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Background:One of the main lessons of the COVID-19 pandemic is that we must

prepare to face another pandemic like it. Consequently, this article aims to develop

a general framework consisting of epidemiological modeling and a practical

identifiability approach to assess combined vaccination and non-pharmaceutical

intervention (NPI) strategies for the dynamics of any transmissible disease.

Materials and methods: Epidemiological modeling of the present work relies

on delay di�erential equations describing time variation and transitions between

suitable compartments. The practical identifiability approach relies on parameter

optimization, a parametric bootstrap technique, and data processing. We

implemented a careful parameter optimization algorithm by searching for suitable

initialization according to each processed dataset. In addition, we implemented a

parametric bootstrap technique to accurately predict the ICU curve trend in the

medium term and assess vaccination.

Results: We show the framework’s calibration capabilities for several processed

COVID-19 datasets of di�erent regions of Chile. We found a unique range of

parameters that works well for every dataset and provides overall numerical

stability and convergence for parameter optimization. Consequently, the

framework produces outstanding results concerning quantitative tracking of

COVID-19 dynamics. In addition, it allows us to accurately predict the ICU curve

trend in the medium term and assess vaccination. Finally, it is reproducible since

we provide open-source codes that consider parameter initialization standardized

for every dataset.

Conclusion: This work attempts to implement a holistic and general modeling

framework for quantitative tracking of the dynamics of any transmissible disease,

focusing on accurately predicting the ICU curve trend in the medium term

and assessing vaccination. The scientific community could adapt it to evaluate

the impact of combined vaccination and NPIs strategies for COVID-19 or any

transmissible disease in any country and help visualize the potential e�ects of

implemented plans by policymakers. In future work, we want to improve the

computational cost of the parametric bootstrap technique or use another more

e�cient technique. The aim would be to reconstruct epidemiological curves to

predict the combined NPIs and vaccination policies’ impact on the ICU curve

trend in real-time, providing scientific evidence to help anticipate policymakers’

decisions.
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1. Introduction

The COVID-19 pandemic has induced a significant research

effort for tracking, prediction, and control. In Chile, which is

no stranger to the above, health authorities initiated vaccination

in the summer of 2021, gradually reducing overall ICU patients

and death by COVID-19 while suspending non-pharmaceutical

interventions (NPIs) such as lockdowns (partial or total). One of

the main lessons is that we must be prepared to face another

pandemic like it. Consequently, this article aims to develop

a general modeling framework consisting of epidemiological

modeling generalization and devising a practical identifiability

approach to assess combined vaccination and NPIs strategies

for the dynamics of any transmissible disease. To validate the

framework, we applied it to track COVID-19 dynamics, accurately

predict the ICU curve trend in the medium term, and assess

vaccination in Chile.

The literature on COVID-19 modeling is vast. A search in the

Web of Science (WOS) with the terms “COVID-19”, “modeling”,

and “time delays”, refined by WOS categories related to STEM

disciplines, resulted in 95 articles (in January 2023). Therefore,

we only review some of those that we believe are important for

their applications. For example, Al-Tuwairqi and Al-Harbi (1)

proposed a model to investigate the effects of time delay in vaccine

production on COVID-19 spread. In addition, Zhenzhen et al. (2)

studied a model with “long memory” to describe the multi-wave

peaks of the COVID-19 dynamics, where “long memory” allows

for predicting this last using non-local terms, which means that

one can include an arbitrary long history of the disease. Indeed,

for a particular non-local term, the authors obtained a model with

time delays. Furthermore, the authors modeled vaccination as an

impulsive term that translates into decreased susceptibility.

Moreover, Ghosh et al. (3) derived a model with time delay,

where the last is the disease duration, i.e., the average time in which

infected individuals recover or die. Zhai et al. (4) investigated a

SEIR-type model with time delay and vaccination control. The first

parameter is similar to that introduced in our previous work (5) but

is considered in the exposed population equation. They simulated

vaccination as a control that decreases susceptibility, similar to

the generalization we propose in the present work. Finally, our

current work relies on generalizing the model developed by (5),

which has common elements with some cited works here. Indeed,

in (5), we introduced the same time delay that models the

average time to recover or die, as in (3). At the same time, we

could interpret our previous model (5) as one incorporating a

long memory effect in the sense that it allows the reproduction

of multi-wave peaks depending on the parameter values, as

we showed.

The general goal is to implement a hybrid approach (6),

in this case, a holistic combination of mathematical modeling

with a practical identifiability approach to reconstruct and

predict epidemiological curves based on careful optimization,

synthetic data, automatic data scanning, and calibration. Precisely,

the scientific novelty of the article relies on developing a

general modeling framework that could contribute to anticipating

epidemiological scenarios, evaluating the impact of combined

vaccination and NPI strategies for any transmissible disease, and

helping to visualize the potential effects of implemented plans by

policymakers.

To achieve the general goal, we rely on our previous work

that forecasted COVID-19’s second wave in May 2021 in Chile,

calibrating data between March and September 2020 (before

vaccination began) through suitable epidemiological modeling (5).

Our specific goals are:

1. To generalize our previously developed epidemiological

modeling to describe vaccination and assess combined

vaccination and NPI strategies for the dynamics of any

transmissible disease and, as a study case, of COVID-19.

2. To improve the practical identifiability approach to calibrate

the generalized epidemiological modeling with different datasets

representing different regions of Chile and accurately forecast

the ICU curve trend in the medium term in any stage of the

COVID-19 pandemic.

3. To provide open-source codes that implement our general

epidemiological modeling framework with standardized

parameter initialization for every dataset for reproducibility.

To implement the general modeling framework, we processed

and used the official COVID-19 datasets provided by the

Chilean government. The framework consists of two main parts:

epidemiological modeling generalization and devising a practical

identifiability approach. The first consists of a non-linear delay

differential equations (DDE) system describing time variation and

transitions between the compartments of susceptible, infected,

recovered and the sum of ICU plus dead. The second relies

on parameter optimization (5, 7, 8), a parametric bootstrap

technique (9), and data processing. A novelty of this work is the

implementation of a careful parameter optimization algorithm by

searching for suitable initializations according to each processed

dataset. In addition, we implemented a parametric bootstrap

technique to accurately predict the ICU curve trend in the medium

term and assess vaccination.

We have organized the article as follows: we describe the

general modeling framework in Section 2. More precisely, based on

our previous work (5), we describe the epidemiological modeling

generalization in Section 2.1. Then, in Section 2.2, we detail

the careful parameter optimization algorithm implementation, the

parametric bootstrap technique, and data processing, among other

methodology pieces. Then, we provide the modeling results to

validate the framework with several datasets representing COVID-

19 dynamics in different regions of Chile in Section 3. Finally,

in Section 4, we discuss the results and give some conclusions in

Section 5.

