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Introduction: Brucellosis, a serious public health issue a�ecting animals and

humans, is neglected in West Africa (WA).

Methods: In the present study, bio-typing, multi-locus sequence typing (MLST),

multiple-locus variable-number tandem repeat analysis (MLVA), and whole

genome sequencing single-nucleotide polymorphism (WGS-SNP) analysis were

used to characterize the Brucella abortus (B. abortus) strains from WA.

Results: All of the 309 strains analyzed in this study were extracted and

downloaded from the international MLVA bank and were from 10 hosts (cattle,

humans, ovine, bu�alo, dromedaries, horse, sheep, zebu, dog, and cat) distributed

in 17 countries in WA. Based on the bio-typing, three biovars, dominated by B.

abortus bv.3, were observed and reported across seven decades (1958–2019).

With MLST, 129 B. abortus strains from the present study were sorted into 14

STs, with ST34 as the predicted founder. These 14 STs clustered into the global

MLST data into three clone complexes (C I–C III) with the majority of strains

clustering in C I, while C II forms an independent branch, and C III harbors three

STs shared by di�erent continents. These data revealed that most cases were

caused by strains from native lineages. According to the MLVA-11 comparison,

309 strains were divided into 22 MLVA-11 genotypes, 15 of which were unique to

WA and the remaining seven had a global distribution. MLVA-16 analysis showed

that there were no epidemiological links among these strains. Based on the MLVA

data, B. abortus strains from WA have high genetic diversity, and predominated

genotypes were descended from a native lineage. While the MLVA-16 globally

highlights that the dominant native and few introduced lineages (from Brazil, the

USA, South Korea, Argentina, India, Italy, Portugal, the UK, Costa Rica, and China)

co-driving the B. abortus ongoing prevalence in WA. The high-resolution SNP

analysis implied the existence of introduced B. abortus lineages, which may be

reasonably explained by themovement and trade of dominant hosts (cattle) and/or

their products.

Discussion: Our results indicated that B. abortus strains in WA consist of native

and introduced strains that necessitate control such as vaccination, testing,

slaughtering, and movement control by the relevant country authorities to reduce

brucellosis in livestock.
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Introduction

Brucellosis, a widespread bacterial zoonotic disease that can
cause considerable suffering in humans and massive economic
losses in the animal industry, is caused by Gram-negative
facultative intracellular bacteria of the genus Brucella (1–3). The
genus includes 12 species, among which Brucella melitensis, B.
abortus, and B. suis are the most important species and responsible
for the majority of human and animal brucellosis cases (4). It
has been reported that there are ∼500,000 new cases of human
infection annually, especially in low-income tropical countries (5).
Cattle are natural hosts of the intracellular pathogen B. abortus,
which can also be isolated in other hosts, such as sheep, camels,
and horses, and imposes a significant burden on the health and
reproduction of these important livestock (6, 7). Infected animals
can have live offspring following the initial abortion, and they
may continue to shed the bacteria (8). Transmission to human
occurs through unprotected handling of tissues or body fluids from
infected animals, consumption of unpasteurized milk and milk
products, or inhalation of Brucella-contaminated aerosols (9, 10).
Although B. abortus causes less severe infections than B. melitensis

(11), back pain and arthralgia are common symptoms in patients
infected with B. abortus in Turkey (12).

A previous study reported that the annual economic burden of
bovine brucellosis in Latin America is∼$600 million (13). In 2015,
in Kazakhstan, around $21 million was spent on compensation for
slaughtered animals with brucellosis, and an additional $24 million
was spent on testing and screening of animals (14). Therefore,
brucellosis can not only lead to substantial economic losses in the
animal industry but also pose an ongoing threat to public health.

