
TYPE Original Research
PUBLISHED 17 February 2023
DOI 10.3389/fpubh.2023.1101436

OPEN ACCESS

EDITED BY

Nicola Luigi Bragazzi,
York University, Canada

REVIEWED BY

Necati Özdemir,
Balıkesir University, Turkey
Olumuyiwa James Peter,
University of Medical Sciences, Nigeria
Maryam Shafaati,
Tehran University of Medical Sciences, Iran

*CORRESPONDENCE

Kayode Oshinubi
kayode.oshinubi@univ-grenoble-alpes.fr

SPECIALTY SECTION

This article was submitted to
Infectious Diseases: Epidemiology and
Prevention,
a section of the journal
Frontiers in Public Health

RECEIVED 17 November 2022
ACCEPTED 16 January 2023
PUBLISHED 17 February 2023

CITATION

Ngungu M, Addai E, Adeniji A, Adam UM and
Oshinubi K (2023) Mathematical
epidemiological modeling and analysis of
monkeypox dynamism with
non-pharmaceutical intervention using real
data from United Kingdom.
Front. Public Health 11:1101436.
doi: 10.3389/fpubh.2023.1101436

COPYRIGHT

© 2023 Ngungu, Addai, Adeniji, Adam and
Oshinubi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Mathematical epidemiological
modeling and analysis of
monkeypox dynamism with
non-pharmaceutical intervention
using real data from United
Kingdom

Mercy Ngungu1, Emmanuel Addai2,3, Adejimi Adeniji4,

Umar Muhammad Adam5 and Kayode Oshinubi6*

1Human Sciences Research Council (HSRC), Pretoria, South Africa, 2Department of Biomedical Engineering,
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China, 3Department of
Mathematics, Taiyuan University of Technology, Taiyuan, China, 4Department of Mathematics, Tshwane
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In this study, a mathematical model for studying the dynamics of monkeypox
virus transmission with non-pharmaceutical intervention is created, examined, and
simulated using real-time data. Positiveness, invariance, and boundedness of the
solutions are thus examined as fundamental features of mathematical models.
The equilibrium points and the prerequisites for their stability are achieved. The
basic reproduction number and thus the virus transmission coe�cient R0 were
determined and quantitatively used to study the global stability of the model’s steady
state. Furthermore, this study considered the sensitivity analysis of the parameters
according to R0. The most sensitive variables that are important for infection
control are determined using the normalized forward sensitivity index. Data from
the United Kingdom collected between May and August 2022, which also aid in
demonstrating the usefulness and practical application of the model to the spread
of the disease in the United Kingdom, were used. In addition, using the Caputo–
Fabrizio operator, Krasnoselskii’s fixed point theorem has been used to analyze the
existence and uniqueness of the solutions to the suggested model. The numerical
simulations are presented to assess the system dynamic behavior. More vulnerability
was observed when monkeypox virus cases first appeared recently as a result of
numerical calculations. We advise the policymakers to consider these elements to
control monkeypox transmission. Based on these findings, we hypothesized that
another control parameter could be the memory index or fractional order.

KEYWORDS

Caputo-Fabrizio fractional derivative, reproduction number, parameter estimation, numerical

scheme, data fitting

1. Introduction

The unexpected breakout and global spread of monkeypox have drawn the attention of

scientists due to the continuing COVID-19 pandemic. The prevalence of the largest and most

pervasive monkeypox pandemic outside of Africa as of 22 June 2022, is 3,340 confirmed

cases reported across the world. In addition to mother-to-child vertical transmission, the

monkeypox virus can spread from person to person by direct contact with infectious skin or
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mucosal skin lesions, respiratory droplets, or indirect contact

with contaminated objects or materials. The possibility of

community transmission cannot be ruled out, and it may also

be sexually transferred by semen or vaginal fluid. The virus that

causes monkeypox is called the monkeypox virus, and it is an

enveloped, linear, double-stranded DNA virus that belongs to

the Chordopoxvirinae subfamily of the Poxviridae family. With

symptoms of the disease lasting 2–4 weeks and a death rate

that previously ranged from 0 to 11 deaths, monkeypox is often

a self-limiting sickness. Intense headaches, fever, lesions, and

lymphadenopathy are some of the symptoms of monkeypox.

Antiviral medications and smallpox vaccines have been approved

for use in various nations in response to the monkeypox outbreak,

despite the fact that there is no specific treatment or vaccine for

monkeypox virus infection. Before allowing the virus to successfully

establish person-to-person transmission, quick action is required

to stop the local development of the disease and, consequently, the

global monkeypox outbreak (1–11). In Peter et al. (12), modeling and

optimal control were used to study monkeypox and the cost-effective

strategies were investigated. This study shows that, among all

competing measures, combining preventative measures to reduce

rodent-to-human disease transmission is the most practical and

cost-effective option.

Numerous research articles have been published where both

classical and fractional models were constructed, and there is a

plethora of literature on modeling infectious diseases. Because

fractional-order derivative has unique properties such as heredity

and memory that enable it to fully comprehend the dynamics of

real phenomena, an analysis based on fractional-order derivative

is more advantageous and practical than an analysis based on

classical derivative (13, 14). At two separate closed locations, the

phenomenon is indistinguishable by the standard derivatives. A

generalized derivative known as the fractional order was proposed

to address the problems with ordinary derivatives (15). Many

researchers used fractional- order derivatives inmany fields, as shown

in Kumar et al. (16), Higazy et al. (17), Djida and Atangana (18),

Baba (19), Owolabi and Atangana (20), Mohammadi et al. (21),

Baleanu et al. (22), and Wutiphol and Turab (23). In the realm of

mathematical biology, the Mittag–Leffler-type kernel has been used

continuously over other derivatives, and numerous epidemiological

models, such as for dengue fever, smoking, tuberculosis, measles,

Ebola, and other diseases, have been studied using this operator as

shown in Asamoah et al. (24), Peter et al. (25, 26), Kumar et al.

(27), Morales-Delgadoa et al. (28), Atangana and Baleanu (29),

and Atangana et al. (30). Most notably, in Zhang et al. (31), the

Mittag–Leffler-type kernel modeling for Ebola–malaria co-infection

was investigated by the authors with the best possible control. They

strongly recommended the Mittag–Leffler-type kernel. In Kumar

et al. (32), investigated the COVID-19 model using singular and

non-singular fractional operators and compared the results of these

operators. In Aslam et al. (33), the authors examined a recent study

on the mathematical modeling of HIV/AIDS using the Mittag–

Leffler-type kernel and came to the conclusion that the infection

rate decreases with decreasing operator. In Evirgen (34), the authors

studied the transmission dynamics of the Nipah virus using the

Caputo derivative. One of the interesting segments of their study

was to focus on tracing the influence of fractional-order derivatives

on the manner in which the model responds. In Ucar (35), the

authors investigated a fractional SAIDR model within the framework

of the Mittag–Leffler-type kernel. The effectiveness of the fractional

operator is shown through a numerical simulation.