2. General modeling framework’
description

In this section, we describe the general modeling framework.

To do so, we have split it into two main subsections that generalize

previously developed epidemiological modeling and devise the

practical identifiability approach.
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2.1. Epidemiological modeling
generalization

In the present section, we describe the epidemiological

modeling introduced by (5), then present and provide a complete

description of each part of the modeling generalization.

2.1.1. Previous work
To derive the epidemiological modeling generalization, we

rely on the generalized SIR model with constant time delays or

generalized SIRmodel previously devised by (5), which describes the

NPIs’ effect through variations in the rate of disease transmission.

We remark here that the NPIs’ impact consists of social distancing

and that the generalized SIR model does not describe vaccination.

To be precise, the model corresponds to the following non-linear

DDE system:

dS

dt
(t) = −

β(t)

N
S(t)I(t − τ1), (1a)

dI

dt
(t) =

β(t)

N
S(t)I(t − τ1)− γIRI(t − τ2), (1b)

dR

dt
(t) = γIRI(t − τ2). (1c)

It is worth noting that the generalized SIR model can generate

complex dynamics since, by contrast to the classical SIR model, it

can simulate more than one local maximum for the infected. Then,

it provides a way to explain several COVID-19 waves, depending on

the parameters’ values (5). In addition, the generalized SIR model

would produce better prediction results than the classical SEIR

model since no observation of the exposed population is available

since, similarly to the asymptomatic population, those exposed are

challenging to observe. Indeed, the Chilean government’s COVID-

19 database (10), apart from the symptomatic cases, counts the

asymptomatic ones, and there is no way to know howmany of these

become symptomatic (5).

The parameters of the model (1) are as follows: β(t)

corresponds to the mean rate of disease transmission, γIR is the

mean removal rate, τ1 is the mean incubation time of disease, and

τ2 is the mean time from onset to clinical recovery or death caused

by disease, or the duration time of disease until recovery or death.

Model (1) follows the susceptible-infectious-removed (SIR)

paradigm. Susceptible (S) individuals infected by SARS-CoV-2

undergo incubation during a mean time (τ1) before becoming

infected (I). The infected individuals are infected by the disease

for a mean time (τ2) until being removed (R) by clinical recovery

or death.

The initial conditions have to satisfy S(t0)+ I(t0)+ R(t0) = N,

where N is the size of the population under study for a closed

system and taking into account that (S + I + R)′(t) = 0 for all

t > 0, for a suitably chosen t0.

In the case of COVID-19, following the discussion by (5),

we assume that the number of infected reported with symptoms

confirmed by Reverse Transcriptional Polymerase Chain Reaction

(RT-PCR) tests, denoted by Ir(t), is underestimated since it depends

on the availability and application of RT-PCR tests. Consequently,

we assume that Ir(t) is a fraction of the actual number of infected

I(t),

Ir(t) = f (t)I(t), (2)

where f (t) is the ratio of positive RT-PCR tests number (confirmed

cases) over the actual infected cases for the day t, which accounts

for the real positivity rate. It is worth noting that f (t) is not the

same as the positivity rate of detected cases, but it is related to it,

and it involves the asymptomatic infected (5). We modeled f (t) as

an inverted Sigmoid-type function such that if I(t) is small enough,

which occurred during the beginning of the outbreak, then an

important fraction of the real infected cases are detected (Ir(t) ≈
I(t)). On the contrary, when I(t) is large enough, which occurred

just before the quarantines were imposed, then only a small fraction

0 < a < 1 of the real infected cases are detected (Ir(t) ≈ aI(t)).

Precisely, f (t) is defined as

f (t) = 1+
a− 1

1+ e−k(I(t)−Ithr)
(3)

whose parameters are a, k and Ithr , where a and k represent the

minimum and the decay rate of f (t), respectively. On the other

hand, to measure how large/small I(t) is, we introduce a threshold

Ithr such that I(t) ≪ Ithr implies f (t) ≈ 1, and I(t) ≫ Ithr implies

f (t) ≈ a≪ 1.

Model (1), describing time variation and transitions S-to-I-to-R

plus Equations (2)–(3), representing the real positivity rate, is quite

general since it models the dynamics of any transmissible disease,

not considering vaccination. The model parameters, gathered

in vector (β(t), γIR, τ1, τ2, a, k, Ithr), are unknown or inaccessible

and have to be identified from time-series observations Ir
corresponding to the number of infected reported with symptoms

confirmed by RT-PCR tests. In (5), we devised a practical

identifiability approach, i.e., a set of techniques to reliably estimate

parameters with acceptable accuracy from noisy data (11, 12). In

particular, we reproduced epidemiological scenarios considering

β(t) varying in time to describe NPI strategies ranging from

total relaxation to imposing strict social distancing (complete

lockdown differed by municipalities) at different periods. As a

result, we forecasted the second wave of May 2021 in Chile,

calibrating data between March and September 2020 (before

vaccination began).

2.1.2. Toward modeling’s generalization
To make model (1) more complete and realistic, we developed

a generalization to measure the hospital load on the healthcare

system through the number of patients hospitalized in the ICU

and to assess the vaccination. Equations (2)–(3) that model the real

positivity rate remain unchanged. In the following, we provide a

modeling description of both aspects.

2.1.2.1. Vaccination description

According to (13), vaccination protects in four ways: against

infection, symptoms, severe disease, and reducing onward

transmission. However, even considering part of the vaccination’s

ways of protection, the model can become very complex, as in

the work by (13). Moreover, since COVID-19 data has great

uncertainty, among other issues discussed in the data processing

section, any model will provide results accordingly, no matter how

exact its representation of reality is. Consequently, our present
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work is in the same spirit as our previous work (5) in that keeping

a model simple is critical to reasonably carrying out a practical

identifiability approach. Even so, it is still a challenge to do it in

real-time to anticipate epidemiological scenarios to help predict the

hospital load on the healthcare system, as required in the first year

of the pandemic (before vaccination). In this regard, we assume

vaccination protects against infection by diminishing susceptibility,

as assumed, for example, by (2, 4), which translates into adding

new terms to Equations (1a) and (1c) for those susceptible and

those recovered and several meaningful parameters associated with

vaccination.

According to the previous discussion, the new terms that

model vaccination account for the transition from susceptible to

recovered, its inverse, and their respective times of transition.

Transition rates are denoted by γSR(t) and γRS(t), while the times

model as delays within the new terms added, designated by τ3 and

τ4, respectively.We allow transition rates to vary in time to describe

them more realistically since they depend on several factors that

may change over time, as explained below (e.g., the immunity of an

individual without booster doses decays faster).