Countries declared brucellosis-free are located in Europe and
Oceania, whereas the prevalence is high in enzootic countries in
central and South America, Africa, and parts of Asia (15). In these
developing countries, especially in Africa, livestock husbandry
development is continuously challenged by brucellosis (16, 17).
Bovine brucellosis remains the most widespread disease in animals
and the main concern in sub-Saharan countries (18). In African
countries, B. abortus has been reported in Sudan, in both cattle and
their handlers (19), as well as in Gambia, Mali, Niger, and more
frequently in Nigeria, Senegal, and Ivory Coast (20). Therefore, a
comprehensive analysis of the genetic diversity of B. abortus strains
and the epidemiology of the disease in animals and humans in
sub-Saharan countries is necessary.

Molecular characterization of the predominated circulating

strains is critical to understanding B. abortus diversity and

epidemiology in the country. Multi-locus sequence typing (MLST)
is a reliable tool for the characterization of Brucella spp. populations

and the determination of phylogenetic relationships (21, 22);

however, this method yields less detailed typing results than MLVA

andWGS-SNP due to the lower-resolution power (21, 23). Multiple
locus variable-number tandem repeat analysis (MLVA) enables

Brucella genotyping to infer genetic diversity and investigate the

geographic clustering of the isolates (24–26). Moreover, whole

genome sequencing single-nucleotide polymorphism (WGS-SNP)
has higher discriminatory power to efficiently track the origin
and spread of Brucella strains, leading to be targeted and effective
control of disease spread (27, 28). At present, MLVA has been

TABLE 1 Country, hosts, number of strains and sequencing type (ST) of

129 Brucella abortus strains from Africa used for multi-locus sequence

typing (MLST) genotyping.

Country Host Strains number ST

Cameroon Bovine 1 32

Chad Cattle, Bovine 8 2, 32, 34

Egypt Cattle, Buffalo 11 1, 2

Ethiopia Cattle 30 72

Kenya Unknown 4 32, 38

Mozambique Bovine, Cattle 8 1, 37, 72

Niger Bovine 1 83

Nigeria Unknown 7 34, 36

Rwanda Human 1 32

Senegal Bovine, Cattle 6 36, 82, 84

Sudan Bovine, Cattle, Camel 32 2, 6, 33, 34

Tanzania Human 1 32

Togo Bovine 1 36

Uganda Human 4 2, 6

Zambia Bovine 2 1

Zimbabwe Bovine, Cattle 12 1, 5, 6

used to explore the diversity of B. abortus biovar 3 isolated
in West Africa (29) and investigate the epidemiological links
of the B. melitensis in Egypt (30). Moreover, studies that used
MLVA and WGS-SNP (31, 32) indicated that WGS-SNP analysis
allows a better differentiation than MLVA-16. WGS-SNP analysis
has been used to type, discriminate and track outbreak strains
(31–33). Therefore, the purpose of this study was to use a series of
molecular typing assays, including MLST, MLVA, and WGS-SNP,
to investigate the species population, genetic diversity, geographical
origin, and molecular epidemiology of B. abortus strains from
West Africa (WA), to provide insight into the comprehensive
understanding of the B. abortus brucellosis epidemiology
features in WA, and to facilitate surveillance and control
strategy development.

Methods

Source of MLST and MLVA genotyping data

The MLST genotyping data of 129 B. abortus strains (Table 1;
Supplementary Table S1) were downloaded from the PubMLST
(https://pubmlst.org/organisms/brucella-spp), including the
key (code) of isolates, sequence type (ST), allotype of nine loci
(aroA/cobQ/dnaK/gap/glk/gyrB/int_hyp/omp25/typE), Brucella

species/biovars, host, country, continent, and years isolated.
Moreover, the MLVA-16 genotyping data of 309 B. abortus

strains (Table 2; Supplementary Table S2) from 17 WA countries,
including Senegal, Egypt, Togo, Nigeria, Rwanda, Kenya, Guinea-
Bissau, Uganda, Niger, Zimbabwe, Cameroon, Sudan, Tanzania,
Guinea, Ivory Coast, Chad, and Gambia, were abstracted from
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TABLE 2 Country, MLVA-8, MLVA-11, host, species/biovar, number, and year of 309 B. abortus strains used for MLVA genotyping.

