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Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent

gastrointestinal distress, characterized by fecal shedding of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen

presence in the gut. Using a meta-analysis, the present review addressed

gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and

diarrhea. Despite limited data on the gut–lung axis, viral transmission to the gut

and its influence on gut mucosa and microbial community were found to be

associated by means of various biochemical mechanisms. Notably, the prolonged

presence of viral antigens and disrupted mucosal immunity may increase gut

microbial and inflammatory risks, leading to acute pathological outcomes or

post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial

diversity and a higher relative abundance of opportunistic pathogens in their

gut microbiota than healthy controls. Considering the dysbiotic changes during

infection, remodeling or supplementation with beneficial microbial communities

may counteract adverse outcomes in the gut and other organs in patients

with COVID-19. Moreover, nutritional status, such as vitamin D deficiency,

has been associated with disease severity in patients with COVID-19 via the

regulation of the gut microbial community and host immunity. The nutritional

and microbiological interventions improve the gut exposome including the host

immunity, gut microbiota, and nutritional status, contributing to defense against

acute or post-acute COVID-19 in the gut–lung axis.
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1. Introduction

The coronavirus disease-19 (COVID-19) first occurred in 2019 and is now a

worldwide pandemic with more than 15 million deaths (1). Typically, the presence

of gastrointestinal signs or symptoms during COVID-19 has been associated with

approximately 35–50% of COVID-19 cases. In a meta-analysis examining 4,243

patients, the pooled prevalence of gastrointestinal symptoms was 17.6% (2). Frequently

observed gastrointestinal symptoms include anorexia, diarrhea, vomiting, and

abdominal pain (3). With increasing COVID-19 severity, gastrointestinal symptoms

were more apparent (4). The pathogenesis of COVID-19, including gastrointestinal

symptoms, remains elusive, despite tissue-specific immunofluorescence detection of

SARS-CoV-2 binding to a specific receptor such as angiotensin-converting enzyme

2 (ACE2), predominantly expressed in the gastrointestinal tract (5, 6). Numerous

cohort studies have reported that patients with COVID-19 and gastrointestinal

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1098774
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1098774&domain=pdf&date_stamp=2023-04-17
mailto:moon@pnu.edu
https://doi.org/10.3389/fpubh.2023.1098774
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1098774/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Moon 10.3389/fpubh.2023.1098774

symptoms might exhibit an increased risk for worse clinical

outcomes (7, 8). Disruption of the intestinal mucosal immune

barrier can result in gut commensal microbes and pathogens

entering local inner tissues and the vascular system, leading to

septicemia and acute respiratory distress syndrome (ARDS) (9).

Immune cells induced by various antigens can move between the

gut and lungs via the lymphatic system or blood vessels, thereby

regulating the immune response of target organs. Moreover,

humoral factors, including cytokines and hormones, contribute to

inter-organ communication (10).

The “gut–lung axis” is defined as the cross-talk between

intestinal and pulmonary tissues mediated by microbes, immune

cells, immune mediators, and other endogenous humoral

regulators (11). SARS-CoV-2-induced distress in the gut–lung

axis can be elucidated by several potent mechanisms: 1. Viruses

directly cause gastrointestinal distress, resulting in symptoms, such

as diarrhea, abdominal pain, and vomiting. 2. Viral infection may

excessively trigger tissue injury factors, including proinflammatory

cytokines, during a cytokine storm, increasing the risk of sepsis,

ARDS, and multiorgan failure. 3. Viral infection may dysregulate

the intestinal microbiota, increasing the risk of immunological

disorders in the gut–lung axis and the systemic impact. Considering

the gut–lung axis, we compared the gastrointestinal exposure and

underlying pathogenesis mechanisms, including gut barrier

distress, mucosal immune dysregulation, and disruption of

the microbial community in the gut. Accordingly, the present

review addressed the potential role of the gut–lung axis in the

pathogenesis of COVID-19 and microbiota alteration in the

immune response to establish effective dietary interventions.

Inter-organ communication could provide new insights into

gut-based interventions against SARS-CoV-2 infection.

2. Clinical symptom-based association
between viral infection and
gastrointestinal adverse outcomes

First, we evaluated the clinical evidence using the literature-

based symptoms of gut distress in patients with COVID-19. The

literature search for this association was performed according

to the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guideline. To address the clinical

association between SARS-CoV-2 infection and gut distress,

we performed the meta-analysis by collecting studies reporting

the gastrointestinal symptoms or clinician-observed features in

patients using laboratory-confirmed methods. To obtain an

evidence-based minimum set of items according to the PRSIMA

guideline, the gastrointestinal symptom-based case-control studies

were selected from PubMed and LitCovid (n= 244), ScienceDirect

(n = 759), and Google (n = 140). After de-duplication, all unique

citations were independently screened by reviewers. In particular,

articles that failed to meet established inclusion criteria were

excluded by screening titles and abstracts, scrutinizing, and the

consensus decision-making. We included studies with adequately

available data on both control and case groups, but excluding

case reports and studies of patients with symptoms other than

gastrointestinal symptoms or underlying diseases such as cancer,

autoimmune disease, and metabolic diseases. Finally, eight articles

were evaluated in the meta-analysis (Figure 1). The selected articles

covered events in 14,188 patients, comprising 2,800 COVID-19-

positive patients and 11,388 control patients from five countries,

including the USA, Portugal, China, Italy, and Australia. For

efficient data extraction, we combined symptoms of “abdominal

pain” and “abdominal distension” into the more prevalent and

widely reported symptoms of “abdominal discomfort”. Where

studies reported one symptom “or” another (e.g., nausea or

vomiting), we extracted the prevalence of both. We extracted

grouped symptoms (e.g., any gastrointestinal symptoms) without

further description or definition, rather than using the sum of all

gastrointestinal symptom data to prevent data overlapping between

symptoms. The pooled prevalence of each symptom was estimated

using the Metaprop package and the variance was normalized

using a random-effects model such as Freeman-Tukey arcsine

transformation of the prevalence. Statistical heterogeneity was

assessed by I2, the proportion of total variation due to inter-

study heterogeneity.