Parameter γSR(t) relates mainly to the vaccination uptake rate,

while γRS(t) relates to the waning of immunity after vaccination.

Moreover, parameters τ3 and τ4 depend on every delivered vaccine’s

effectiveness and immunity waning. However, the vaccination

uptake rate, effectiveness, and immunity waning of vaccines are not

well-determined since they depend on several factors such as prior

infection, age, sex, T-cell response, and the periodicity of vaccine

injections. In addition, only natural infection mounts a significant

and lasting immune response (14). Therefore, parameters γSR(t),

γRS(t), τ3, and τ4 depend on many factors, which makes it difficult

to estimate them and they are strongly available data-dependent,

independent of how exact the model’s representation of reality is.

Thus, they are inaccessible and must be identified from time-series

observations of COVID-19, as noted before.

The model equations that consider vaccination are:

dS

dt
(t) = −

β(t)

N
S(t)I(t − τ1)− γSR(t)S(t − τ3)+ γRS(t)S(t − τ4),

(4a)

dR

dt
(t) = γIR(t)I(t − τ2)

+γSR(t)S(t − τ3)− γRS(t)S(t − τ4)+ γUR(t)U(t − τ6). (4b)

The second and third terms of Equations (4a)–(4b) model the

transitions from the susceptible to recovered compartment, and

conversely, τ3 stands for the mean time delay for those susceptible

to become immune after vaccination, and γSR(t) indicates how

fast it happens. Similarly, τ4 designates the mean time until an

individual loses immunity, so τ4 is the mean duration of immunity

by vaccination, and γRS(t) measures how fast it happens. Finally, the

last term in Equation (4b) pertains to theU compartment, which we

explain below.

2.1.2.2. U compartment description and modeling

generalization summary

Finally, as mentioned before, we added the variable U to model

(1), representing the sum of the patients in the ICU plus those

confirmed dead due to COVID-19, the equation of which contains

the transitions from I-to-U and U-to-R. The variable R now

describes the recovered, whereas R in the model (1) represented the

removed, i.e., the sum of those who had recovered plus those who

had died.

As before, the mentioned transitions encompass rates and time

delays, denoted by γIU (t), τ5, γUR(t), and τ6. Precisely, we model

the transition I-to-U by the rate γIU (t) and the time τ5 that those

infected took to be admitted to the ICU. In addition, we represent

the transitionU-to-R by the rate γUR(t) and the time τ6 that patients

took to recover in the ICU.

We summarize the modeling generalization as the following

non-linear DDE system:

dS

dt
(t) = −

β(t)

N
S(t)I(t − τ1)− γSR(t)S(t − τ3)+ γRS(t)S(t − τ4),

(5a)

dI

dt
(t) =

β(t)

N
S(t)I(t − τ1)− γIR(t)I(t − τ2)− γIU (t)I(t − τ5),

(5b)

dR

dt
(t) = γIR(t)I(t − τ2)+ γSR(t)S(t − τ3)− γRS(t)S(t − τ4)

+γUR(t)U(t − τ6), (5c)

dU

dt
(t) = γIU (t)I(t − τ5)− γUR(t)U(t − τ6). (5d)

Again, the previous system is closed since the variables’ sum

equals N, the size of the targeted population. The DDE system

(5) and Equations (2)–(3) will be named general epidemiological

modeling, which is quite broad since it models the dynamics

of any transmissible disease under any combination of NPIs

and vaccination. To describe simply the in-time-variation of

parameters β(t), γIU (t), and γUR(t), we assumed that these

are piecewise linear functions. Then, the functions β(t), γIU (t),

and γUR(t) are represented by the vectors β , γIU and γUR

in R
nβ+1 that represent nβ straight lines approximating the

respective functions. We gave the same description for the

in-time-variation of parameters γSR(t), γRS(t), and γIR(t), i.e.,

they are represented by the vectors γSR, γRS, and γIR in

R
nγ +1.

Therefore, general epidemiological modeling depends on p : =
3(nβ + nγ )+ 15 parameters gathered in the vector θ ∈ R

p defined

by:

θ = (θ1, θ2) ∈ R
p , (6a)

θ1 = (γIR, γSR, γRS, γIU , β , γUR, τ )t ∈ R
3(nγ +nβ )+12, (6b)

γIR, γSR, γRS ∈ R
nγ +1, (6c)

β , γIU , γUR ∈ R
nβ+1, (6d)

τ = (τ1, τ2, τ3, τ4, τ5, τ6)
t ∈ R

6, (6e)

θ2 = (a, k, Ithr)
t ∈ R

3, (6f)

where nγ , nβ is the number of time intervals to reconstruct γSR(t),

γRS(t), and γIR(t), and β(t), γIU (t), γUR(t) piecewise linearly with

equally spaced intervals, respectively. For instance, using nβ = 9,

nγ = 9, one has p = 3(nβ + nγ )+ 15 = 69 parameters to estimate,

i.e., θ ∈ R
69.

Table 1 summarizes the parameters of general epidemiological

modeling given by Equations (5), (2), and (3).
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Table 1 Parameters of general epidemiological modeling.

Symbol Description Unit

τ1 Mean incubation time days

τ2 Mean time to recover for mild
cases

days

τ3 Mean time from susceptible to
recovery (by vaccination
immunity)

days

τ4 Mean duration of immunity (by
vaccination)

days

τ5 Mean time from infected to ICU days

τ6 Mean time from ICU to recover days

γIR Mean recovery rate for mild cases days−1

β Mean transmission rate days−1

γIU Mean transition rate from infected
to ICU

days−1

γUR Mean recovery rate for ICU
patients

days−1

γSR Mean transition rate from
susceptible to recovered

days−1

γRS Mean transition rate from
recovered to susceptible

days−1

a Minimum of the real positivity rate –

k Decay rate of the real positivity rate inhabitants−1

Ithr Infection threshold of the real
positivity rate

inhabitants

2.2. A practical identifiability approach

We devised a practical identifiability approach that relies on

parameter optimization, a parametric bootstrap technique, and

data processing, for which computer implementation includes

open-source data and code repository through GitHub (15).

The approach relies on solving a parameter estimation problem

through a careful optimization algorithm, numerical resolution

of modeling equations, a parametric bootstrap technique,

and data processing. For solving the modeling equations, we

required the provision of reasonable bounds for the parameters,

which is critical for achieving a stable numerical method. In

addition, the parameter range is meaningful, at least regarding

the time delays that describe relevant parameters from the

epidemiology viewpoint.

Next, we describe each piece of the practical identifiability

approach.