Country MLVA8 MLVA11 Host Species biovar Number Year Group

Chad 34, 35, new type
(nt8-8)

62, 63, nt11-13 Cattle B. abortus bv3, bv6 3 Unknown Abortus B

Cameroon 34 63 Cattle, Zebu B. abortus bv3 3 1989–1990 Abortus B

Sudan 34 63 Dromedary B. abortus bv3 3 1993 Abortus B

Togo 34 64, nt11-12 Cattle B. abortus bv3 31 1979–1980 Abortus B

Uganda 34 64 Human B. abortus bv3 5 1958 Abortus B

Guinea 34 317 Cattle B. abortus bv3 2 1982–1992 Abortus B

Guinea-Bissau 34 317 Cattle B. abortus bv3 6 1982 Abortus B

Kenya 34 317 Cattle B. abortus bv3 10 2009 Abortus B

Rwanda 34 317 Cattle, Human B. abortus bv3 14 1982–1983 Abortus B

Ivory coast 34 317 Cattle B. abortus bv3 1 2009 Unknown

Gambia 34 317 Cattle B. abortus bv3 1 Unknown Unknown

Senegal 34, 137, 139, 142 63, 64, 310, 311, 312,
314, 315, 316, 317

Cattle B. abortus bv1, bv3 138 1976–1979 Abortus B

Nigeria 28, 34, 35, new types 7
(nt8-2, 3, 4, 5, 6, 7, 9)

62, 63, 310, new types
11 (nt11-3, 4, 5, 6, 7,
8, 9, 10, 11, 14, 15)

Cattle, Sheep, Horse B. abortus bv3 19 1976–2012 Unknown

Egypt 27, 28, 33 76, 79, 81, 82, 83, 400 Ovine, Buffalo, Cattle,
human, dog, cat, and
vaccine (n= 2)

B. abortus bv1 56 2002–2020 Abortus C,
RB51_2308

Zimbabwe 28, 31, 37 74, 77, 82 Cattle B. abortus bv1 4 Unknown Abortus C

Tanzania nt8-1 nt11-1, nt11-2 Cattle B. abortus bv3 3 2012–2013 Unknown

Niger 134 313 Cattle B. abortus bv3 4 1983 Abortus B

Africa 40, 178 66, 348 Cattle B. abortus bv6 6 1959 Abortus C

the MLVA bank database (https://microbesgenotyping.i2bc.
paris-saclay.fr/databases). The key (code) of strains, number of
tandem repeats at each of the MLVA-16 loci, MLVA-8 genotype,
MLVA-11 genotype, hosts, species/biovars, isolated regions, years
isolated, and lineage groups were obtained. The MLVA-8 genotype,
MLVA-11 genotype, and lineage group data from 19 B. abortus

MLVA-8 and 21 MLVA-11 genotypes were not previously identified
genotypes in the international MLVA bank database.

Analysis and visualization of MLST and
MLVA data

All data in this study were cleaned and processed using
Excel 2016 software (Microsoft Corporation, Redmond, WA,
USA). For MLST analysis, genetic similarities between the STs
of 129 strains from WA and 631 strains from other continents
(PUBMLST) (Supplementary Table S1) were investigated using
eBURST software 2.0. Finally, the genetic relationships between
the isolates and allelic profiles of MLST data were analyzed
with the software PHYLOViZ version 2.0 using the goeBURST
Full Minimum Spanning Tree algorithms (34). Subsequently,
MLVA data were processed according to genotype information,
species/biovars, hosts, location, and years isolated for all B. abortus
strains. A minimum spanning tree (MST) of B. abortus strains

was constructed using BioNumerics 8.0 software based on the
309 B. abortus strains’ MLVA-11 data (Supplementary Table S2)
to investigate the host lineage, genotype distribution, and the
geographical origin of the B. abortus strains. At the global level,
an MST was constructed using the MLVA-11 data of 1,746
strains (Supplementary Table S2) to explore the geographical origin
feature of genotypes from this study at the global level. Moreover,
the MST based on the MLVA-16 data of 1,746 B. abortus strains
(Supplementary Table S2) was used to determinate the relationship
among strains at a global scale. In this study, the MST trees were
weighted according to MLVA panels, as described by previous
reports (35).