2.1. Association of gastrointestinal
symptoms with COVID-19

In study ID 1, the pooled odds ratio (OR) was 1.91 (95%

confidence interval [Cl]: 1.17–3.12), with a weight of 15.18% (12).

In study ID 2, the pooled OR was 2.34 (95% Cl: 1.94–5.23), with

a weight of 13.64% (13). In study ID 3, the pooled OR was 1.28

(95% Cl: 0.30–5.48), with a weight of 9.30% (14). In study ID 4, the

pooled OR was 1.56 (95% Cl: 1.40–1.73) with a weight of 16.10%

(15). In study ID 5, the pooled OR was 1.5 (95% Cl: 0.95–2.56),

with a weight of 15.14% (16). In study ID 7, the pooled OR was

2.59 (95% Cl: 1.55–4.32), with a weight of 15.08% (17). In study

ID 8, the pooled OR was 1.49 (95% Cl: 1.02–2.17), with a weight

of 15.56% (18). Collectively, the pooled OR of 1.76 (95% CI: 1.61–

1.93) indicated a significant association between COVID-19 and GI

symptoms, while the random-effect meta-analysis revealed a large

heterogeneity among studies (I2 = 98.1%; Figure 1A).

2.2. Association of diarrhea with COVID-19

In study ID 1, the pooled OR was 5.03 (95% Cl: 1.44–17.53),

with a weight of 11.16% (12). Study ID 2 was not included (13).

In study ID 3, the pooled OR was 1.28 (95% Cl: 0.30–5.48), with

a weight of 9.65% (14). In study ID 4, the pooled OR was 1.67

(95% Cl: 1.45–1.93) with a weight of 16.66% (15). In study ID 5, the

pooled OR was 0.96 (95% Cl: 0.54–1.72), with a weight of 15.33%

(16). In study ID 6, the pooled OR was 2.69 (95% Cl: 1.59–4.56),

with a weight of 15.58% (19). In study ID 7, the pooled OR was 2.37

(95% Cl: 1.47–3.82), with a weight of 15.78% (17). In study ID 8, the

pooled OR was 1.42 (95% Cl: 0.89–2.24), with a weight of 15.85%

(18). Overall, the pooled OR of 1.88 (95% CI: 1.68–2.11) indicated a

significant association between COVID-19 and diarrhea, while the

random-effect meta-analysis revealed a large heterogeneity among

studies (I2 = 96.2%; Figure 1B).
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FIGURE 1

Forest plot from random e�ects analysis: OR for presenting any gastrointestinal symptom (A), diarrhea (B), nausea and vomiting [N/V, (C)], abdominal

discomfort (D) in the COVID-19 group vs. the control group. CI, confidence interval; COVID-19, coronavirus disease 2019; OR, odds ratio.

2.3. Association of nausea and vomiting
with COVID-19

In study ID 1, the pooled OR was 1.53 (95% Cl: 0.27–8.50), with

a weight of 9.02% (12). Study IDs 2 and 3 were not included in this

analysis (13, 14). In study ID 4, the pooled OR was 1.36 (95% Cl:

1.16–1.61), with a weight of 19.27% (15). In study ID 5, the pooled

OR was 0.64 (95% Cl: 0.32–1.28), with a weight of 17.09% (16).

In study ID 6, the pooled OR was 2.93 (95% Cl: 1.65–5.23), with

a weight of 17.80% (19). In study ID 7, the pooled OR was 1.26

(95% Cl: 0.78–2.01), with a weight of 18.31% (17). In study ID 8, the

pooled OR was 1.22 (95% Cl: 0.80–1.87), with a weight of 18.51%

(18). Overall, the pooled OR of 1.59 (95% CI: 1.40–1.87) indicated a

significant association between COVID-19 and diarrhea, while the

random-effect meta-analysis revealed a large heterogeneity among

studies (I2 = 97.9%; Figure 1C).

2.4. Association of abdominal discomfort
with COVID-19

In study ID 1, the pooled OR was 2.30 (95% Cl: 0.24–22.38),

with a weight of 8.60% (12). In study ID 2, the pooled OR was

2.34 (95% Cl: 1.04–5.23) with a weight of 27.98% (13). Study ID

3 was not included (14). In study ID 4, the pooled OR was 1.17

(95% Cl: 0.96–1.42) with a weight of 32.80% (15). Study IDs 5 and

6 were not included in this analysis (16, 19). In study ID 7, the

pooled OR was 1.24 (95% Cl: 0.84–2.52), with a weight of 30.62%

(17). Study ID 8 was absent (18). Overall, the pooled OR of 1.24

(95% CI: 1.04–1.48) indicated a significant association between

COVID-19 and abdominal discomfort, while the random-effect

meta-analysis revealed a large heterogeneity among studies (I2 =

96.0%; Figure 1D).

Owing to the high levels of heterogeneity (96.0–98.1%)

among studies, additional subgroup analysis, meta-regression, or

sensitivity analysis could clarify the underlying causes behind

high heterogeneity between studies. The Newcastle-Ottawa Scale

may afford an alternate tool for assessing the quality of case-

control studies in meta-analyses (20). Taken all symptoms

and prevalence, all pooled OR (95% CI: 1.04-2.24) indicated

notable positive associations between COVID-19 and gut distress-

associated symptoms despite the heterogeneity between studies.

Based on the literature-based assessment of the clinical outcomes,

we further evaluated the pathological processes and mechanisms of

the lung-gut communications in patients with COVID-19.