Considering the characteristics of exponential decay, the Caputo–

Fabrizio fractional-order operator has been preferred over Atangana–

Beleanu beta derivatives and a few other operators in the field of

mathematical biology with more information (17–19, 24, 36–39). For

instance, in Addai et al. (40), the authors studied a novel model

of COVID-19 incorporating Alzheimer’s disease using the Caputo–

Fabrizio fractional-order operator. The results of the aforementioned

study revealed that the two diseases have a link and the authors

also concluded that the fractional operator is related to the rate of

infection. In Shaikh and Nisar (41), the authors also considered the

transmission dynamics of a fractional-order typhoid fever model

using the Caputo–Fabrizio operator and the existence theory and

achieved numerical solutions. In Shah et al. (42), Shah and his co-

authors conducted a semi-analytical study of the Pine Wilt Disease

(PWD)model with a convex rate via fractional order involving a non-

singular kernel. To comprehend the trade-off between the lockdown

and the transmission of the virus, Ahmed and his co-authors devised

a five-term dynamical system (43). Another use of the Caputo–

Fabrizio fractional-order operator was indicated, for instance, in

Addai et al. (40), Shaikh and Nisar (41), Shah et al. (42), Ahmed et al.

(43), Ullah et al. (44), Abboubakar et al. (45).

Furthermore, in Peter et al. (46), the authors used real data from

Nigeria to study the dynamics of the transmission of the monkeypox

virus using fractional calculus. The authors presented an argument on

the modeling system by studying the infection control policies that

will help the public to better understand the significance of control

parameters in the eradication of the virus in the studied population.

Furthermore, the transmission dynamics of the monkeypox virus was

studied using a mathematical modeling approach in Peter et al. (47).

In their findings, the authors indicated that the isolation of infected

individuals in the human population helps reduce the transmission

of the disease, which can serve as a form of intervention to control

the spread of the virus.

We observed that none of the studies on the monkeypox virus

and its modes of transmission took into account the interaction

between the isolated and exposed compartments in the human

subpopulation and the results of that contact rate with the rodent

population and applied the modeling approach to real data from the

United Kingdom. The major goals of this research are to calculate

the exponential growth rate of the monkeypox virus, to forecast

what might occur in future and how to stop it from spreading,

and to understand the effects of non-pharmaceutical intervention

on infected individuals, which will be able to guide us on how to

deploy intervention resources to contain the spread of the disease.

The remaining sections of the article are structured as follows: Section

2 presents some basic definitions and preliminary information,

Section 3 presents the model formulation, Sections 4 deals with the

dynamism of the model, Section 5 computes the basic reproduction

number and some basic mathematical analysis, Section 6 present the

endemic equilibrium of the model, Section 7 proves the existence and

uniqueness of our model, Section 8 deals with the fitting of the model

to real data from the United Kingdom, Section 9 presents numerical

schemes and numerical simulations, Section 10 deals with sensitivity

analysis, and Section 11 provides some perspectives, discussion, and

conclusion.
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2. Preliminaries

In this section, we review several key definitions, lemmas, and

concepts that are necessary to understand the suggested model.

Definition 2.1 Let f ∈ Q1(p, q), q > p, and α∗ ∈ (0, 1) (17),

(40). Then, the Caputo–Fabrizio fractional-order derivative can be

defined as

CF
p Dαt f (t) =

G(α)

1− α

∫ t

p
f ′(x)exp

[

− α
t − s

1− α

]

ds.

Here, G(α) is a normalization function, where G(0) = G(1) = 1.

The fractional integral of the Caputo–Fabrizio fractional order is

defined by:

Iαt f (t) =
2(1− α)

2(1− α)G(α)
f (t)+

2α

(2− α)G(α)

∫ t

0
f (s)ds, t ≥ 0.

Lemma 2.2 Assuming there is a function u(t) ∈ Wl[0, η], then the

solution of fractional differential equation

{

CFDαt f (t) = u(t), t ∈ [0, η],

f (0) = f0,

is given by

f (t) = f0 +
2(1− α)

2(1− α)G(t)
f (t)+

2α

(2− α)G(α)

∫ t

0
f (s)ds, t ≥ 0

(24),(17), (40).

Lemma 2.3 Suppose A ⊂ B be a closed convex non-empty subset of

A and there exist two operators, T1 and T2, then it is Krasnoselskii’s

fixed point theorem (40) and it follows that:

(i) T1u+ T1u ∈ A, ∀u ∈ A;
(ii) T1 is contraction and T2 continuous and compact. Then quantify

at least one solution u ∈ A such that

T1u+ T2u = u.

3. Model formulation

Using a system of differential equations, we studied both human

and rodent populations in a closed homogeneous environment.

There are five compartments in a human population of size Nh(t):

Susceptible Sh(t); Exposed Eh(t); Infected Ih(t); Isolation/Quarantine

Qh(t); and Recovered Rh(t); where Nh(t) = Sh(t) + Eh(t) +
Ih(t) + Qh(t) + Rh(t). The rodent population Nr(t) is split into Sr(t)

Susceptible; Er(t) Exposed; and Ir(t) Infected. Let Nr(t) = Sr(t) +
Er(t) + Ir(t). From the aforementioned description, using the ideas

in Yinka-Ogunleye et al. (5), we extend the studies of Peter et al.

(46) and (47), then the ordinary differential equations in system

(1) describe the dynamics of monkeypox transmission incorporating

TABLE 1 Interpretation of parameters in the model.