Phylogenetic analysis based on the SNPs of
80 strains at the global level

WGS-SNP analysis was performed as previously described
(36). Briefly, genomic alignment between the sample genome
and reference genome (B. abortus 2308; Assembly ID:
GCA_000054005.1) was performed using the MUMmer
(37) and LASTZ (38) tools. The phylogenetic tree of 18 B.

abortus strains from WA and 62 strains from outside WA
(Supplementary Table S3) in GenBank was constructed using
TreeBeST (39) based on the Maximum-Likelihood Phylogenies
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FIGURE 1

Geographic and genotype distribution features of 309 B. abortus in the present study. Red dot indicates the location (country) of the strains collected

in this study. The letter in brackets is the abbreviation of the national name in the figure; n, Number of strains collected; figures marked with the bold

refer into the MLVA-11 genotypes of strains from the location. The map of Africa used in this study was obtained from Google Maps (https://www.

google.com/maps).

(PHYML) algorithm with 1,000 bootstrap replicates to investigate
the genetic relationships of B. abortus strains.

Results

Species/biovars, host, and geographic
distribution of 309 B. abortus strains

Of the identified biovars of 309 B. abortus African strains, 239
B. abortus bv 3, 9 B. abortus bv 1 and 6 B. abortus bv 6 were
identified with 55 not typed to biovar level (Figure 1; Table 2). The
B. abortus bv. 1 was distributed in Egypt (n = 6), Zimbabwe (n =

2), and Senegal (n = 1). B. abortus bv. 6 was found in Chad (n =

2), and the location of the remaining six is unknown. However, the
B. abortus bv. 3 strains were distributed in 15 countries, i.e., all 17

countries except Egypt and Zimbabwe (Figure 1; Table 2). Based on
the host, 280 strains were found in cattle, 8 in humans, 4 in ovine, 4
in buffalo, 3 in the dromedary, 2 in horse, 2 in sheep, 2 in zebu,
1 in a dog, and 1 in a cat, and the remaining two were vaccine
strains (Table 2). A total of 309 B. abortus were collected from 17
countries, including 138 in Senegal, 56 in Egypt, 31 in Togo, 19
in Nigeria, 14 in Rwanda, and remaining countries contained 1–
10 different numbers strains (Figure 1; Table 2). According to the
MLVA data, strains were divided into the abortus B group (n =

209), the abortus C group (n = 55), and the abortus C_RB51_2308
group from Egypt (n = 11), and the remaining 24 strains were
unknown. These strains were isolated between 1958 and 2020,
including 5 in the 1950s, 147 in the 1970s, 43 in the 1980s, 7 in
the 1990s, 13 in the 2000s, 46 in the 2010s, and 2 in 2020, and
the year of isolation of the remaining isolates is unknown (Table 2;
Supplementary Table S2).
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FIGURE 2

PHYLOViZ analysis showing the genetic relationships among STs of 760 B. abortus strains. Color coding according to continents. Circle size indicates

the number of strains. Each circle represents a distinct ST, and the STs from the present study are shaded in pink (C I, C II) and light red (C III).