3. Viral entry and translocation into
the gut–lung axis

3.1. Airway entry and reverse translocation
to gut

Coronaviruses are enveloped single-stranded RNA viruses

characterized by club-like spikes projecting from their surfaces,

with a remarkably large RNA genome. The SARS-CoV-2 genome

encodes four major structural proteins: spike (S), nucleocapsid

(N), membrane (M), and envelope (E), each of which is essential

for composing the viral particle (21). Phylogenetic analysis of

the complete genome sequence of SARS-CoV-2 revealed that the

new virus shares 89.1% nucleotide sequence identity with SARS-

like coronaviruses detected in bats (22). ACE2, the functional
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receptor of SARS-CoV-1 and SARS-CoV-2, plays a crucial role in

the pathogenesis of COVID-19, as it allows viral entry into human

cells (23). Similar to SARS-CoV-1, the viral S protein of SARS-CoV-

2 binds to ACE2 as a cellular receptor. Importantly, SARS-CoV-

2 is more pathogenic, partly owing to its 10-to-20-fold increased

binding affinity for ACE2 (24). This binding leads to viral host cell

entry, in parallel with S protein priming by the host cell protease,

transmembrane serine protease 2 (TMPRSS2). The S glycoprotein

contains two functional domains: an S1 receptor-binding domain

(RBD) and a second S2 domain that mediates the fusion of viral and

host cell membranes (25). The SARS-CoV-2 S protein initially binds

to the ACE2 receptor on the host cell through the S1 RBD. The

FIGURE 2

Forest plot from random e�ects analysis: Vitamin D status (Low

serum 25OHD, daily dietary intake) and COVID-19 infection rate.

ORs of having vitamin D deficiency in the COVID-19 group vs. the

control group. 25OHD, 25-hydroxyvitamin D; COVID-19,

coronavirus disease 2019; ORs, odds ratio.

S1 domain is shed from the viral surface, allowing the S2 domain

to fuse with the host cell membrane. This process depends on the

activation of the S protein by cleavage at two sites (S1/S2 and S2’)

via the proteases furin and TMPRSS2. Furin-induced cleavage leads

to conformational changes in the viral S protein, exposing the RBD

and S2 domains. TMPRSS2-mediated cleavage of the SARS-CoV-

2 S protein facilitates the fusion of the viral capsid with the host cell

to permit viral entry (26). Exposure of the RBD in the S1 protein

subunit results in an unstable subunit conformation; thus, during

binding, this subunit undergoes conformational rearrangement

between two states, known as the up- and down-conformations.

The down-state transiently hides the RBD, whereas the up-state

exposes the RBD but temporarily destabilizes the protein subunit

(27–29). Within the trimeric S protein, only one of the three

RBD is present in an accessible conformation for binding with the

ACE2 receptor.

ACE2 is detected in the nasal and bronchial epithelial cells.

In addition to the upper respiratory tract, ACE2 is abundantly

expressed on the surface of alveolar type II pneumocytes, which

co-express several other genes involved in the regulation of

viral reproduction and transmission, including TMPRSS2. Type

II pneumocytes are well-known to produce surfactants, maintain

their self-renewal ability, and exert immunoregulatory functions.

Importantly, these cells share the same basement membrane as the

closely juxtaposed capillary endothelial cells, which also express

high ACE2 levels. Therefore, type II pneumocytes, along with

the neighboring capillary endothelium, could be primary sites for

SARS-CoV-2 entry, resulting in damage to the alveolocapillary

membrane with reactive hyperplasia of type II pneumocytes.

As type II pneumocytes are known targets of viral entry and

replication, this may lead to a vicious cycle of persistent

alveolar wall destruction and repair, eventually culminating in

FIGURE 3

Postulated scheme of vitamin D-induced intervention against SARS-CoV-2 infection in the gut mucosa via modulation of microbiota and subsequent

immune regulation.
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progressive, severe diffuse alveolar damage. Upregulated ACE2

expression has been documented in the airways of patients

with chronic respiratory disease who are smokers, which,

together with disturbed ciliary movement and abnormal mucus

viscosity, may increase disease vulnerability (30). However, clinical

evidence indicates that smoking does not necessarily lead to

increased vulnerability (31). Recently, a healthy human donor-

based evaluation suggested that the virus could exploit goblet and

ciliated cells in the nasal epithelia as entry portals, a plausible

primary infection site (32). Considering the variant-mediated

adverse outcomes, Omicron is known to cause relatively mild

symptoms compared with other variants of concern. The Omicron

variant can enter epithelial cells through different binding proteins

such as cathepsins and display lower replication competence than

other variants (33), potently contributing to attenuated severity of

the clinical outcomes.

Airway particles, including viral particles, are entrapped in the

airway mucosa and cleared via mucociliary transport. However,

the clearance system can be damaged following SARS-CoV-2

infection via dedifferentiation of multiciliated cells and subsequent

attenuation of cilial movement, as shown in a reconstructed

human bronchial epithelium model (34). As guardians of the

airway, alveolar macrophages can play crucial roles in removal

via phagocytosis or translocation from the peripheral lung to the

larynx, with subsequent passage through the gut and fecal excretion

(35). In addition to gastrointestinal translocation from the airway,

the virus can enter the water and food supply systems directly,

ultimately reaching the gastrointestinal tract in humans (36, 37).

Viral particles that successfully reach the alveolar vasculature or

translocate into the gut can systematically affect extra-airway tissues

including the gut if they escape the immune system in circulation.

3.2. Vascular translocation and circulation
of SARS-CoV-2

ACE2 receptors are also expressed in endothelial cells. It

remains unknown whether vascular derangements in COVID-19

can be attributed to endothelial cell involvement mediated by

the virus. Intriguingly, SARS-CoV-2 can directly infect engineered

human blood vessel organoids in vitro (38). In this in vitro

experiment, to verify the possibility of COVID-19 transmission

through the endothelial tissue, the authors used human capillary

organoids from induced pluripotent stem cells infected with SARS-

CoV-2 (39). Notably, human recombinant secretory ACE2 could

inhibit infection in organoids mimicking human capillaries with

CD31 and PDGFR.

