armstrong B. Models for the relationship between ambient
temperature and daily mortality. Epidemiology. (2006) 17:624–31.
doi: 10.1097/01.ede.0000239732.50999.8f

24. Schwartz J. The distributed lag between air pollution and daily deaths.
Epidemiology. (2000) 11:320–6. doi: 10.1097/00001648-200005000-00016

25. Team RDC. R: A Language and Environment lor Statistical Computing. Vienna:
R Foundation lor Statistical Computing (2020). Available online at: http://www.R-
project.org/ (accessed August 15, 2022).

26. Gasparrini A. Distributed lag linear and non-linear models in R: the package
dlnm. J Stat Softw. (2011) 43:1–20. doi: 10.18637/jss.v043.i08

27. Dobson AJ, Barnett AG. An Introduction to Generalized Linear Models. Boca
Raton, FL: Chapman and Hall/CRC (2018).

28. Peng RD, Dominici F, Louis TA. Model choice in time series studies of
air pollution and mortality. J Roy Stat Soc A Stat Soc. (2006) 169:179–203.
doi: 10.1111/j.1467-985X.2006.00410.x

29. Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S, Holbrook-Smith D, et al.
Probing strigolactone receptors in Striga hermonthica with fluorescence. Science.
(2015) 349:864–8. doi: 10.1126/science.aab383

30. Gianino MM, Nurchis MC, Politano G, Rousset S, Damiani G. Evaluation of the
strategies to control COVID-19 pandemic in four European countries. Front Public
Health. (2021) 9:700811. doi: 10.3389/fpubh.2021.700811

31. Digitale JC, Stojanovski K, McCulloch CE, Handley MA. Study designs to assess
real-world interventions to prevent COVID-19. Front Public Health. (2021) 9:657976.
doi: 10.3389/fpubh.2021.657976

32. Ben-Michael E, Feller A, Stuart EA. A trial emulation approach for policy
evaluations with group-level longitudinal data. Epidemiology. (2021) 32:533–40.
doi: 10.1097/EDE.0000000000001369

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1087580
https://doi.org/10.1038/s41467-021-26013-4
https://doi.org/10.1038/s41467-022-30897-1
https://doi.org/10.1002/sim.5963
https://doi.org/10.18502/ijph.v48i11.3539
https://doi.org/10.1080/1331677X.2011.11517463
https://doi.org/10.1093/aje/kwy273
https://doi.org/10.1016/j.tra.2021.01.019
https://doi.org/10.1093/aje/kwn266
https://doi.org/10.1097/EDE.0b013e318190ee08
https://doi.org/10.1097/01.ede.0000239732.50999.8f
https://doi.org/10.1097/00001648-200005000-00016
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.18637/jss.v043.i08
https://doi.org/10.1111/j.1467-985X.2006.00410.x
https://doi.org/10.1126/science.aab383
https://doi.org/10.3389/fpubh.2021.700811
https://doi.org/10.3389/fpubh.2021.657976
https://doi.org/10.1097/EDE.0000000000001369
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Intensity and lag-time of non-pharmaceutical interventions on COVID-19 dynamics in German hospitals
	Introduction
	Methods
	Data description
	Distributed lag generalized linear model based regression

	Results
	Discussions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