MLST genotyping characteristic of
B. abortus strains in the present study

The results of eBURST analysis showed that the 129 B. abortus
strains from the present study could be sorted into 14 STs, including
ST1 (n = 16), ST2 (n = 8), ST5 (n = 3), ST6 (n = 9), ST32
(n = 8), ST33 (n = 4), ST34 (n = 31), ST36 (n = 8), ST37 (n
= 5), ST38 (n = 3), ST72 (n = 31), ST82 (n = 1), ST83 (n =

1), and ST84 (n = 1) (Table 1). Of these, ST34 was the predicted
founder and included two single locus variants, zero double locus
variants, one triple locus variant, and 10 more distantly related
(satellites) (Supplementary Figure S1). The ST34 is comprised of
strains from three countries, including Sudan (n = 24), Nigeria (n
= 4), and Chad (n = 3). The MST at the global scale indicated that
among those strains (n = 760) from six continents, 14 STs in the
present study were divided into three clone complexes (C I–C III)
(Figure 2), of which C I and C II comprised strains from the present
study and formed the independent complex. C I comprised eight
STs (ST6, 32, 33, 34, 36, 82, 83, and 84; and strains from Cameroon,
Chad, Kenya, Niger, Nigeria, Rwanda, Senegal, Sudan, Tanzania,
Togo, Uganda and Zimbabwe) and C II contained three STs (ST37,
38, and 72; and strains from Ethiopia, Kenya, and Mozambique)
(Figure 2). C III harbored three single STs (ST 1, 2 and 5; and strains
from Chad, Egypt, Mozambique, Sudan, Uganda, Zambia, and
Zimbabwe) that were shared between three and five continents: ST1
was shared by strains from Asia, Europe, North America, Oceania,
and South America (Figure 2); ST2 was shared by strains fromAsia,
Europe, and South America; and ST5 was shared by strains from
four continents, including Asia, Europe, North America, and South
America (Figure 2).

Diversity characteristics of MLVA-8 and
MLVA-11 data of strains from this study

A total of 13 knownMLVA-8 genotypes and nine new genotypes
(nt8-1–nt8-9) were recorded among 309 strains, known 13MLVA-8
genotypes including 27 (n= 11), 28 (n= 45), 31 (n= 1), 33 (n= 2),
34 (n= 206), 35 (n= 1), 37 (n= 1), 40 (n= 5), 134 (n= 3), 137 (n=
1), 139 (n= 1), 142 (n= 2), and 178 (n= 1) (Table 2). According to
theMLVA-11 analysis showed that a total of 37MLVA-11 genotypes
identified among 309 strains, and 22 out of 37 MLVA-11 genotypes
were previously identified including 62 (n = 1), 63 (n = 12), 64 (n
= 80), 66 (n= 5), 74 (n= 1), 76 (n= 2), 77 (n= 1), 79 (n= 11), 81
(n= 6), 82 (n= 37), 83 (n= 1), 310 (n= 1), 311 (n= 1), 312 (n=

1), 313 (n= 3), 314 (n= 1), 315 (n= 5), 316 (n= 11), 317 (n= 98),
348 (n = 1), and 400 (n = 1) (Table 2); and the remaining 15 new
MLVA genotypes were first found in this study, then named them
as into nt11-1–nt11-15 (Table 2). MLVA-11 genotype 317 (n = 98)
and 64 (n= 80) are the predominant circulating lineages (Figure 3).
Moreover, MLVA-11 genotypes 317 and 64 were mainly distributed
in Senegal, and MLVA-11 genotype 82 was mainly distributed in
Egypt. MLVA-11 genotype 63 was observed in Senegal, Uganda, and
Cameroon (Figure 3).