Parameter Interpretation

3h Human recruitment rate

3r Rodent recruitment rate

ξh Immunity loss rate for human

θh Undetected rate of human after diagnosis

µh ,µr Natural death rate for humans and rodents

νh , νr Disease-induced death rate for humans and rodents

φh ,φr The rate at which humans and rodents move from exposed to
infectious stage

ψh The rate of humans recovery from monkeypox

γh The rate of identifying as suspected case of monkeypox

δh The rate of moving from isolated to recovered class

βrh The rate of transmission within rodents and humans

βhh The rate of transmission within humans

βrr The rate of transmission within rodents

non-pharmaceutical intervention;



























































dSh
dt

= 3h + ξhRh + θhQh − λhSh − µhSh,
dEh
dt

= λhSh − γhEh − φhEh − µhEh,
dIh
dt

= φhEh − (ψh + µh + νh)Ih,
dQh
dt

= γhEh − (θh + δh + µh + νh)Qh,
dRh
dt

= ψhIh + δhQh − ξhRh − µhRh,
dSr
dt

= 3r − λrSr − µrSr
dEr
dt

= λrSr − φrEr − µrEr ,
dIr
dt

= φrEr − (µr + νr)Ir ,

(1)

where λh = βrhIr+βhhIh
Nh

, λr = βrrIr
Nr

. To capture the memory

in the predictions of the monkeypox virus transmission model

and also to verify that both sides of the fractional equations

have exact dimensions, the time-dependent kernel is defined by

the power law correlation function, as in Tilahuna et al. (48);

therefore, we propose the following fractional-order model for the

monkeypox virus transmission model using the Caputo–Fabrizio

fractional-order derivative;



















































CFDαt Sh(t) = 3h + ξhRh + θhQh − λhSh − µhSh,
CFDαt Eh(t) = λhSh − γhEh − φhEh − µhEh,
CFDαt Ih(t) = φhEh − (ψh + µh + νh)Ih,
CFDαt Qh(t) = γhEh − (θh + δh + µh + νh)Qh,
CFDαt Rh(t) = ψhIh + δhQh − ξhRh − µhRh,
CFDαt Sr(t) = 3r − λrSr − µrSr
CFDαt Er(t) = λrSr − φrEr − µrEr ,
CFDαt Ir(t) = φrEr − (µr + νr)Ir .

(2)

The flow diagram of the model equation is presented in Figure 1

while the parameters used in the model and their signification is

presented in Table 1.

4. Dynamics of the model

In this section, we focus on the dynamics of the solutions

for the suggested models (1) and (2) that are positive, bounded,
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FIGURE 1

Transfer diagram of the dynamic transmission of the monkeypox virus.

and invariant. In an epidemiological model, it is important to

evaluate the population survival and the expansion that is naturally

constrained by scarce resources. As a result, we demonstrate the

following theorem.

Theorem 1. The solution of (1) along with initial conditions is

positively invariant and bounded in R8+. Therefore,































































limt→∞ sup Sh(t) ≤ Sh∞ = 3h+θhQh∞+ξhRh∞
λh+µh

,

limt→∞ supEh(t) ≤ Eh∞ = λhSh∞
(ξh+φh+µh)

,

limt→∞ sup Ih(t) ≤ Ih∞ = φhEh∞
(ψh+ηh+µh)

,

limt→∞ supQh(t) ≤ Qh∞ = γhEh∞
(θh+δh+µh+νh) ,

limt→∞ supRh(t) ≤ Rh∞ = ψhIh∞+δhQh∞
(ξh+µh)

,

limt→∞ sup Sr(t) ≤ Sr∞ = 3r
λr+µr

,

limt→∞ supEr(t) ≤ Er∞ = λrSr∞
(φr+µr)

,

limt→∞ sup Ir(t) ≤ Ir∞ = φrEr∞
(νr+µr)

.

(3)

Proof. Using the results in Lin (49) and taking into account the initial

values given, from model (2), we obtain



















































CFDαt Sh(t)|Sh(0) = 3h + ξhRh + θhQh ≥ 0,
CFDαt Eh(t)|Eh(0) = λhSh ≥ 0,
CFDαt Ih(t)|Ih(0) = φhEh ≥ 0,
CFDαt Ih(t)|Qh(0) = γhEh ≥ 0,
CFDαt Rh(t)|Rh(0) = ψhIh + δhQh ≥ 0,
CFDαt Sv(t)|Sr(0) = 3r ≥ 0,
CFDαt Ev(t)|Er(0) = λrSr ≥ 0,
CFDαt Iv(t)|Ir(0) = φrEr ≥ 0.

(4)

From Equation (4), we can see that Sh(0) > 0,Eh(0) > 0, Ih(0) >

0,Rh(0) > 0, Sv(0) > 0,Ev(0) > 0, Iv(0) > 0, for all t > 0. From

Equation (2), the first equation gives

CFDαt Sh(t) ≤ 3h + ξhRh + θhQh − λhSh − µhSh ≥ 0.

Then, by applying the fractional comparison technique, we obtain the

first estimate of Equation (4). We continue for the second equation of

the system of Equation (2), we obtain

CFDαt Eh(t) ≤ λhSh − γhEh − φhEh − µhEh ≥ 0.

Therefore, we get the second estimate of Equation (1). We continue

again for the third equation of the system of Equation (2), we obtain

CFDαt Ih(t) ≤ φhEh − (ψh + µh + νh)Ih ≥ 0,

and, consequently, we obtain the third estimate of Equation (4).

Similarly, for the fourth to eighth equation, we obtain the estimate

of Equation (4). Hence, Theorem 1 is complete.

4.1. Monkeypox equilibrium state

The monkeypox model is studied by obtaining the equilibrium states.

To verify the existence of the equilibrium points, the derivatives of

the model on the right-hand side are set to zero, which provides the

monkeypox disease free equilibrium points.

We assume Eh,Er , Ih, Ir ,Qh,Rh, Sh, Sr be the solution to the

monkeypox model with the initial condition in a feasible region

such that

Ŵh = Eh, Ih,Qh,Rh, Sh ∈ R
5
:Nh =

3h

µh
, (5)

Ŵr = Er , Ir , Sr ∈ R
3
:Nr =

3r

µr
, (6)

where the human population is represented as

Nh = Eh(t)+ Ih(t)+ Qh(t)+ Rh(t)+ Sh(t), (7)

and the rodent population, respectively,

Nr = Er(t)+ Ir(t)+ Sr(t). (8)

To achieve the disease-free equilibrium state, the derivatives are set

to zero as seen in (10) to obtain

E∗ =
(

E∗h,E
∗
r , I

∗
h , I

∗
r ,Q

∗
h,R

∗
h, S

∗
h, S

∗
r

)

. (9)
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By setting the derivatives to zero, we obtain

dEh

dt
=

dEr

dt
=

dIh

dt
=

dIr

dt
=

dQh

dt
=

dRh

dt
=

dSh

dt
=

dSr

dt
= 0;

(10)

hence, Equation (9) is represented as

E∗ =
(

0, 0, 0, 0, 0, 0,
3h

µh
,
3r

µr

)

. (11)

This equation describes a population free of monkeypox infection

and is denoted as E∗

5. The basic reproduction number

We derive the basic reproduction number R0 by using the next-

generation matrix approach (25). Since Eh, Ih,Qh, and Ir are the

disease-infected classes, hence,

f =



























0

λhSh
0

0

0

0

0

0



























, v =



























−3h − ξhRh − θhQh + λhSh + µhSh
γhEh + φhEh + µhEh

−φhEh + (ψh + µh + νh)Ih
−γhEh + (θh + δh + µh + νh)Qh

−ψhIh − δhQh + ξhRh + µhRh
−3r + λrSr + µrSr
−λrSr + φrEr + µrEr
−φrEr + (µr + νr)Ir



























. (12)

F =











0 0 βhh3h
µh

0 βhh3h
µh

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0











,

V =











γh + φh + µh 0 0 0

−φh ψh + µh + νh 0 0

−γh 0 θh + δh + µh + νh 0

0 0 0 µr + νr











.