2.2.1. Parameter estimation problem description
To reproduce and predict COVID-19 dynamics in Chile, one

has to solve the parameter estimation problem: given a dataset of

the time-series observations of COVID-19 dynamics, identify the

parameter vector θ such that general epidemiological modeling fits

them in the least-squares sense. The time-series observations we

used are

{

[

(Ir)j, (Ur)j
]

: j = 1, · · · , n
}

.

Ir corresponds to the number of infected reported with

symptoms confirmed by RT-PCR tests [see Equation (2) and its

respective explanation], Ur corresponds to the observations of

variable U, i.e., the sum of the patients in the ICU and confirmed

deaths due to COVID-19, and n is the number of data.

More precisely, we have to find the vector θ ∈ R
p, defined by

Equation (6), that minimizes the sum of squares:

SS(θ) : =
∥

∥(ResI , ResU)t
∥

∥

2 =
n

∑

j=1

[

(ResI)
2
j + (ResU)2j

]

(7)

where ResI and ResU ∈ R
n stand for the relative residuals of

variable I and U, respectively, defined by

(ResI)j : =
[

(Ir)j − f (tj, θ2)I(tj, θ1)
]

f (tj, θ2)I(tj, θ1)
j = 1, · · · , n (8a)

(ResU )j : =
[

(Ur)j − U(tj, θ1)
]

U(tj, θ1)
j = 1, · · · , n. (8b)

The objective function defined in (7) corresponds to the sum

of squares of the residuals relative to the model observations,

f (tj, θ2)I(tj, θ1) and U(tj, θ1). The choice of the relative residuals

obeys to take into account the unequal quality of the observations

(16). In this case, the patients in the ICU plus confirmed deaths due

to COVID-19 (variable U) is better observed than those infected

(variable I).

The components of ResI , defined in (8a), correspond to

the differences between the time-series observations (Ir)j, and

the model observations f (tj, θ2)I(tj, θ1) (see Equation 2). The

components of ResU , defined in (8b), are the differences between

the time-series observations (Ur)j, and the model observations

U(tj, θ1). Both variables, I and U, correspond to the solution of the

general epidemiological model (5), (2), and (3) calculated at (tj, θ)

for j = 1, · · · , n, for a given parameter vector θ = (θ1, θ2) ∈ R
p

defined by (6).

2.2.2. A careful optimization algorithm
To calibrate general epidemiological modeling, we

implemented a careful optimization algorithm that combines

data processing algorithms (cleaning, smoothing, and curve

interpolation), initial parameter estimation generation, and a

non-linear least-squares optimization method to minimize SS(θ)

[Equation (7)] for each processed dataset.

The argument minimum of the sum of squares designs as θ̂

for every dataset. The vector θ̂ is called the non-linear least-squares

estimator, abbreviated as non-linear LSE.

Next, we provide details on the implementation.

2.2.2.1. Implementation

We employed theTrust-Region Interior Reflective (TIR)method

implemented in Matlab R2022b as the subroutine lsqnonlin,

specially adapted for solving non-linear least-squares minimization

problems. The convergence of the TIR method depends strongly

on initial parameter estimation, which has to be relatively close to
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the optimal solution (7, 8). We efficiently minimized the objective

function by implementing a percentage decrease technique from the

parameters’ ranges to calculate suitable initial parameter vectors for

every dataset in a standardized manner. According to our previous

experience (5), the initial parameters that mainly influence the

fitting results are β , γIU , γUR ∈ R
nβ+1, which describe the mean

rate of disease transmission and transitions from I-to-U and U-

to-R. To avoid overfitting, we selected nβ equispaced intervals to

accurately fit and predict after the final calibration time for every

dataset.

Next, we explain the numerical resolution of general

epidemiological modeling within a range for meaningful

parameters and the percentage decrease technique, which are

critical for implementing our careful optimization algorithm.

2.2.2.2. Numerical resolution of general epidemiological

modeling

To evaluate the objective function SS(θ), we numerically solved

the model (5) at tj, j = 1, · · · , n, for different parameter vectors

θ chosen ad-hoc for each dataset. We carried out the numerical

resolution by a Runge-Kutta type formula (17): the subroutine

dde23 implemented in Matlab, designed for solving non-linear

DDE systems. In addition, we reconstructed the function of history

(required for solving DDE instead of the initial condition for

classical ordinary differential equations systems) for the model

(5) by interpolating the data Ir(t), Ur(t), and recovered for

every studied dataset. We used a shape-preserving piecewise cubic

interpolation as devised by the interp1 Matlab subroutine with the

option pchip.

2.2.2.3. Meaningful parameter bounds

We computed the model parameters θ given in (6) using

meaningful bounds from an epidemiological viewpoint for the time

delays: 1 ≤ τ1 ≤ 14, 1 ≤ τ2 ≤ 21, 14 ≤ τ5 ≤ 56, and 21 ≤ τ6 ≤ 42

days. We imposed these bounds because the incubation period

(τ1) ranges from 1 to 14 days (mean of 5–6 days), the median

time from onset to clinical recovery for mild COVID-19 cases is

approximately 2 weeks (τ2), and is 3–6 weeks for patients with

severe or critical symptoms (τ6). In addition, among patients who

died, the time from symptom onset to outcome ranged from 2 to 8

weeks (τ5) (18). In addition, we assume that vaccination immunity

duration, τ4, ranges from 1 to 240 days since immunity declines

only at 6–8 months after natural infection (19). In contrast, no

range is well-determined for the transition time from susceptible

to recovered, τ3, however, one may expect that it is relatively small,

so we assume 1 ≤ τ3 ≤ 14.

For the real positivity fraction, f (t), one has that

0 < a < 1, min{(Ir)j : j = 1, · · · , n} ≤ Ithr ≤ max{(Ir)j :

j = 1, · · · , n}.

Finally, all the rest of the parameters (transition and

transmission rates) have to be within ranges to achieve stability of

the careful optimization algorithm implementation, mainly related

to general epidemiological modeling numerical resolution, as we

explain next.

2.2.2.4. Percentage decrease technique for numerical

stability

Convergence of the optimization algorithm, lsqnonlin, depends

directly on that of the dde23 solver, both implemented in Matlab.

Through our experiments, we verified that the model’s numerical

solution calculated by dde23 strongly depends on the derivatives

of the first points evaluated, and its convergence relies on the

closeness of the initial curves used to build the history function. To

overcome this stability problem without intervening or designing

newMatlab numerical libraries, we developed a simple but effective

technique, called the percentage decrease technique, to produce

initial curves contained in the feasible space of the official data

curves.

The percentage decrease technique consists of multiplying

the upper bounds of the parameter vector θ (see Equation

6) by a fraction ω ∈ [1e − 4, 1e − 2], excluding time

delays τ (see Equation 6e). Concretely, we chose the initial

parameter vector defined by θ (0) : = ω · UBθ , where

UBθ stands for the upper bound of θ , described in Section

2.2.2.3.