Geographic origin and genetic relatedness
of B. abortus strains on a global scale

Phylogenetic analysis of MLVA-11 data on B. abortus strains
on a global scale showed that out of 22 MLVA-11 genotypes, 15
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FIGURE 3

Minimal spanning tree (MST) of MLVA-11 genotype geographic distribution based on the multi-loci variable number of tandem repeats (VNTR) 11

data from West African Brucella abortus strains. Color coding according to countries distributed of MLVA-11 genotypes (the detail genotype profile is

presented in Supplementary Figure S2), the predominated MLVA-11 genotypes in the present study were marked with the bold in figures. Circle size

indicates the number of strains, GT indicates MLVA-11 Genotype. The number on the horizontal line is the number of site di�erences between

genotypes.

formed an independence lineage (Figure 4). Of these 15, except for
three genotypes (MLVA-11 genotypes 74, 348, and 400) that were
related to strains from other countries, the remaining 12 MLVA-
11 genotypes formed a unique cluster (Figure 4). Moreover, strains

from seven other MLVA-11 genotypes (MLVA-11 genotypes 66, 76,

77, 79, 81, 82, and 83) were shared with strains from 2 to 14 different

countries (Figure 4). Of these, MLVA-11 genotype 66 was shared
by strains from three countries, including Bangladesh, Brazil, and

France; MLVA-11 genotype 76 was shared with strains from four

countries, including Brazil, China, France, and Portugal; MLVA-

11 genotype 76 was shared by strains from the present study and
China; MLVA-11 genotype 79 was shared by strains from Costa
Rica, India, Italia, Portugal, South Korea, Switzerland, and the USA
(Figure 4); MLVA-11 genotype 81 was shared by strains from Italy
and this study; MLVA-11 genotype 82 was shared by strains from
Argentina, Belgium, Brazil, China, Costa Rica, France, Germany,

India, Kazakhstan, Portugal, South Korea, Switzerland, the UK, and
the USA (Figure 4); MLVA-11 genotype 83 was shared by strains
from Brazil, China, Costa Rica, England, and the UK (Figure 4).

Molecular epidemiological links of B.
abortus in West Africa and on a global scale

Based on the MST of MLVA-16 data on 309 strains from 17
countries, the strains were divided into two branches (I and II).
Branch I comprised strains from Egypt, Zimbabwe, and Uganda
(Figure 5), and branch II contained strains from the other 14
countries (Figure 5). Remarkably, only one MVA-16 genotype was
shared among two strains from two different countries (Senegal
and Nigeria) (Figure 5). Based on the MST of 1,746 strains on
a global scale, the majority of strains from this study formed

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1106361
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2023.1106361

FIGURE 4

Geographic origin analysis of B. abortus strains in West Africa on a global scale based on the multi-loci variable number of tandem repeats (VNTR) 11

data worldwide. Color coding according to countries. Circle size indicates the number of strains.

independent clades, and only few strains have shared the same
MLVA-16 genotype with strains from many countries, including
Brazil, the USA, South Korea, Argentina, India, Italia, Portugal, the
UK, Costa Rica, and China (Figure 6).

Additionally, the MST based on our WGS-SNP matrix analysis
showed that the 18 strains from the present study formed 17
SNP genotypes, and which one was shared by two strains from
Mozambique and Zimbabwe (Figure 7). Furthermore, five out of 17

SNP genotypes contained only strains from this study (Figure 7),

the remaining 12 were shared SNP genotypes that comprised

strains from this study and strains from eight different countries,

including the USA (Nigeria and Zimbabwe), the UK (Uganda

and Senegal), Germany (Chad), France (Egypt), Poland (Sudan),

Spain (Chad), New Zealand (Zimbabwe), Bolivia (Mozambique

and Zimbabwe), and China (Sudan) (Figure 7).