(13)

V−1 =













1
γ1+µ1+φ1 0 0 0

φ1
γ1µ1+γ1ν1+γ1ψ1+µ2+ν1µ1+µ1φ1+µ1ψ1+ν1φ1+ψ1φ1

1
ν1+µ1+ψ1

0 0
γ1

γ1δ1+δ1µ1+δ1φ1+γ1µ1+ν1γ1+γ1θ1+µ2
1+µ1ν1+µ1φ1+µ1θ1+ν1φ1+θ1φ1

0 1
ν1+µ1+θ1+δ1 0

0 0 0 1
ν2+µ2













. (14)

The next-generation matrix (G) is given by

G = F.V−1 =

















β1λ1φ1
Nhµ1(γ1µ1+γ1ν1+γ1ψ1+µ2+ν1µ1+µ1φ1+µ1ψ1+ν1φ1+ψ1φ1)

β1λ1
Nhµ1(ν1+µ1+ψ1)

0 β1λ1
Nhµ1(ν1+µ1)

0 0 0 0

0 0 0 0

0 0 0 0

















. (15)

The basic reproduction number R0 is the dominant eigenvalue

(spectral radius) of the next-generation matrix G, that is,R0 = ρ(G)

R0 =
βhh3hφh

µh(γh + φh + µh)(ψ1 + µh + νh)

5.1. Stability of monkeypox-free equilibrium
(MFE)

Investigating the stability of the monkeypox disease-free equilibrium,

we compute the Jacobian matrix of the system at the disease-free

equilibrium by obtaining the eigenvalues, which will be used to

determine the stability of the model.

JE∗ =




























− βhhIh+βrhIr
Nh

− µh 0 0 θh ξh 0 0 − (βhh+βrh)Sh
Nh

βhhIh+βrhIr
Nh

ζ1 0 0 0 0 0 (βhh+βrh)Sh
Nh

0 ϕh 0 0 0 0 0 0
0 γh 0 ζ2 0 0 0 0
0 0 0 δh −µh − ξh 0 0 0

0 0 0 0 0 − βrr Ir
Nr

− µr 0 − βrrSr
Nr

0 0 0 0 0 βrr Ir
Nr

−ϕr − µr
βrrSr
Nr

0 0 0 0 0 0 ϕr −µr − νr





























,

(16)

where ζ1 and ζ2 are represented in Equations (17) and (18)

ζ1 = −γh − ϕh − µh, (17)

ζ2 = −θh − δh − µh − νh. (18)

Evaluating JE∗ at the monkeypox-free equilibrium (MFE),

we obtain

JMFE∗

=



























−µh 0 0 θh ξh 0 0 − (βhh+βrh )3h

Nhµh

0 −γh − ϕh − µh 0 0 0 0 0 (βhh+βrh )3h

Nhµh

0 ϕh 0 0 0 0 0 0

0 γh 0 −θh − δh − µh − νh 0 0 0 0

0 0 0 δh −µh − ξh 0 0 0

0 0 0 0 0 −µr 0 − βrr3r

Nrµr

0 0 0 0 0 0 −ϕr − µr
βrr3r

Nrµr

0 0 0 0 0 0 ϕr −µr − νr



























.

(19)

We compute the eigenvalues from the JMFE∗ using

the characteristic polynomial of O8, which will not be

represented as a result of its lengthiness. The eigenvalues

and characteristic polynomial are calculated by |JMFE∗ − I|,
where I is an 8 × 8 unit matrix, and the values of λ
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are obtained:

λ =































0

−µh

−µh − ξh
−µr

−γh − ϕh − µh

−θh − δh − µh − νh
−2Nrµ

2
r+(−νr−ϕr)Nrµr+

√
µr(Nr(νr−ϕr)2µr+43rβrrϕr)Nr

2Nrµr

−2Nrµ
2
r+(−νr−ϕr)Nrµr−

√
µr(Nr(νr−ϕr)2µr+43rβrrϕr)Nr

2Nrµr































(20)

Let 11 and 12 be well represented from Equation (20) in Equations

(21) and (22)

11 = µr(Nr(νr − ϕr)2µr + 43rβrrϕr)Nr , (21)

12 = 2Nrµ
2
r + (−νr − ϕr)Nrµr . (22)

Then,

λ1 = 0, (23)

λ2 = −µh, (24)

λ3 = −(µh + ξh), (25)

λ4 = −µr (26)

λ5 = −(γh + ϕh + µh), (27)

λ6 = −(θh + δh + µh + νh), (28)

λ7 =
−12 +

√
11

2Nrµr
, (29)

λ8 =
−12 −

√
11

2Nrµr
. (30)

From the calculated eigenvalues, we obtain negative real parts, that is,

the monkeypox-free equilibrium is asymptotically stable if

−12 −
√
11

2Nrµr
< 0. (31)

Upon simplification, we obtain Equation (31):

Nrµr(2µr − νr − ϕr)2

Nrµr(νr − ϕr)2 + 43rβrrϕr
< 1. (32)

Therefore, the monkeypox-free equilibrium state is

asymptotically stable.

5.2. Global stability of the equilibrium state

If R0 < 1, then the monkeypox-free equilibrium is globally

asymptotically stable; otherwise, it is unstable. This is proven by the

Lyapunov function such that

L(Eh) = Eh (33)

Differentiating, we obtain

L′(Eh) = E
′
h (34)

= λhSh − γhEh − φhEh − µhEh (35)

= λhSh − (γh + φh + µh)Eh. (36)

At the disease-free equilibrium state as seen in Equation

(11), Sh = 3h
µh

,

L′(Eh) = λh(
3h

µh
)− (γh − φh − µh)Eh (37)

E
′
h = (γh + φh + µh)

[

3hλh

µh(γh + φh + µh)Eh
− 1

]

Eh (38)

E
′
h = (γh + φh + µh)(R0 − 1)Eh ≤ 0 ifR0 ≤ 0. (39)

From the result obtained in Equation (39), we can see that

E
′
h

≤ 0 provided R0 ≤ 0 as well as E
′
h

= 0 provided

that R0 = 0 or Eh = 0. Global stability of the disease-

free equilibrium is asymptotically stable, if R0 ≤ 0; otherwise,

it is unstable.