An initial study has suggested that the SARS-CoV-2 S protein

can bind to CD147 on the cell surface and subsequently enter

blood cells, such as platelets and megakaryocytes. Megakaryocytes

and platelets actively take up SARS-CoV-2 virions, possibly

through an ACE-2-independent mechanism. Based on in vitro

antiviral tests, meplazumab, an anti-CD147 humanized antibody

that blocks the interaction between the S protein and the CD147

cell surface receptor, could significantly inhibit viral cell entry

into circulation. CD147 is a SARS-CoV-2 surface entry receptor,

leading to inflammation and thrombosis, which differs from the

common cold coronavirus. Moreover, given that elevated blood

sugar levels could upregulate CD147 expression, diabetes could be a

potential risk factor for poor prognosis in patients with COVID-19

(40). Vasculature-translocated surviving viral particles are available

for the secondary tissue infection and subsequent inflammatory

outcomes in the gut.

3.3. Gut entry via fecal–oral transmission

Owing to intestinal viral RNA shedding, there have been

growing concerns that SARS-CoV-2 could be transmitted via the

fecal–oral route, given that viral RNA has been detected in patient

stool samples (41). It has been suggested that the presence of

gastrointestinal symptoms is a likely indicator of viral RNA in

the stool (2, 42). In contrast, studies have failed to establish a

statistically significant correlation between viral RNA and increased

gastrointestinal symptom intensity (41, 43). However, it has been

suggested that stool samples may be positive for viral RNA even

when the virus is undetectable in respiratory samples (2, 44). It

is well-established that viruses can enter the gut, but most cannot

survive in the digestive tract, owing to the low pH of gastric

fluid and the harsh intestinal environment comprising bile and

digestive enzymes. Therefore, no infectious virus was recovered

from the fecal samples of patients with COVID-19. Although

stool is unlikely to contain infectious viruses (45), confirmative

assessments are warranted to comprehensively establish the risk of

fecal–oral transmission during infection and its significance in the

food system (46).

Theoretically, SARS-CoV-2 directly invades the gastrointestinal

epithelium through ACE2 receptor. ACE2 is highly expressed

in the esophageal upper and stratified epithelium, as well as in

absorptive enterocytes derived from both the ileum and colon

(5). In approximately 50% of COVID-19 cases, viral RNA was

detected in fecal samples, even in the absence of gastrointestinal

tract manifestations and after clearance of respiratory infection,

thereby suggesting an asymptomatic SARS-CoV-2 infection in the

gut and the possibility of fecal–oral transmission (47). However,

considering the limited data available, a fecal–oral transmission

route clarifying enteric symptoms in patients with COVID-19 is

yet to be proposed. Moreover, it is also challenging to rationalize

that SARS-CoV-2, as an enteric virus, passes through the stomach

and reaches the intestine to infect the intestinal cells. For successful

infection via fecal–oral transmission, the virus must overcome

biological barriers, such as stomach acid and intestinal bile salts

after ingestion. Coronavirus can undergo complete inactivation at

pH 2.26 and 4.38 at 37 ◦C (48). Although the virus can survive

under wet or dry conditions for up to 3 days, it was found to survive

at pH 2.2 for up to 1 h only at high concentrations (49). Bile salts are

one of the various mechanisms that mediate host defense, exerting

detergent action against the lipid layer integrity of infectious agents

(50). SARS-CoV-2 contains an outer lipid-containing membrane

and is an enveloped virus (23). Bile acid is known to be effective

against viruses with lipoproteins, but envelope-deficient variants

are resistant to its detergent action. Considering all the evidence, in

addition to the airway viral infection, the oral ingestion of surviving

viral particles contributes to the gastrointestinal distress.
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4. Impact of SARS-CoV-2 on mucosal
defense

4.1. SARS-CoV-2-mediated gut barrier
distress

The gut is divided into several anatomical barriers, each of

which plays a vital role in serving as a barrier against foreign

materials, such as pathogens and other noxious stimuli. The mucus

layer is the first line of defense, composed of mucus, antibodies, and

other antimicrobial factors (51). It functions as a physical barrier

protecting epithelial cells frommicrobes (bacteria, fungi, and virus)

and large molecules, such as food particles (52). The second

layer, beneath the mucus layer, comprises highly glycosylated

proteins, glycocalyx, lining the epithelial cell surface. These cell

membrane-bound glycoproteins, such as the mucus layer, act as

a physical barrier that prevents pathogenic microorganisms from

communicating with the gut epithelial cellular monolayer and

invading the submucosal tissues (53). The epithelial cell barrier

is another defense mechanism against gut microbes and luminal

antigens via modulation of the epithelial junctional molecules or

transmitting danger signals to the underlying mucosal immune

system while facilitating the transport of nutrients and water (54).

Epithelial cells have pattern recognition receptors (PRRs), such as

Toll-like receptors (TLRs), which allow the recognition ofmicrobial

antigens. Enterocytes (or intestinal epithelial cells) are the most

common cell type in the mucosal epithelial layer, accounting for

90% of cells (55). Enterocytes are well-known absorption sites

and important components of the gut barrier. Gut epithelial cells

can also interact with SARS-CoV-2 through the highly expressed

ACE2 (24, 56, 57). SARS-CoV-2 has been shown to infect intestinal

organoids (58). Furthermore, TMPRSS2, which is also highly

expressed in enterocytes in the ileum and colon (57, 59), reportedly

participates in priming the SARS-CoV-2 S protein and facilitates

viral entry into cells (24). Accordingly, ACE2 and TMPRSS2

are promising targets for intervention against SARS-CoV-2 (60)

despite limited evidence on the efficacy of blockers targeting the two

proteins (61). Intestinal viral infections may damage the epithelial

barrier. For example, Middle East respiratory syndrome-related

coronavirus was shown to disrupt the gut epithelial barrier in

an animal model (62). Mechanistically, SARS-CoV infection can

lead to the redistribution of the PALS1 protein, a tight junction

protein, and subsequent disruption of epithelial integrity in the gut

and lungs. Moreover, SARS-CoV-2 RNA and viral nucleocapsid

protein were persistent in mucosal tissues and cells, including the

gut epithelium and CD8+ T cells of patients with inflammatory

bowel disease nearly 7 months after SARS-CoV-2 infection (63).