We calibrated ω for every studied dataset representing a

characteristic epidemiological curve, with the magnitude or period

of peaks’ duration differentiated, which is mainly related to the

density and mobility of the population. We chose a value of ω

inversely proportional to the population size within the interval

[1e − 4, 1e − 2]. Therefore, one should use a small value, e.g.,

ω = 1e− 3 or 0.1% of UBθ for large cities (millions of inhabitants),

and an even smaller value, e.g., ω = 1e − 4 or 0.01% of UBθ for

towns with fewer inhabitants (less than one million). Generally,

ω = 1e − 3 works well for all cases obtaining a similar minimum

error. Still, we calibrated a suitable value of ω for every dataset

to speed up the execution time of the optimization subroutine

lsqnonlin.

2.2.3. A parametric bootstrap technique
Once we calibrated a dataset, we applied a parametric

bootstrap technique (PBT) to quantify the parameters’

uncertainty and construct confidence intervals to achieve

reliable and accurate forecasting performance, obtained

by propagating the uncertainty (9). The PBT generates

synthetic datasets repeatedly sampled from the least-squares

curves:

F
(

tj, θ̂
)

: =
[

f
(

tj, θ̂2
)

I
(

tj, θ̂1
)

, U
(

tj, θ̂1
)]

. (9)

However, the PBT requires intensive computational resources

and time since it generates simulated data from F(tj, θ̂) and

calculates least-squares parameter estimates for each generated

synthetic dataset. Therefore, we applied this technique to show

the predictive power of general epidemiological modeling and

assess vaccination only for one dataset, corresponding to days 280–

530 that encompass the Metropolitan region’s second wave, and

considering the last 12 weeks to test the forecasting performance

of the PBT.
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In the PBT, one assumes that synthetic data follows a given

probability distribution with an expected value equal to the least-

squares curves F(tj, θ̂). To be precise, we implemented the following

algorithm:

1. We calculated the parameter estimates θ̂ through least-squares

fitting the model to the time-series data to obtain the best-fit

model given by F(tj, θ̂) (see Equation 9).

2. Using the least-squares fitted model F(tj, θ̂), we

generated M replicated synthetic datasets denoted by

FSD1 (tj, θ̂), FSD2 (tj, θ̂), · · · , FSDM (tj, θ̂). We generated synthetic

datasets as random vectors with a mean equal to F(tj, θ̂):

FSDk (tj, θ̂) ∼ Dist

[

F(tj, θ̂)
]

(10)

where Dist is a given probability distribution of mean equal

to F(tj, θ̂), and variance proportional to the mean magnitude

or the covariance matrix of it. For instance, we used the

normal, Poisson, and negative binomial distributions. The last

is adequate to model data over-dispersion while controlling its

magnitude (9).

3. We re-calculated the least-squares parameter estimates fitting

the model to each of theM-simulated datasets realizations. Each

parameter vector is denoted by θ̂ℓ for ℓ = 1, 2, · · · ,M.

4. Using the set of re-estimated parameters θ̂ℓ, ℓ = 1, 2, · · · ,M,

we calculated a confidence interval at the level of 95%. The

uncertainty around the least-squares model fit is given by

F(tj, θ̂1), F(tj, θ̂2), · · · , F(tj, θ̂M).

Typical values for the number of bootstrap samples M

range from 50 to 200 for a proper standard error estimation;

see p. 13–14 in (20). Indeed, by choosing M = 100, the

standard error estimate provides reliable results for parameter

estimation, as shown in Section 4. However, beyond choosing a

good number of bootstrap samples M, careful implementation

of the PBT is critical for obtaining θ̂ℓ corresponding to F(t, θ̂ℓ)

so that the curves that are reproduced and predicted remain

positive for all t within the time interval of calibration and

prediction.

The calculated confidence interval is our prediction interval,

denoted by PI, and defined by:

PI : =
[

LB
θ̂
, UB

θ̂

]

: =
[

¯̂
θ ± t0.975,M−1 SE

]

= ¯̂
θ

[

1± t0.975,M−1 NSE
]

, (11a)

NSE : =
SE

¯̂
θ

=
1

√
M

s
θ̂

¯̂
θ

, (11b)

where
¯̂
θ ∈ R

p is the mean of theM bootstrap parameters θ̂ℓ ∈ R
p,

t0.975,M−1 is the 0.975 percentile of the t-student distribution with

M − 1 degrees of freedom, s
θ̂
∈ R

p is the standard deviation of

the M bootstrap parameters, and NSE ∈ R
p is the normalized

standard error (5) (the definitions of s
θ̂
and NSE are understood

component-by-component).

The resulting uncertainty around the least-squares model fit,

F(t, θ̂), is quantified by the 95% confidence bounds [LB
θ̂
and UB

θ̂
,

defined by (11)] (9). Since we are interested in computing a more

accurate prediction for the ICU curve trend in the medium term,

we define an error criterion that includes performance for fit and

forecasting. More precisely, we define

E(θ̂ℓ) : = 0.6FPU (θ̂ℓ)+ 0.2FPI(θ̂ℓ)+ 0.1[RMSEU (θ̂ℓ)

+RMSEI(θ̂ℓ)], ℓ = 1, · · · ,M. (12)

In Equation (12), the root mean squared error (RMSE) to

measure the fit performance is defined by (16):

RMSEI =





1

n− p

n
∑

j=1

(ResI)
2
j





1/2

,

RMSEU =





1

n− p

n
∑

j=1

(ResU )
2
j





1/2

. (13)

We calculated the RMSE over the calibration period (n and

p are the calibrated dataset size and the number of model

parameters, respectively). A similar criterion was employed for

the forecasting performance (FP), but the sum over the prediction

period was computed and normalized by the number of predicted

data points.

In Equation (12), we gave more weight (60%) to FPU since

variable U is better observed than variable I, followed by FPI
(20%) and the RMSE for both variables (10% each). Furthermore,

it was more important to make more effort to follow up with the

sum of the ICU patients and those who had died than those who

were infected. Thus, we first focused on having better forecasting

performance for ICU patients plus those who died and then on the

number of infected persons reported. We gave less importance to

the fitting performance, so the model did not overfit to actual data,

which have much uncertainty, among other problems discussed in

Section 3.1.