6. Endemic equilibrium state

The endemic equilibrium state occurs when the rate of infection

persists in the population and it is represented in Equations (40 - 47)

by E∗∗
h
,E∗∗r , I∗∗

h
, I∗∗r ,Q∗∗

h
,R∗∗

h
, S∗∗

h
, S∗∗r .

E∗∗h =
[

µ3
h
+ k1µ

2
h
+ (k2 + k3)µh + k4

]

3hλh

µ5
h
+ p1µ

4
h
+ p2 · µ3

h
+ p3 · µ2

h
+ µh · p4 + λhνhξh · p5

(40)

E∗∗r =
λr3r

(µr + ϕr)(µr + λr)
(41)

I∗∗h =
(µ2

h
+ (δh + νh + θh + ξh)µh + δhξh + νhξh + θhξh)3hλhϕh

µ5
h
+ p1µ

4
h
+ p2 · µ3

h
+ p3 · µ2

h
+ µh · p4 + λhνhξh · p5 + p6

(42)

I∗∗r =
ϕrλr3r

λrµ2
r + λrµrνr + λrµrϕr + λrνrϕr + µ3

r + µ2
r νr + µ2

rϕr + µrνrϕr

(43)

Q∗∗
h =

(γhµ
2
h
+ γh(νh + ψh + ξh)µh + γh(νhξh + ψhξh))3hλh

µ5
h
+ p1µ

4
h
+ p2 · µ3

h
+ p3 · µ2

h
+ µh · p4 + λhνhξh · p5 + p6

(44)

R∗∗h =
(δhψh + µhψh + νhψh + ψhθh)λh3hϕh + (δhγhµh + δhγhνh + δhγhψh)λh3h

µ5
h
+ p1µ

4
h
+ p2 · µ3

h
+ p3 · µ2

h
+ µh · p4 + λhνhξh · p5 + p6

(45)
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S∗∗h =
3hµ

4
h
+3h · h1 · µ3

h
+3h · h2 · µ2

h
+3h · h3 · µh +3h · h4

µ5
h
+ p1µ

4
h
+ p2 · µ3

h
+ p3 · µ2

h
+ µh · p4 + λhνhξh · p5 + p6

(46)

S∗∗r =
3r

λr + µr
, (47)

where

d1 = (ψh + νh),
d2 = (δh + νh + θh + ξh),
d3 = (δh + νh + θh),
k1 = (ψh + 2νh + δh + θh + ξh)
k2 = d1 + d2,

k3 = ξh · d3,
k4 = d1 · ξh · d3,
p1 = δh + γh + λh + 2νh + ψh + θh + ϕh + ξh,
p2 = δhγh + δhλh + δhνh + δhψh + δhϕh + δhξh + γhλh

+ 2γhνh + γhψh + γhθh + γhξh + 2λhνh + λhψh + λhθh
+ λhϕh + λhξh + ν2h + νhψh + νhθh + 2νhϕh + 2νhξh

+ ψhθh + ψhϕh + ψhξh

+ θhϕh + θhξh + ϕhξh,
p3 = δhγhλh + δhγhνh + δhγhψh + δhγhξh + δhλhνh + δhλhψh

+ δhλhϕh + δhλhξh + δhνhϕh + δhνhξh + δhψhϕh + δhψhξh

+ δhϕhξh + 2γhλhνh + γhλhψh + γhλhξh + γhν2h + γhνhψh

+ γhνhθh + 2γhνhξh + γhψhθh + γhψhξh + γhθhξh + λhν2h
+ λhνhψh + λhνhθh + 2λhνhϕh + 2λhνhξh + λhψhθh + λhψhϕh

+ λhψhξh + λhθhϕh + λhθhξh + λhϕhξh + ν2hϕh + ν
2
hξh + νhψhϕh

+ νhψhξh + νhθhϕh + νhθhξh + 2νhϕhξh + ψhθhϕh + ψhθhξh

+ ψhϕhξh + θhϕhξh,
p4 = δhγhλhνh + δhγhλhψh + δhγhνhξh + δhγhψhξh + δhλhνhϕh

+ δhλhνhξh + δhλhψhϕh + δhλhψhξh + δhλhϕhξh + δhνhϕhξh
+ δhψhϕhξh + γhλhν2h + γhλhνhψh + 2γhλhνhξh + γhλhψhξh

+ γhν2hξh + γhνhψhξh + γhνhθhξh + γhψhθhξh + λhν2hϕh + λhν
2
hξh

+ λhνhψhϕh + λhνhψhξh + λhνhθhϕh + λhνhθhξh + 2λhνhϕhξh

+ λhψhθhϕh + λhψhθhξh + λhθhϕhξh + ν2hϕhξh
+ νhψhϕhξh + νhθhϕhξh + ψhθhϕhξh,

p5 = δhϕh + γhνh + γhψh + νhϕh + θhϕh,
p6 = δhλhνhϕhξh + γhλhν2hξh + γhλhνhψhξh + λhν2hϕhξh

+ λhνhθhϕhξh,
h1 = δh + γh + 2νh + ψh + θh + ϕh + ξh,
h2 = δhγh + δhνh + δhψh + δhϕh + δhξh + 2γhνh + γhψh + γhθh

+ γhξh + ν2h + νhψh + νhθh + 2νhϕh + 2νhξh + ψhθh + ψhϕh

+ ψhξh + θhϕh + θhξh + ϕhξh,
h3 = δhγhνh + δhγhψh + δhγhξh + δhνhϕh + δhνhξh + δhψhϕh

+ δhψhξh + δhϕhξh + γhν2h + γhνhψh + γhνhθh

+ 2γhνhξh + γhψhθh + γhψhξh + γhθhξh + ν2hϕh
+ ν2hξh + νhψhϕh + νhψhξh + νhθhϕh + νhθhξh + 2νhϕhξh

+ ψhθhϕh + ψhθhξh + ψhϕhξh + θhϕhξh,
h4 = δhγhνhξh + δhγhψhξh + δhνhϕhξh + δhψhϕhξh + γhν2hξh

+ γhνhψhξh + γhνhθhξh + γhψhθhξh + ν2hϕhξh + νhψhϕhξh

+ νhθhϕhξh + ψhθhϕhξh, (48)

7. Existence and uniqueness results for
the monkeypox transmission model
with non-pharmaceutical intervention

We reformulate Equation (2) as follows:



























































































































































81(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = 3h + ξhRh
+θhQh − λhSh − µhSh,

82(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = λhSh

−γhEh − φhEh − µhEh,

83(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = φhEh

−(ψh + µh + νh)Ih,
84(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = γhEh

−(θh + δh + µh + νh)Qh

85(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = ψhIh

+δhQh − ξhRh − µhRh,

86(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = 3r − λrSr
−µrSr

87(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = λrSr − φrEr
−µrEr ,

88(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = φrEr

−(µr + νr)Ir .