Consistent with the airway infection, the Omicron variants showed

reduced levels of cytotoxicity- and damage-associated markers in

infected gut organoids, compared with the wild type virus and delta

variants (33). In contrast, delta variant-infected mini-gut exhibited

active clustering of infected gut cells and relatively high levels of the

replication efficacy. Since active invasion by the Omicron variant

was extremely scarce and lumen-restricted in the gut model, the

variant is not assumed to affect the submucosa parts. Therefore,

different strains may have different relative tissue tropisms and

invasiveness, potently leading to strain-specific clearance rates and

clinical symptoms in the gut.

Fecal SARS-CoV-2 RNA has been detected in 50% of patients

experiencing gastrointestinal symptoms, such as abdominal pain,

nausea, and vomiting, within the first week after diagnosis (64). In

particular, 12.7% (8.5–18.4%) of subjects displayed persistent fecal

shedding of SARS-CoV-2 RNA even after 4 months of diagnosis,

without ongoing shedding of oropharyngeal SARS-CoV-2 RNA.

Although the above-mentioned study failed to link mucosal viral

antigens with the severity of acute COVID-19, it is necessary

to address the roles of mucosa-persistent antigens in mucosal

defense, recurrence, and disease progression as post-acute sequelae

of COVID-19 (PASC). After acute COVID-19, most patients with

inflammatory bowel disease presented persistent presence of SARS-

CoV-2 antigens in their gut mucosa, irrespective of inflammation

levels, potentially contributing to PASC symptoms (63). Despite the

lack of mechanistic evidence, it has been proposed that SARS-CoV-

2 may increase intestinal permeability, potentially by damaging

enterocytes and the epithelial layer (65), necessitating further

molecular investigation.

4.2. Mucosal and systemic innate immunity
to SARS-CoV-2

Coronaviruses are known to cause airway damage and lead

to pneumonia with imbalanced and hyper-immune responses

(22). Increased proinflammatory cytokines and lymphocytopenia

have been associated with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection (66). An unbalanced

immune response and excessive inflammatory cytokine secretion,

known as a “cytokine storm,” have been associated with disease

severity and worse prognosis in patients with COVID-19, including

multiorgan failure (67, 68). Of 197 patients, approximately

34.5% presented neutrophilia (69), which is known to trigger

ARDS and sepsis growth in patients with COVID-19. Secondary

hemophagocytic lymphohistiocytosis (SHLH), an underrecognized

hyperinflammatory syndrome, could also be a significant factor

in the development of COVID-19, given that SHLH can

cause hypercytokinemia-related fatal and fulminant multiorgan

failure (70).

SARS-CoV-2 can spread via respiratory droplets, contact,

and the fecal–oral route. Viral replication commences in the

nasopharynx and upper respiratory tract and continues through the

lower respiratory tract and gastrointestinal mucosa (5). Monocytes,

macrophages, and dendritic cells (DCs) can serve as primary

hallmarks of SARS-CoV-2 infection, given that they link innate

and adaptive immunity and play an important role in the antiviral

response (71–73). Although the precise correlation between DCs

and SARS-CoV-2 in the mucosa has been poorly explored, SARS-

CoV-2 accelerates the activation of PRR-linked signaling, including

NLRP3 inflammasome or occasionally leads to the cytokine

release syndrome (CRS) via robust production of proinflammatory

mediators, such as interleukin (IL)-6, granulocyte-macrophage

colony-stimulating factor, IL-1β, and tumor necrosis factor (TNF)-

α during the CRS (74). Therapeutic agents, such as anti-IL-6R,

which can target macrophage-related activity, could be crucial

interventions against the cytokine storm that occurs during severe

SARS-CoV-2 infection (33). In addition to the phagocytic system,

natural killer (NK) cells have been associated with a severely
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poor prognosis of SARS-CoV-2 infection in the presence of

functional exhaustion. Among the various cytokines produced

during early severe COVID-19, interferon (IFN)-α expression

markedly correlated with the severity of COVID-19 (75, 76).

According to single-cell transcriptomic analysis based on two

COVID-19 cohorts, IFN-α directly suppressed IFN-γ production

by NK cells (76). Moreover, exhausted NK cells reportedly express

CD94/NK group 2 member A(NKG2A), which functions as an

inhibitory receptor that reduces the production of CD107a, IFN-

γ, IL-2, granzyme B, and TNF-α. Therefore, improving NK cell-

mediated defense might be a promising defense mechanism during

early severe cases of SARS-CoV-2 infection (77, 78). Active NK

cells recognize viral infection and transmit death signals into the

infected cells in the mucosa. Moreover, NK cells may facilitate

mucosal phagocyte-induced viral clearance via production of anti-

virus cytokines including type I interferons. However, exhausted

NK cells would fail to defend against SARS-CoV-2 in the mucosa.