Discussion

In this study, three molecular methods, including MLST,

MLVA, and WGS-SNP, were applied to analyze the genetic

diversity, population structure, and molecular relationship among

309 B. abortus strains from WA with global strains. Our analysis

highlights that B. abortus strains have a high species/biovars, host

diversity, as well as wide geographic distribution in WA. In the
present study, more than 90% (280/309) of B. abortus strains were

isolated from cattle, and the remaining strains were obtained from

10 other hosts, including wildlife. B. abortus predominantly infect

cattle but also infect other host species and seems to be a spill-over

from the dominant host species to other species due to farming

and grazing (40), which is also evident from in the present study.
A previous study showed that 273 Brucella strains from Africa
were identified and typed since 1976, among which 272 strains
were from cattle and ∼95% (260/270) were from native animals

showing hygromas (41). Similar when focusing on WA, B. abortus
strains were historically prevalent mainly in cattle (42–44). Bio-
typing identified three biovars in WA, and B. abortus bv.3 was the
predominant biovar (45).

MLVA11 identified B. abortus bv 3 isolated from cattle as new
major clusters fromWA. In contrast toWAwhere B. abortus biovar
3 strains occur in cattle, B. abortus biovar 1 is the dominate biovar
in South Africa (46). These data suggest that the predominated
B. abortus biovars are unique in WA compared to southern
Africa, but further investigation is needed to better understand the
epidemiological trait of B. abortus in Africa.

Cattle production plays a crucial role in Africa including WA,
as cattle are traded for status and serve as a “savings account” in
nomadic systems in Nigeria (47). It has been reported that 20% of
cattle are imported in Nigeria, mostly from Chad and Niger (48).
Moreover, according to literature, brucellosis is one of the major
transboundary animal diseases in North African countries, while
the illegal animal movement was identified as one of the major
constraining factors (49).

In cattle, B. abortus mainly invades the reproductive organs
and causes symptoms such as abortion and a decline in
milk productivity, resulting in substantial economic losses (50).
Therefore, strengthening disease surveillance in cattle is necessary
to map the epidemiology of B. abortus. However, strains were
found in 10 wildlife species in WA, indicating that the B. abortus
strains circulate among animal species that are not the preferential
hosts. These reservoirs pose a crucial risk to domestic animals
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FIGURE 5

Molecular epidemiology relatedness of B. abortus strains from West Africa based on the MLVA-16 data of 309 B. abortus. Color coding according to

the country in this study. Circle size indicates the number of strains. Branch (I) comprised strains from Egypt, Zimbabwe, and Uganda and branch (II)

contained strains from the other 14 countries.

and humans. A previous study showed that exploring the wildlife
reservoir of brucellosis may represent a new challenge to be faced by
themedical and veterinarian community in the twenty-first century
(51). Brucellosis in wildlife in this region cannot be neglected,
detection and surveillance should be implemented to block the
transmission chain.

Although MLVA has a higher resolution power for Brucella

strains than MLST, both the MLST and MLVA are crucial to
epidemiologic surveillance and investigation into the geographical
distribution of B. abortus strains. MLST analysis highlighted that

the predominant circulating B. abortus population of WA was
native lineages, while three STs were shared by many continents
(Figure 2). However, these shared populations were predominant
in Europe (ST1 and 2) and America (ST1 and 5), implying that the
introduced B. abortus lineage was from outside WA, but a further
survey into the trade activities of cattle is needed.

TheMLVA-11 highlights the high genetic diversity andmultiple
geographic original of strains from the present study as reflected
by the 37 MLVA-11 genotypes were identified among 309 strains
that include 22 known and 15 new genotypes. Two predominant
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FIGURE 6

Molecular relationships between B. abortus strains from West Africa and worldwide strains based on the MLVA-16 data of 1,476 B. abortus strains

globally. Color coding according to countries. Circle size indicates the number of strains.

MLVA-11 genotypes (317 and 64) were observed in WA (52, 53),
while genotype 317 was distributed in Kenya, Senegal, Guinea,
Guinea-Bissau, and Rwanda (52, 53), and 64 was also distributed
in Senegal and Togo (53). Comparison analysis of global MLVA-
11 data suggests that these genotypes originate from WA. Three

MLVA-11 genotypes (66, 79, and 82) were shared with strains from
Brazil (54), the USA (55), Italy, Portugal (56), France, and South
Korea (26). The WA B. abortus strains from the present study
existed multiple geographic original that suggest introduction from
multiple regions outside WA similar to study by Wareth et al. (57).
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FIGURE 7

WGS-SNP phylogeny analysis of B. abortus strains from the present study and worldwide strains based on the SNP matrix of 80 B. abortus. Strains

code are marked in black if they share the same SNP genotype with the strain in the circle. The countries marked in the figures indicate that strains

from this country have identical SNP genotypes with strains from the present study.