From Equation (10), the developed model of Equation (1) can be

written in the form

{

CFDαt 8(t) = ϒ(t,8(t)), t ∈ [0, η], 0 < α ≤ 1,

8(0) = 80,
(49)

8(t) =



















































Sh(t),

Eh(t),

Ih(t),

Qh(t),

Rh(t),

Sr(t),

Er(t),

Ir(t),

80 =



















































Sh(0),

Eh(0),

Ih(0),

Qh(0),

Rh(0),

Sr(0),

Er(0),

Ir(0),

(50)
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therefore,

ϒ(t,8(t)) =



















































81(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

82(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

83(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

84(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

85(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

86(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

87(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

88(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)).
(51)

With the help of Lemma 2.4, Equation (49) yields







8(t) = 80(t)+
2(1− α)

2(1− α)G(α)
ϒ(t,8(t))+

2α

(2− α)G(α)
×

∫ t
0 ϒ(s,8(s))ds.

(52)

Furthermore, let ussay E = C([0, η]) is the Banach space, and

supposing that the following assumptions hold;

(H1), there exists a non-negative constant Q,W, and k ∈ [0, 1)

such that

ϒ(t,8(t)) ≤ Q|8|k +W.

(H2) There exists a nonnegative constantCρ > 0 for all8, 8̃ ∈ E,

then

|ϒ(t,8(t))−ϒ(t, 8̃(t))| ≤ Cρ[|8− 8̃|].

Furthermore, let us define operator Am :E → E such that

Amℵ(t) = M18(t)+M28(t),

therefore, we can see that











M18(t) = 80(t)+
2(1− α)

2(1− α)G(α)
ϒ(t,8(t)),

M28(t) =
2α

(2− α)G(α)
∫ t
0 ϒ(s,8(s))ds.

(53)

From this knowledge, Equation (52) can be written as







Am8(t) = 80(t)+
2(1− α)

2(1− α)G(α)
ϒ(t,8(t))+

2α

(2− α)G(α)
×

∫ t
0 ϒ(s,8(s))ds.

(54)

Theorem 2. Suppose that (H1) and (H2) hold, such that
2(1− α)

2(1− α)G(α)
Cρ < 1, then, the monkeypox transmission model

with non-pharmaceutical intervention has at least one solution.

Proof. For simplicity, we divide the proof into two steps.

Step 1. We prove that operator M1 is contraction. Then, let 8̃ ∈ �,

where� = {8 ∈ Z : ||8|| ≤ ϑ ,ϑ > 0} is a close convex set, thus

|M18(t)−M28| =
2(1− α)

2(1− α)G(α)
maxα∈[0,η]

|ϒ(t,8(t))−ϒ(t, 8̃(t))|,

≤
2(1− α)

2(1− α)G(α)
Cρ ||8− 8̃||.

(55)

Thus,

||M18−M28(t)|| ≤
2(1− α)

2(1− α)G(α)
Cρ ||8− 8̃||.

Hence,M1 is contraction since
2(1− α)

2(1− α)G(α)
Cρ < 1.

Step 2. We also prove thatM2 is compact and also continuous; for all

8 ∈ �, thenM2 will be continuous as8 is continuous, thus

||M2(8)|| = maxt∈[0,η] |
2α

(2− α)G(α)
∫ t
0 ϒ(s,8(s))ds|,

≤
2α

(2− α)G(α)
η

∫ t
0 |ϒ(s,8(s))|ds.

≤
2α

(2− α)G(α)
η[Q|8|k +W].

(56)

Hence, M2 is boundedness. For equicontinuous, let t1, t2 ∈ [0, η]

such that

|(M28)(t1)− (M28)(t2)| =
2α

(2− α)G(α)
maxt∈[0,η]

∣

∣

∫ t1
0 ϒ(s,8(s))ds

−
∫ t2
0 8(s,ℵ(s))ds

∣

∣

≤
2α

(2− α)G(α)
[Q|8|k +W]|t1 − t2|.

(57)

As t1 → t2, then |(M28)(t1) − (M28)(t2)| → 0, which makes

operator M2 equicontinuous and compact by the Arzela–Ascoli

theorem. Therefore, by Lemma 2.3, the existence for the monkeypox

transmission model with non-pharmaceutical intervention has at

least one solution. 2

Theorem 3. Suppose that ∃ is a nonnegative integer 3ρ is > 0

such that

3ρ =
[

2(1− α)
2(1− α)G(α)

Lρ +
2α

(2− α)G(α)
ηLρ

]

< 1, (58)

then operator Am has a unique fixed point.

Proof. Let8, 8̃ ∈ �, then we say

||Am8− Am8̃|| ≤ ||M18−M18̃|| + ||M28−M28̃||,

≤
2(1− α)

2(1− α)G(α)
maxt∈[0,η]

∣

∣ϒ(t,8(t))−ϒ(t, 8̃(t))|

+
2α

(2− α)G(α)
maxt∈[0,η]

∣

∣

∫ t
0 ϒ(s,8(s))ds

−
∫ t
0 ϒ(s, 8̃(s))ds

∣

∣

≤
[ 2(1− α)
2(1− α)G(α)

Cρ +
2α

(2− α)G(α)
ηCρ

]

||8− 8̃||,

= 3ρ ||8− 8̃||.

(59)

Hence, by the Banach contraction principle, Am has a unique fixed

point. Consequently, the monkeypox transmission model with non-

pharmaceutical intervention has a unique solution. 2

8. Fitting of model to data

We used the available public database to collect our data while the

formulated model of Equation (1) includes 16 parameters. To treat

the waggliness of the reported daily new cases, we smoothed the data

to remove noise from the data set so as to make it suitable for our

analysis. The total population of the United Kingdom is 68,530,739
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TABLE 2 Parameter values in the model.

Parameter Value Source

3h 8644 Estimated

3r 0.9 Assumed

ξh 0.00001 Fitted

θh 0.029 Fitted

µr 0.00200 (46)

µh 0.05 (1)

νh , νr 0.00008, 0.0001 Fitted

φh ,φr 0.007 Fitted

ψh 0.056 Fitted

γh 0.0081 Fitted

δh 0.012 Fitted

βrh 0.000009 Fitted

βhh 0.00008 Fitted

βrr 0.0057 Fitted

FIGURE 2

Model fitting.