4.3. Acquired immunity and mucosal
vaccination against SARS-CoV-2

In addition to direct infective actions of SARS-CoV-2,

respiratory virus-responsive mucosal and systemic acquired

immune responses would affect the disease progression in the

extra-airway tissues. Cytotoxic CD8+ T cells directly neutralize

infected cells or CD4+ T cells initiate a humoral response by

cooperating with B cells (79, 80). During severe SARS-CoV-2

infection, lymphopenia is accompanied by a marked reduction

in CD4+ T and CD8+ T cells, along with elevated neutrophil

counts (81–83). An increased neutrophil-to-lymphocyte ratio and

elevated levels of IL-6 can indicate poor prognosis and disease

severity. Increased serum levels of proinflammatory cytokines, such

as IL-6, IL-7, IL-1β, IL-2, and IL-10, can induce a cytokine storm

and cause serious damage, more destructive than the coronavirus

itself. Elevated proinflammatory cytokine levels have been linked

to viral sepsis, respiratory failure, shock, and even death if severe

(84). Therefore, addressing lymphopenia and cytokine storm could

prevent severe complications associated with coronavirus.

Following the appearance of COVID-19 symptoms, the

antibody response increases after 4–8 days, and IgM becomes

predominant (85), followed by 10–18 days of persistent IgA and

IgG production. IgA is crucial in mucosal defense by neutralizing

SARS-CoV-2 and weakening the inflammatory risk (86). The

antigen can attach to intestinal epithelial cells or microfold (M)

cells, followed by transport into lymph nodes and IgA-secreting

B cell activation in the lymphoid tissue (87, 88). Considering

SARS-CoV-2, the antigen amount and quality critically impact

neutralization. Antibodies should be specific to the S protein

and must be detected in the serum for 2–3 weeks post-infection

(89, 90). Human convalescent serum transfer has been proposed

as a potential strategy to prevent and treat severe cases of

COVID-19, with its therapeutic value documented in several

clinical trials (84, 91–94). An important challenge in overcoming

COVID-19 is viral elimination from the mucosa through antibody-

associated shedding. Given that infectious agents trigger mucosal

immunity (95), mucosal vaccination could be a promising strategy

to evoke IgA antibodies at both the mucosal surface and the

systemic immune system (96). Importantly, mucosal vaccination

may facilitate IgA-virus complex formation in the mucosa of

respiratory and intestinal tissues (97). As currentmodes of COVID-

19 vaccination are predominantly based on systemic antigen

exposure, efficient strategies are needed to develop promising

mucosal vaccination against continuously evolving SARS-CoV-2.

5. Involvement of gut microbial
community in SARS-CoV-2
pathogenesis

Following initial lung infection, SARS-CoV-2 invades the

gut mucosal immune barrier, directly impacting the intestinal

physiology. Moreover, intestinal tissue damage may facilitate

gut dysbiosis. It has been reported that commensal microbiota

in the lung and gut can counterbalance viral infection by

modulating immune responses in a homeostatic manner (98,

99). For instance, viral infection-induced changes in pulmonary

tissues and other microenvironments may alter the structure and

function of the gut microbiota (98). In a mouse model, seasonal

influenza infection of the respiratory tract increased the number

of Enterobacteria in the gut microbiota and decreased the number

of Lactobacillus and Lactococcus (99). Furthermore, intestinal

dysbiosis has been associated with increased mortality following

respiratory infections, probably due to deregulated airway immune

responses. Inflammatory dysbiosis of the gut microbiota and

epithelial damage reportedly enhance ACE2 levels, increasing the

risk of SARS-CoV-2 infection in the gastrointestinal tract, as well as

dissemination to other sites via circulation (5, 100).

5.1. Microbiota-linked prediction of
adverse outcomes

Various studies have revealed how SARS-CoV-2 infection can

alter gut microbiota and its association with adverse outcomes in

humans. In particular, viral infection-altered gut communities were

shown to be associated with inflammatory status in patients with

COVID-19. Serum-based proinflammatory biomarkers positively

correlated with increased levels of some consortia, including

Ruminococcus gnavus, during viral infection, whereas Clostridia

was negatively correlated (101). Moreover, disease severity could

be correlated with the abundance of Coprobacillus, Clostridium

ramosum, and Clostridium hathewayi (102). It has been reported

that approximately 50% of patients with COVID-19 display stool

positivity for SARS-CoV-2 even in the absence of gastrointestinal

manifestations and after recovery of respiratory SARS-CoV-2

infection (47), indicating the presence of persistent gut infection.

Based on viral infectivity prediction using metagenomic analysis

of the fecal SARS-CoV-2 genome, patients with COVID-19

demonstrate an increased functional capacity for nucleotide and

amino acid biosynthesis and carbohydrate metabolism (47). An

in-depth assessment demonstrated an evident correlation between

viral infection signatures and the enrichment of gut pathogens,

including Collinsella aerofaciens, Collinsella tanakaei, Streptococcus
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infantis, and Morganella morganii, even in the absence of

gastrointestinal manifestations (47). Although the Omicron variant

is known to cause relatively mild symptoms with marginal

invasiveness in humans and gut models, all SARS-CoV-2 variants

of concerns remarkably disrupted the mouse gut microbiota

(103). Surprisingly, the Omicron variant infection led to long-

lasting instability in the gut microbiota and a notable depletion

in Akkermansia muciniphila, even in the absence of severe lung

pathology. In addition to host markers or disease severity, the

fecal viral footprint was notably associated with dysbiosis-linked

alterations in gut bacterial communities, paving the way for novel

diagnostic tools for potent relapse or chronic adverse outcomes

in post-COVID or long-term COVID conditions, potently with

differential responses to SARS-CoV-2 variants.