From the error criterion given in (12), we define the best

parameter vector, denoted by θ̂ k̄, among the vectors θ̂ℓ for ℓ =
1, · · · ,M that minimizes E(θ̂ℓ), i.e.,

E(θ̂ k̄) : = min
1≤ℓ≤M

E(θ̂ℓ) (14)
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The best parameter vector defined in this way realizes the

minimum error of the PBT we implemented and induces the best

model curves, which privilege the forecasting performance. So,

the best model curves are those evaluated at the best parameter

vector, F(t, θ̂ k̄). In addition, the prediction interval PI produces an

envelope of model curves F(t, θ̂ℓ) for ℓ = 1, · · · ,M, quantifying

uncertainty around the best model curves F(t, θ̂ k̄).

Finally, to assess the impact of vaccination, we compared

different immunity durations, the parameter τ4, from 60 to 240

days, spaced every 30 days. For that, we calculated a weighted mean

between the least PBT error E(θ̂ k̄) given in (14) with the mean of

the NSE given in (11b), denoted by NSE. We evaluated the best τ4

as the value minimizing the weighted error, WE, defined by

WE : =
2

3
E(θ̂ k̄)+

1

3
NSE. (15)

We gave more weight (66.67%) to the minimum PBT error and

the least weight (only 33.33%) to the mean of the NSE to privilege

the FP in (14) over the uncertainty represented by the NSE in (11b),

which was within reasonable bounds.

2.2.4. Data processing and actual data limitations
The datasets’ sources correspond to the Chilean government’s

COVID-19 database at the regional level, which we used to

track and predict COVID-19 dynamics (10). We used datasets

representing different regions of the north, south, and center,

including the Metropolitan Region (MR), the major city of which

is the country’s capital, Santiago de Chile. They correspond to

reported infected persons with symptoms confirmed by RT-PCR

tests (Ir), recovered cases (R), patients in the ICU, those confirmed

dead due to COVID-19 (D), and the size of targeted populations

(N).We appliedmobile averages with different window sizes to deal

with data that were not always reported daily and to smooth out

the data.

2.2.4.1. Available actual data limitations

A common problem in processing and modeling

epidemiological curve data is the time lag of the information

reported, which was not daily but accumulated every 3–5 days in

the Chilean case as observed in Figure 1, which depicts various

sub-peaks in the official Chilean data curves, specifically in the data

of those infected (I), recovered (R), and deceased (D). In addition,

the relevant information is only detailed at the national level,

FIGURE 1

O�cial COVID-19 incidence curves (Chile); raw data and processing with moving averages.
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such as daily admissions to the ICU and COVID-19 reinfections

according to the vaccination scheme, which was accumulated

weekly, and provisional since it was being validated [(10), product

90]. Therefore, using data in constant validation does not ensure

a precise replication of the results, unlike I, R, and ICU, which

have been maintained without significant variation over time. In

addition, in the case of deaths in Chile at the beginning of 2022, the

probable cases (without a prior confirmation test for COVID-19)

were added to the official data (more than 10,000 cases) for the

daily death count. Since the daily distribution of such cases is

unknown, in our study, we only considered confirmed death due

to COVID-19 reported daily.

Although different epidemiological datasets are available in the

official Chilean repository (10), most are designed for statistical

studies rather than for modeling studies. The most consistent data

(without repetition of cases) is deceased persons, which has a

high correlation (Pearson coefficient of 0.8) with hospitalized ICU

patients (Figure 2). Therefore, in addition to being relevant data to

determine the hospital load, hospitalized ICU patients are of high

value in terms of the quality of the available data, from which one

can conduct modeling studies at the regional level for the Chilean

case. Furthermore, the interest in approximating regional curves

and not only the national ones is based on the fact that it allows us to

validate our general modeling framework with several datasets and

analyze the epidemic in different geographical areas. The previous

consideration is relevant to Chile, the longest country in the world,

with different climates from north to south, and therefore a good

case study for the present work. Finally, we applied our general

modeling framework to study the COVID-19 data available (I, R,

ICU, and D) and, in the future, we will extend and adapt to any

transmissible disease in any country. It is feasible given that in

most of the world, it is more viable to track critical cases (those

hospitalized in ICUs), deaths, and, to a lesser extent, those who are

infected/recovered (the actual total is never reached).

2.2.4.2. Hardware, software, and parallel computing

We used a data science workstation for the careful optimization

algorithm implementation with the following features: Intel Core i9

FIGURE 2

Correlations of incidence curves (Chile).

7900x, 10 Cores/20 threads, 128 Gb memory, NVIDIA Titan RTX

24Gb, and twomobile laptops with Intel Core i7s, 4 Cores/8 threads

with 16 Gb memory. We implemented all our calibration codes by

using the software Matlab R2022b. In addition, we used the Matlab

parallel computing toolbox to speed up the computation with the

parpool (“Processes,” 20) option on the workstation.

For implementing the PBT (forecasting), we used two mobile

laptops equipped with an Intel Core i7 processor with 8 and 12

cores, respectively, with 16 Gb of RAMwithout parallel computing.

3. Results

3.1. General modeling framework
calibration results

3.1.1. Data processing results
Data processing shows that the highest correlated variables

are I and R, followed by ICU admission with ICU hospitalized

and deceased with ICU hospitalized (Figure 3). The two latter are

the most relevant indicators of the impact of the pandemic on

the health system, which justifies our choice of privileging the

forecasting performance in U, as made in Equation (12).

In addition, the optimization results strongly depend on the

parameters’ initial values and the fitted data quality. By applying

moving averages of 14 days, we reduced abrupt slope changes

of the actual epidemiological curves (Figure 1), improving results

with information loss of less than 2% of incidences for both

infected and ICU. In addition, using moving windows combined

with the cumulative distribution curves (Figure 3) reduces the

number of steps of the Matlab dde23 solver (for non-linear

DDE systems) because the slopes are always positive and not

as steep as for daily curves. In this way, our method allows

for calibrating parameters with accumulated and daily curves,

where the cumulative data is helpful in efficiently fitting from

the pandemic’s beginning to any subsequent location and day to

perform block tracking.

3.1.2. Calibration results
The percentage decrease technique, described in Section

2.2.2.4, ensures the overall method stability and convergence by

preventing the NaN appearance (NaN means “Not a Number”)

when overflow occurs (computational numerical limit exceeded).

NaNs are propagated in the model’s history function, making

the optimization solver lsqnonlin require more time to find new

feasible points and often diverge. Using differentω values in θ (0) : =
ω ·UBθ , one may generate suitable initial curves for I and U below

the epidemiological curves. For smallω values (ω ∈ [1e−4, 1e−2]),

the initial curve will approximately be a straight line, obtained

with government data, and greater than zero. By applying this

simple but effective technique, our careful optimization algorithm

implementation ensures stability and convergence for the dde23

solver and the lsqnonlin optimization subroutine within the range

of suitable parameters, as described in Section 2.2.2.3.