(1), which was used for calculating the initial number of susceptible

humans, while the initial value for the number of infected humans

was calculated from the reported daily new cases. Other initial values

were assumed.

The link to the data used for this research and the initial values;

Sh(t) = 68530739;Eh(t) = 0; Ih(t) = 31412;Qh(t) = 0; Sr(t) =
1074103;Er(t) = 1074103; and Ir(t) = 1074103; can be found in

the Data Availability section. The parameters are fitted based on the

smoothed reported daily new cases of infected humans from May to

August 2022. This information was taken from the United Kingdom

public health database (1). The nonlinear least square technique was

used to fit the model using python programming. Table 2 shows all

of the parameter values that were fitted, and Figure 2 shows the data

fitting of the observed smoothed daily new cases.

9. Numerical scheme

In this section, we present the numerical results for the

monkeypox transmission model with non-pharmaceutical

intervention based on the Lagrange interpolation. Details about the

numerical scheme is presented in Atangana and Owolabi (50). The

Cauchy problem of the CF fractional derivative can be given as:

CFDαt 8(t) = ϒ(t,8(t)), (60)

On the other hand, we can express Equation (60) as

8(t) = 80(t)+
(1− α)
G(α)

ϒ(t,8(t))+
α

G(α)
×

∫ t
0 ϒ(s,8(s))ds.

(61)

Taking Equation (61) at the point tn+1 = (n + 1)h and tn = nh,

n = 0, 1, 2, 3, ..., with h being the time step, we have

8(tn+1) = 8(0)+
(1− α)
G(α)

ϒ(tn,8(tn))+
α

G(α)

×
∫ tn+1

tn

ϒ(s,8(s))ds,

(62)

8(tn) = 8(0)+
(1− α)
G(α)

8(tn−1,ℵ(tn−1))+
α

G(α)

×
∫ tn+1

tn

ϒ(s,8(s))ds.

(63)

Taking the results of Equations (62)-(63) in

8(tn+1)− ℵ(tn) =
(1− α)
G(α)

(

ϒ(tn,8(tn))− ϒ(tn−1,8(tn−1))
)

+
α

G(α)
×

∫ tn+1

tn

ϒ(s,8(s))ds,

(64)

Equation (64) in the two-step Lagrange polynomial gives

8(tn+1)−8(tn) =
(1− α)
G(α)

(

ϒ(tn,8(tn))− ϒ(tn−1,8(tn−1))
)

+
α

G(α)
×

∫ tα+1

tα

[ϒ(tn,8(tn))

h
(s− tn−1)

−
ϒ(tn−1,8(tn−1))

h
(s− tn)

]

ds.

(65)

The aforementioned Equation (65) leads to

8(tn+1)−8(tn) =
(1− α)
G(α)

(

ϒ(tn,8(tn))−ϒ(tn−1,8(tn−1))
)

+
α

G(α)
×

[ϒ(tn,8(tn))

h

∫ tn+1

tn

(s− tn−1)ds−
ϒ(tn−1,8(tn−1))

h
∫ tn+1

tn

(s− tn)ds
]

.

(66)
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FIGURE 3

The sensitivity analysis of R0 with respect to the parameter p of the system (1).

Solving the integrals in Equation (66) yields

∫ tn+1

tn

(s− tn−1)ds =
3

2
h2,

∫ tn+1

tn

(s− tn)ds =
1

2
h2.

(67)

Substituting Equation (67) into Equation (66), then generalizing the

numerical scheme of CF is as follows:

8n+1 = ℵn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

8(tn,8n)

−
[ (1− α)

G(α)
+

hα

2G(α)

]

8(tn−1,ℵn−1).

(68)
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FIGURE 4

Numerical trajectory of the CF-fractional-order derivative, α, of Equation (2). (A) Dynamics of susceptible (Sh) humans class. (B) Dynamics of expose (Eh)
humans class. (C) Dynamics of infected (Ih) humans class. (D) Dynamics of quarantine (Qh) class.

Thus, in terms of our CF-fractional monkeypox transmission

model with non-pharmaceutical intervention, we obtain;

Shn+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Shn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Shn−1 ).

(69)

Ehn+1 = Ehn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Ehn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Ehn−1 ).

(70)

Ihn+1 = Ihn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Ihn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Ihn−1 ).

(71)

Qhn+1 = Qhn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Qhn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Qhn−1 ).

(72)

Rhn+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Rhn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Rhn−1 ).

(73)
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FIGURE 5

Numerical trajectory of the CF-fractional-order derivative, α, of Equation (2). (A) Dynamics of recovery (Rh) class. (B) Dynamics of susceptible (Sr) rodents
class. (C) Dynamics of exposed (Er) rodents class. (D) Dynamics of asymptomatic infected (Ir) rodents class.

Srn+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Srn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Srn−1 ).

(74)

Ern+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Ern )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Ern−1 ).

(75)

Irn+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Irn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Irn−1 ).

(76)

10. Sensitivity analysis

Since an epidemiological system’s parameters are either

estimated or fitted, there is some degree of uncertainty in

the numbers that are utilized to derive conclusions about the

underlying epidemic. It is crucial to evaluate the individual

effects of each parameter on the dynamics of the epidemic

to identify those effects that have the greatest impact on

the epidemic’s spread or contraction. For biological factors

included in the proposed monkeypox model, we perform the

sensitivity analysis in this section. This analysis is investigated

analytically by computing ∂R0
∂p , where, p = (βhh,3h,φh,µh, γh, νh,

and ψh). The sensitivity of R0 to each parameter is
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as follows:

∂R0

∂βhh
=

λhφh

µh(γh + µh + φh)(νh + µh + ψh)
> 0,

∂R0

∂3h
=

βhhφh

µh(γh + µh + φh)(νh + µh + ψh)
> 0,

∂R0

∂φh
=

βhh3h(γh + µh)

µh(γh + µh + φh)(νh + µh + ψh)
,

∂R0

∂µh
= −

βhh3h(µh(γh + µh + φh)+ µh(νh + µh + ψh)

+(γh + µh + φh)(νh + µh + ψh))

µ2
h
(γh + µh + φh)2(νh + µh + ψh)2

< 0,

∂R0

∂γh
= −

βhhλhφh

µh(γh + µh + φh)2(νh + µh + ψh)
< 0,

∂R0

∂νh
= −

βhhλhφh

µh(γh + µh + φh)2(νh + µh + ψh)2
< 0,

∂R0

∂ψh
= −

βhhλhφh

µh(γh + µh + φh)2(νh + µh + ψh)2
< 0,

thus,

∂R0

∂βhh
= 124645.995943846

∂R0

∂3h
= 16.9011519923859

∂R0

∂φh
=

0.1746837421029776

(0.008139+ ψh)2

∂R0

∂µh
= −

9.912× 10−7µ2
h
+ 4.7035744× 10−8µ2

h

+2.797853632× 10−10

µ2
h
(µ4

h
+ 0.014236µ3

h
+ 0.00012055158688µ1

+7.17083788864× 10−7)

,

∂R0

∂γh
= −

0.15096125860751

(γh + 0.007039)2
,

∂R0

∂νh
= −

0.59600691709814

(νh + 0.056039)2
,

∂R0

∂ψh
= −

0.59600691709814

(νh + 0.056039)2
.