In addition, SARS-CoV-2 infection can alter the gut virome

community. Although patients with COVID-19 presenting reduced

abundance exhibit an under-representation of RNA virus and

multiple bacteriophage lineages (DNA viruses), they have notable

gut enrichment of environment-derived eukaryotic DNA viruses,

mainly including crAs-like phages, Myoviridae, and Siphoviridae

families, even after of 30 days of symptom resolution (104,

105). Viral genes involved in bacteriophage integration, DNA

repair, metabolism, and virulence are predicted to contribute

to host stress and inflammation; however, some viral consortia

are inversely associated with blood levels of proinflammatory

proteins, white cells, neutrophils, and disease severity (104, 105).

These resident enteric viruses maintain a low level of immune

stimulation and are responsible for protective and regulatory

effects in the intestine (106). However, given the limited data

on the effects of viral composition on microbiota composition

and activity during SARS-CoV-2 infection, advanced interkingdom

associations need to be addressed to improve the integrated

prognosis and intervention against adverse outcomes in patients

with post-COVID or long COVID.

5.2. Microbiota-based probiotic
counteraction against infection

In patients with COVID-19, reduced beneficial commensals

were directly correlated with disease severity and complications

(107). It is speculated that a decline in probiotic intestinal

microbiota would fail to effectively control excessive

proinflammatory immune reactions, leading to the subsequent

progression of SARS-CoV-2 infection. Considering the

immunomodulatory cytokine production in response to beneficial

commensal bacteria, the abundance of Lactobacillus species

decreased in correlation with anti-inflammatory IL-10 levels

during SARS-CoV-2 infection (108). Therefore, serum IL-10

can be employed as a diagnostic indicator to assess disease

progression and severity in high-risk patients with COVID-19

(108). Moreover, disease severity is inversely correlated with the

abundance of Faecalibacterium parusnitzii, an anti-inflammatory

bacterium (102) and subjects with low levels of viral infectivity

features presented a relatively high abundance of short-chain

fatty acid-producing beneficial bacterial communities, including

Parabacteroides, Bacteroides, Alistipes, and Lachnospiraceae,

even in the absence of gastrointestinal manifestations (47).

Furthermore, several gut immune-modulating commensal

bacteria, including Faecalibacterium prausnitzii, Eubacterium

rectale, and bifidobacteria, were inversely associated with

levels of proinflammatory mediators, tissue injury markers

(lactate dehydrogenase, aspartate aminotransferase, and gamma-

glutamyl transferase), and disease severity (109). Accordingly,

these immune-modulating bacteria can potentially counteract

proinflammatory and toxic insults during viral infection, providing

novel insights into interventions against adverse outcomes during

PASC conditions. Patients with PASC tended to display high

levels of Ruminococcus gnavus and Bacteroides vulgatus and low

levels of Bifidobacterium pseudocatenulatum and Faecalibacterium

prausnitzii (110). Considering the inflammatory states due to

reduced levels of probiotic commensal community, patients

with COVID-19 are speculated to be remarkably susceptible to

infection by opportunistic bacteria, such as Klebsiella pneumoniae,

Streptococcus, and Ruminococcus gnavus, particularly during the

hospitalization period (102). Likewise, patients with PASC were

found to be markedly susceptible to nosocomial gut pathogens,

such as Clostridium innocuum and Actinomyces naeslundii (110).

These opportunistic bacteria can potentially trigger the production

of proinflammatory cytokines, such as IFN-γ and TNF-α (102).

Overall, the reduced abundance of probiotic gut bacteria can be

associated with severe inflammatory responses via the excessive

production of proinflammatory cytokines and severe complications

in high-risk patients with COVID-19. Therefore, remodeling or

supplementation with beneficial microbial communities are

promising interventions against the gut mucosal distress in

patients with COVID-19.

6. E�ects of nutritional status on
susceptibility to COVID-19

6.1. Association of nutritional deficiency
with disease severity during viral infection

Considering the gastrointestinal involvement in SARS-CoV-

2 infection, dietary components, including nutrients, bioactive

natural products, and probiotics, were assumed to contribute to

immune regulation in response to viral infections. In the French

NutriNet-Santé cohort study assessing 7,766 adult patients with

anti-SARS-CoV-2 antibodies, dietary intake of vitamin C, vitamin

B9, vitamin K, fibers, and fruit vegetables was associated with lower

susceptibility to SARS-CoV-2 infection, whereas dietary intake of

calcium and dairy products did not contribute to the infection

risk (111). The beneficial effects of vitamin C have been well-

documented in various in vitro and in vivo studies. Exposure to

high doses of vitamin C can induce antiviral actions against various

viruses (112). In clinical trials, treatment with a high dose of

intravenous (IV) vitamin C decreased vasopressor requirements

and improved mortality in patients with septic shock (113).

In addition to intervention against non-communicable chronic

diseases via regulation of inflammation and complications, various

dietary components, including vitamin C treatment, can contribute

to the supportive clinical management of infectious diseases, such

as COVID-19 (114).
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In addition to vitamin C, multiple lines of evidence suggest a

potential link between vitamin D and SARS-CoV-2 infection (115–

118). Vitamin D is an essential lipid-soluble nutrient absorbed from

dietary sources in the proximal small intestine, contributing to

skeletal management, intestinal calcium absorption, and immune

regulation (119). Although vitamin D deficiency was associated

with respiratory distress in patients hospitalized for pneumonia

(120), the association between low vitamin D intake and disease

severity in COVID-19 cases remains poorly explored (121). A

retrospective cohort study revealed that vitamin D deficiency status

was positively associated with an increased COVID-19 risk (115).

Another retrospective case-control study assessed the possible

influence of vitamin D status on disease severity in hospitalized

patients with COVID-19 (116). Serum 25-hydroxyvitamin D

(25OHD) levels were lower in hospitalized patients with COVID-

19 than those in population-based controls, and these patients

presented a higher prevalence of vitamin D deficiency (116).