Furthermore, to speed up the computation, we performed

a one-step initial optimization defining the real positivity rate

f (t) = 1. This was the same as taking I(t) = Ir(t), i.e.,
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FIGURE 3

Cumulative incidence curves (Chile). Logarithmic and raw data, respectively.

Table 2 Model results for di�erent ω.

Id Fraction ω Curve/window REI RER REICU nβ + 1 t (days) UBτ4

MR.1, Figure 4 1e-03 cum/2 weeks 3.2808e− 01 4.1021e− 01 1.8342e− 01 20 [30, 950] 240

MR.2, Figure 5 1e-03 cum/2 weeks 8.2663e− 02 1.4144e− 01 1.99823− 02 20 [30, 250] 240

MR.3, Figure 6 1e-03 cum/2 weeks 4.5210e− 02 1.6722e− 01 9.4964e− 03 20 [30, 250] 50

VAL.1, Figure 7 1e-03 cum/3 weeks 1.0394e+ 00 6.9195e− 01 7.9057e− 01 20 [250, 950] 240

ANT.1, Figures 8C, D 3.5e-03 daily/3 weeks 1.8747e− 01 1.0747e+ 00 8.2074e− 02 20 [250, 600] 240

MAG.1, Figure 9 2.5e-04 cum/2 weeks 9.9075e− 01 3.2812e+ 00 3.4139e+ 00 20 [100, 950] 240

all the actual infected are reported on the entire curve and

storing the resulting ω as a checkpoint. Then, when required to

optimize the curve over any time interval, the obtained ω was

used as the initial value, starting the computation closer to the

optimum.

In Table 2, we present the optimization results for several

datasets located throughout all of Chile: the Metropolitan region,

Valparaíso region (center), Antofagasta region (northern), and

Magallanes region (southern), designated by the identifiers MR,

VAL, ANT, and MAG in the Id column. We plotted the

corresponding curves in Figures 4–9. In addition, Table 2 shows the

results concerning a study on the immunity duration in different

time intervals to assess vaccination. We obtained the calibration

results by varying the upper bound UBτ4 of the parameter τ4 for

a dataset that contains the MR’s first wave; see rows MR.2-MR.3

in Table 2 and Figures 5, 6. The interpretation was that the least

mean relative error for I and U, REI and REU , implied that the

corresponding τ4 value was the most probable for the respective

dataset. This τ4 variation is helpful for the analysis, simulation, and

evaluation of epidemiological scenarios where, for example, a better

fit for τ4 larger means a high vaccine immunity duration.

From Table 2, for example, by decreasing the upper

bound of τ4, comparing the results between MR.2 and MR.3

(through REI and REU ), we observe that τ4 is small, which

could be interpreted as correct, since in the MR’s first wave

there was no vaccination and therefore no immunity due

to it.

General epidemiological modeling with cumulative data allows

us to fit the complete epidemiological curve for analytical purposes

(MR.1 in Table 2) with slightly less precision. In some cases, it was

necessary to increase the moving window size to handle abrupt

changes of derivative in the curves or optimize with other fractions

of the upper bounds (different values of ω). Although the error

obtained may increase, these approximations (Val.1 in Table 2)

should be considered since they may indicate a data problem or a

change in the epidemiological scenario. The fact that these cases

of higher error occur only for the data from those infected is

another reason to focus more on the number of ICU patients plus

deceased.

An example of the cases explained above is the Antofagasta

region, the results from which are quantified with the ANT.1

identifier in the Id column in Table 2 and depicted in Figure 8A.

We observed a wave not reported in the data for t ∈ [250, 950].

In addition, Figure 8C depicts that the model fits data for t ∈
[250, 600], with low error for I and U, even if the actual infected

(calculated by the model) was much higher than reported.
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FIGURE 4

Fitted incidence curves in the Metropolitan region, Chile, 1 April 2020 to 8 October 2022.

FIGURE 5

The first epidemiological wave in the Metropolitan region, Chile. 1 April 2020 to 7 November 2020; UBτ4 = 240 (unrestricted immunity duration).

Finally, we present the case of the Magallanes region (MAG.1

in Table 2), a zone located in the extreme south of Chile

with very few inhabitants and, therefore, little data. Despite

this, the model also fits curve U reasonably, despite a more

significant error, where the relevance is to interpret the curve’s

trend.
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FIGURE 6

The first epidemiological wave in the Metropolitan region, Chile. 1 April 2020 to 7 November 2020; UBτ4 = 50 (immunity duration restriction).

FIGURE 7

Fitted incidence curves in the Valparaíso region, Chile. 7 October 2020 to 8 October 2022; UBτ4 = 240 (unrestricted immunity duration).
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FIGURE 8

Fitted incidence curves in the Antofagasta region, Chile; UBτ4 = 240 (unrestricted immunity duration). (A, B) 7 November 2020 to 8 October 2022;

(C, D) 7 November 2020 to 23 October 2021.

FIGURE 9

Fitted incidence curves in the Magallanes region, Chile. 10 June 2020 to 8 October 2022; UBτ4 = 240 (unrestricted immunity duration).
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3.2. Parametric bootstrap technique results

In this section, we want to show the predictive capabilities of

our general modeling framework. For that, we applied the PBT for

the 280–530 time interval in the Metropolitan region (MR), which

encompasses the MR’s second wave, and the prediction period was

12 weeks.

First, we demonstrate the results obtained using the careful

parameter optimization for fitting general epidemiological

modeling to the actual data by minimizing the sum of squares (7)

(step 1 of the algorithm described in Section 2.2.3). A code run

with this method with 100 iterations took around 14 min in an

Intel Core i7 processor with eight cores and 16 Gb of RAM.

We summarize the numerical results in Table 3 and depict

the least-squares fitted model curves F(tj, θ̂) (Equation 9) in

Figure 10. The corresponding error evaluated in the non-linear LSE

θ̂ , according to Equation (12), is E(θ̂) = 4.3387e− 01.

Second, we show the model results obtained through the

PBT to achieve a better fitting and forecasting performance

(the entire algorithm is described in Section 2.2.3). The PBT

is computationally intensive since the code runs took around

Table 3 Least-squares model results.

h
h
h

h
h
h

h
h
h
h

hh

Criterion
Variable

I U

FP 6.3983e-01 4.3173e-01

RMSE 4.3539e-01 3.3227e-02

24/16 h on one/two high-performance laptops, as described

in Section 2.2.4.2. Using the two laptops, we calculated 50

parameter estimates to obtain the M = 100 bootstrap

parameter realizations for fitting general epidemiological modeling

to every synthetic dataset generated by a normal distribution

with moderate variance relative to the least-squares curves

F(tj, θ̂) [Equation (9)], as explained in Section 2.2.3. Then, we

constructed the best parameter estimate [θ̂ k̄ defined in (14)] and

the PI [LB
θ̂
and UB

θ̂
defined in (11)]. With these estimates,

we plotted the respective curves for infected persons Ir and

the sum of ICU patients and those who were reported dead

Ur .