(77)

The sensitivity index technique will help measure the most

sensitive parameters for the fundamental reproductive number

R0 (Borgonovo et al. (51) for details about the method). The

fundamental reproduction number’s normalized sensitivity index is

provided by SR0
p = ∂R0

∂p . p
R0

, where p is a parameter as defined earlier.

We obtain

S
R0
βhh

= 1,

S
R0
3h

= 1,

S
R0
φh

=
γh + µh

γh + µh + φh
,

SR0
µh

=

µh(γh + µh + φh)+ µh(νh + µh + ψh)

+(γh + µh + φh)(νh + µh + ψh)

(γh + µh + φh)(νh + µh + ψh)
,

SR0
γh

=
γh

γh + µh + φh
,

SR0
νh

=
νh

νh + µh + ψh
,

S
R0
ψh

=
ψh

νh + µh + ψh
.

TABLE 3 The sensitivity index ofR0 with respect to parameter p of the

system (1).

Parameter Sensitivity index

νh –0.0014

3h 1

φh –1.003

µh –1.003

βhh 1

γh –0.5350

ψh –0.9979

The sensitivity indices using the parameter values given in Table 2 are

presented in Table 3. The sensitivity analysis of βhh,3h,φh,ψh, νh, γh,

and µh with respect toR0 and their graphs are presented in Figure 3.

Two of the sensitivity indices are positive while others are

negative, as can be seen in Table 3. Additionally, the majority

of these indices are functions of the Caputo–Fabrizio fractional

monkeypox model parameters. This implies that changing one of

the parameters slightly will alter the dynamics of the epidemic.

The basic reproductive number R0 normalized sensitivity indices

to the Caputo–Fabrizio fractional monkeypox model parameters are

calculated. We conclude that increasing the rate of recovery and the

rate of identifying suspected cases, that is, isolation and quarantining

of the monkeypox virus carrier will aid in decreasing the R0, which

is an affirmation of the effect of non-pharmaceutical intervention to

combat the spread of the virus.

11. Discussion and conclusion

Following the estimation of parameter values and data fitting,

we simulate the Caputo–Fabrizio fractional monkeypox virus model

using the parameter values, as presented in Table 2. The fitted

Caputo–Fabrizio curve and R0 are given in Figure 2. Figures 4, 5

show dynamic behavior for all the nine compartments involved in

the proposed Caputo–Fabrizio fractional monkeypox virus model.

We observed a significantly high susceptibility and infection in the

solution pathways of individual species. The work of Hammouch

et al. (52), Bonyah et al. (53), Peter (54), and Sene (55) have

provided a strong basis for the discussion of our results. This

indicates that, whenever the memory index increases, the rate at

which people get infected with monkeypox virus reduces and vice

versa, which then indicates that, using fractional order, we can obtain

clear qualitative information on monkeypox virus transmission. In

Figure 6, we varied the input parameter γh on quarantine and

exposed, respectively, to observe variation in the system dynamics.

We noticed the contribution of this parameter in the transmission

pathways of infected individuals. In a similar way, we varied the

input parameters δh and ψh on individual recovery and noticed the

variation in the trajectory of monkeypox recovery. We discovered

that the rate at which humans and rodents move from exposed to

infectious stage is also important and potentially dangerous in terms

of increasing the level of monkeypox infection.

In conclusion, we provided a brief overview of the monkeypox

virus and the dynamics of its transmission in this study. We

investigated the spread of monkeypox virus and its effect on
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FIGURE 6

Numerical trajectory of varying δh, γh,ψh, and φh when α = 0.95. (A) Variation of δh on recovery class. (B) Variation of γh on expose class. (C) Variation of
γh on quarantine class. (D) Variation of ψh on recovery class. (E) Variation of φh on infected class.

non-pharmaceutical intervention, thus quarantine. Positiveness,

invariance, boundedness, and equilibrium points of the solutions

are thus examined as fundamental features of mathematical models.

We considered real data of the monkeypox virus from the

United Kingdom, and the best fit curve has been obtained (see

Figure 2). As a result, we created a novel, dimensionally consistent

Caputo–Fabrizio fractional-order model. Krasnoselskii’s fixed point

theorem has been used to demonstrate that the system has a

solution.The Adams–Bashforth method has been used to display

numerical simulations of the suggested pandemic model for various

fractional orders and parameter values. We looked into the impact

of factors on the expansion and contraction of the quarantine

compartment, recovery compartment, and infected compartment

on the spread and regression of the pandemic with the use of
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numerical simulations. As can be inferred from the data, it is clear

that the fractional-order equations can help explain this unique

effect of the monkeypox. Real-world data can be used to test the

accuracy of a mathematical model that has been created. The key

challenge, however, is where to find these data and/or how to

obtain the right curve for the collected data. The mathematical

representation of the monkeypox has been the subject of numerous

studies. To the best of our knowledge, there is still no research

on fractional modeling that uses actual data on the monkeypox

in the United Kingdom. Using actual data on the monkeypox

from the United Kingdom, a fractional-order modeling has been

shown in this study. The numerical results of this study show

that the spread of monkeypox can be stopped if the number of

contacts with infected people can be decreased through methods

such as effective mass education, improved quarantine facilities,

or increased testing of the general population, that is, performing

routine tests not only on exposed individuals but also on those

who have come into contact with infected patients. As a result,

these studies offer other professionals and scientists who focus on

infectious diseases insight that may help them in future to control

the outbreak of monkeypox and contribute to the development

of further treatment options. This study may provide insight into

potential future research projects in this regard. Future study of the

monkeypox can take into account other fractional operator types,

both with and without single kernels. Furthermore, data imputation

techniques can be used to fit rodent population parameters from the

number of monkeypox disease since the number of rodents cannot

be determined.
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