Severe vitamin D deficiency (based on a cut-off of ≤10 ng/dL)

was noted in 24.0% of patients in the COVID-19 group when

compared with 7.3% in the control group (117). Another

study by the University of Florida revealed that patients with

vitamin D deficiency were five times more likely to be infected

with COVID-19 than those without deficiency after adjusting

for age groups (118). Taken together, dietary status, such as

vitamin D deficiency, may present a risk factor for COVID-19

susceptibility and severity (Figure 2). Moreover, the association

of the amount, duration, and interval of nutrient intake with

disease severity and prevalence needs to be examined. In addition,

specific pathophysiological mechanisms of dietary factor-linked

protection should be examined to clarify adverse outcomes

in patients.

6.2. Nutritional intervention against gut
defense deterioration during viral infection

Vitamin D may counteract gut distress by improving the

mucosal and epithelial barriers. Vitamin D supplementation

and activation of its nuclear receptor (vitamin D receptor

[VDR]) can improve epithelial barrier integrity by enhancing

the expression of VDR-associated intracellular junction proteins,

including occludin, claudin, and zonula occludens, in the

distressed gut (122, 123). Conversely, vitamin D deficiency

may compromise the mucosal barrier (124), leading to an

increased susceptibility to mucosal damage and infection

risk in patients with COVID-19. Moreover, the synthesis

and secretion of antimicrobial peptides were elevated via

vitamin D metabolite-linked VDR activation or subsequent

activation of TLR1/2 signaling in the mucosa (125, 126), thereby

regulating the excessive commensal bacteria and pathogens by

the epithelium or mucosal immune system. Moreover, vitamin D

supplementation can activate non-canonical pathways involving

the aryl hydrocarbon receptor (AhR), facilitating epithelial tight

junctions and mediating anti-inflammatory and antioxidant

actions in the injured gut barrier (127). Collectively, vitamin D

and the activation of its nuclear receptors, including VDR or

AhR, could improve the gut mucosal and epithelial barrier during

SARS-CoV-2 infection.

6.3. Nutritional intervention against gut
dysbiosis during viral infection

In addition to the direct effects of vitamin D on gut cell

physiology, nutritional supplementation is speculated to

act on the gut microbial community as another mucosal

exposome during SARS-CoV-2 infection. In various experimental

models and human studies, notable correlations have been

documented between vitamin D and gut microbiota (128, 129).

Vitamin D supplementation in healthy individuals significantly

increases gut microbial diversity, with an increased ratio of the

phylum Bacteroidetes to Firmicutes (128). Moreover, vitamin

D supplementation could remarkably enhance the abundance

of health-promoting probiotic taxa, including Akkermansia,

Bifidobacterium, Ruminococcaceae, Faecalibacterium, and

Coprococcus, while a significant decrease in Bacteroides acidifaciens

was observed in non-responders. In particular, some probiotic

genera, such as Lactobacillus reuteri, can metabolize vitamin

D to 7-dehydrocholesterol via bile salt hydrolase, subsequently

contributing to the pools of circulating 25OHD (130). Moreover,

supplementation with 25OHD reportedly attenuates inflammatory

responses in experimental models of inflammatory bowel disease,

accompanied by gut microbial regulation (131). Mechanistically,

compared with vitamin D-deficient subjects, vitamin D-sufficient

animals displayed enhanced levels of gut microbe-responsive

RORγt/FoxP3+ regulatory T cells in the colon. Notably, the

number of anti-inflammatory regulatory T cells positively

correlated with the abundance of Bacteroides and Clostridium

XIVa. Overall, vitamin D status was predicted to shape the

gut microbial community, which can facilitate the bioactive

metabolic conversion of vitamin D and regulatory responses

against inflammation during SARS-CoV-2 infection (Figure 3).

7. Conclusions

Gastrointestinal symptoms are reportedly associated with poor

outcomes in patients with acute and post-acute COVID-19.

Moreover, persistent remaining viral antigens in the gut mucosal

tissue present a risk of recurrent, chronic COVID, and post-acute

COVID complications. Based on the findings of a meta-analysis,

gastrointestinal symptoms, such as diarrhea, nausea, vomiting, and

abdominal discomfort, were notably associated with SARS-CoV-

2 infection. In addition to gastrointestinal translocation from the

airway in the gut–lung axis, the virus can transmit to water and food

supply systems directly and ultimately reaches the gastrointestinal

tract in humans via fecal–oral transmission. Despite the lack of

mechanistic evidence, SARS-CoV-2 could disrupt the mucosal and

epithelial barrier and reach the circulation and systemic immune

system. Moreover, the prolonged presence of viral antigens and

disruption of mucosal immunity may increase gut microbial and

inflammatory risks, leading to pathological outcomes and post-

acute COVID-19 symptoms. In addition to host immune cell

regulation, SARS-CoV-2 infection may alter the gut microbial

community, potentially shaping the immunological profile during

infection. Generally, patients with COVID-19 exhibit lower

bacterial diversity and a higher relative abundance of opportunistic

pathogens, such as Klebsiella pneumoniae, Streptococcus, and
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Ruminococcus gnavus in their gut microbiota than healthy controls.

Despite the dysbiotic changes during infection, enhancing specific

bacterial communities, such as Lactobacillus and Faecalibacterium

parusnitzii, may counteract adverse inflammatory outcomes in

the gut and other organs. Moreover, nutritional status, such as

vitamin D deficiency, has been associated with disease severity

in patients with COVID-19 via regulation of the gut microbial

community and mucosal immunity. Vitamin D is predicted to

improve the gut mucosal and epithelial barrier by activating

its nuclear receptors during SARS-CoV-2 infection. Moreover,

vitaminD status is predicted to shape the gutmicrobial community,

which can facilitate the bioactive metabolic conversion of vitamin

D and immune regulatory responses against infection-induced

inflammatory storms. Herein, the collated evidence provides

systemic insights into nutritional andmicrobiological interventions

against acute or post-acute COVID-19 in the gut–lung axis.
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