The global analysis of B. abortus strains base on MLVA-16
highlights that the native dominant strains in WA are driving the
ongoing prevalence of B. abortus in this region. This was similar
to findings by Liu et al. (58) suggesting that B. abortus strains
were transmitted within the national borders of a country despite
common geographical origins of the strain in countries along the
silk road. B. abortus bv 3 strains from Algeria grouped in two
separate clusters using MLVA11 which most strains clustering with
European isolates from France and Spain while a few strains cluster
in African lineage (59). These studies thus indicate presence of
introduced strains as well as native strains in WA. Therefore,
further extensive bacteriological and molecular investigations are
necessary for a comprehensive understanding of the epidemiology
of cattle brucellosis in African countries.

WGS-SNP analysis identified B. abortus lineages circulating
in WA was introduced through the import of animals and/or
animal products frommultiple countries as 12 of 17 SNP genotypes
were from nine countries (regions). The MLST, MLVA, and SNP
analyses demonstrated that native strains and introduced lineages
are co-driving with the persistence of B. abortus circulating in
WA. Similarly, WGS-SNP analysis demonstrated that brucellosis
in South Africa spreads within the herd on some farms, whereas
the introduction of infected animals is the mode of transmission
on other farms (33). WGS phylodynamics analysis identified the
main B. abortus lineage circulate in Costa Rica are widespread
while new introductions seem to be more geographically restricted,

which might be similar in various other middle- and low-income
countries where brucellosis is endemic with similar farming
practices and lack of control (60).

Therefore, a control program involving improved surveillance,
animal movement restrictions, public health education is
suggested. Moreover, there is a strong need for more sustainable
molecular data on prevailing Brucella strains in WA, and on
all susceptible species, including humans, to comprehensively
analyze the relatedness between field strains of Brucella and the
epidemiology of brucellosis within WA countries (29).

Conclusions

The present study revealed the constant circulation of B.

abortus strains in cattle throughoutWA and neighboring countries.
These strains exhibited high species/biovars, host spectrum, and
genetic diversity as well as multiple geographic origins. Moreover,
most cases were caused by native strains, and few cases resulted
from introduced lineages. The surveillance and control of B.

abortus inWA should be made a priority which can be enhanced by
improving molecular databases that can elucidate epidemiological
relationships between strains. Regulations should be strictly
implemented when introducing animals to prevent the spread of
this species (48).
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for subgroup definition = 1. Strains in ST34 are from Sudan (n = 24), Nigeria

(n = 4), and Chad (n = 3).
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Minimal spanning tree (MST) of MLVA-11 genotype diversity based on the

multi-loci variable number of tandem repeats (VNTR) 11 data from West

African Brucella abortus strains. Color coding according to MLVA-11

genotypes. Circle size indicates the number of strains.

SUPPLEMENTARY TABLE S1

MLST data sets of B. abortus strains used in the present study. 129 strains

from the present study (Africa) and 631 strains from the outside of Africa.

SUPPLEMENTARY TABLE S2

The MLVA-16 data sets of B. abortus strains used for the present study. 309

marked with gray-used from the present study, MLVA-11 data from the

1,746 B. abortus strains used for geographical origin analysis globally and all

data were used to determinate the relationship among strains at a global

scale.
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A total of 80 B. abortus strains genome data from GenBank (n = 62) and this

study (n = 18) were used in the present study for WGS-SNP phylogeny

analysis globally.
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