Figure 11 depicts the model results for synthetic datasets

constructed as explained above. The minimum PBT error was

E(θ̂ k̄) = 2.8775e − 01, calculated according to Equation (14).

Finally, the parameter estimates uncertainty, corresponding to the

curves plotted in Figure 11, ranged between 0.02 and 18.92% with

a mean of 4.61% measured in normalized standard error (NSE) in

percent, as defined in Equation (11b).

3.3. Assessing the impact of vaccination

We compared different values of the parameter τ4 in the range

of 60–240 days to assess the impact of vaccination on immunity.

For τ4 values spaced every 30 days, and ranging between 60 and 240

days, we obtained the results summarized in Table 4, which shows

the minimum PBT error E(θ̂ k̄) given in (14), the mean of the NSE

(NSE) given in (11b), and the weighted error WE given in (15).

FIGURE 10

Incidence curves obtained by least-squares. 7 December 2020 to 14 August 2021, encompassing the Metropolitan region’s second wave in Chile.
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FIGURE 11

Incidence curves obtained by the PBT. 7 December 2020 to 14 August 2021, encompassing the Metropolitan region’s second wave in Chile.

From Table 4, we observe that the best value for τ4 was τ4 = 60

days since it yielded the least weighted error WE.

4. Discussion

Concerning quantitative tracking of COVID-19 dynamics, we

can calibrate any dataset with our general modeling framework.

In effect, we show the framework’s calibration capabilities

through several examples for different regions of Chile; see

Table 2 and the corresponding plotted curves in Figures 4–9. In

addition, we corroborated that immunity duration was short

(τ4 ≤ 50 days, as shown in row MR.3 in Table 2) during the

Metropolitan region’s first wave (when there was no vaccination

yet). Consequently, our general modeling framework provides a

flexible tool for studying the dynamics of any transmissible disease

and assessing vaccination, despite the vaccination deficiencies and

data limitations discussed in Sections 2.1.2.1, 2.2.4.1. To do so, it

suffices to have time-series observations for the number of infected

persons and ICU patients and to find a suitable range of initial

parameters meaningful from the epidemiology viewpoint. Then,

the percentage decrease technique allows us to find a unique range

of parameters proper for every studied dataset, which provides

overall method numerical stability and convergence, as shown in

this article.

Concerning the framework’s predictive capabilities, we applied

the PBT to a dataset encompassing the Metropolitan region’s

second wave. The results shown in Table 3 and depicted in

Table 4 Model results for di�erent values of τ4.

τ4 E
(

θ̂
k̄

)

NSE WE

60 2.7309e-01 4.9037e-02 1.9840e-01

90 2.8199e-01 4.9866e-02 2.0462e-01

120 2.9898e-01 5.3788e-02 2.1725e-01

150 2.9882e-01 6.2228e-02 2.1995e-01

180 2.8646e-01 5.4880e-02 2.0926e-01

210 3.4228e-01 5.1622e-02 2.4539e-01

240 3.5367e-01 6.2833e-02 2.5672e-01

τ4 is the mean immunity duration by vaccination; see Table 1.

E(θ̂ k̄) is the minimum error of the parametric bootstrap technique (PBT); see Equation (14).

NSE is the mean normalized standard error (NSE); see Equation (11b), and

WE is the weighted error; see Equation (15).

Figure 10, show that fitting the model to processed data by

least-squares produces a forecasting performance for variables I

and U that could be better (even more for U), despite their

respective fitting performance (RMSE) being excellent. From the

PBT implementation, we found that the parameter uncertainty

range, evaluated through the percentage NSE, needed to have

reliable parameter estimates (between 0.02 and 18.92% with a

mean of 4.61%), so the number of bootstrap samples M =
100 was suitable. In addition, Figure 11 shows an outstanding

forecasting performance for variables I and U (even more for U)

with an error of 1.5 times less than for the usual least-squares

method (E(θ̂) ≈ 1.5E(θ̂ k̄)). Therefore, our general epidemiological
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framework can accurately predict the ICU curve trend in the

medium term (12 weeks). However, a limitation to achieving such

a good prediction performance is that the PBT is costly from a

computational viewpoint.

In Figure 11, we observe that the segmented curves (green

lines) are more significant than the filled curves (blue lines) in

specific time intervals, despite that the parameter vector of the firsts

[evaluated at the lower bound of the PI; Equation (11a)] is smaller

than the one of the seconds [evaluated at the best parameter vector;

Equation (14)]. It may happen since, according to Equations (5b)

and (5d), the curves for variables I and U will be significant if

the γIR(t), γIU (t), and γUR(t) rates are close to zero in some time

intervals (which is the case of the segmented curves).

Concerning vaccination assessment relative to its immunity

duration, from Table 4, we infer that τ4 > 60 values do not adapt

to the dataset encompassing the MR’s second wave. Therefore, the

immunity duration should be less than 60 days. This exciting result

implies a short immunity duration during the MR’s second wave,

which is not surprising since vaccination at that time was not yet

widespread. In addition, this result would corroborate that the

vaccination effect is not as significant as the immunity provided by

natural infection, as discussed in Section 2.1.2.1. Indeed, the third

wave magnitude (the most prolonged and steepest so far) shows

that vaccination was relatively ineffective regarding protection

against infection before it. However, onemay think that vaccination

manifests a positive effect by the time of the third wave, which we

can infer from the fact that the ICU patient and death data are low

compared to the infected data during that wave.

Our results rely on the piecewise linear reconstruction of time-

varying parameters γIR, γSR, γRS, γIU , β , and γUR. We could

improve this arbitrary choice by assuming the mechanical laws of

the transmission rate (β) or other rates as, for example, in (21).

5. Conclusions

This work attempts to implement a holistic and general

modeling framework for quantitative tracking of the dynamics of

any transmissible disease, focusing on accurately predicting the

ICU curve trend in the medium term and assessing vaccination.

Implementing a careful optimization algorithm, we obtained

outstanding results concerning quantitative tracking of COVID-

19 dynamics for several processed datasets representing different

regions of Chile and assessing vaccination. In addition, a

parametric bootstrap technique allowed us to predict the ICU curve

trend in the medium term accurately and assess vaccination. As a

result, the scientific community could adapt our general modeling

framework to evaluate the impact of combined vaccination and

NPI strategies for COVID-19 or any transmissible disease in any

country and help visualize the potential effects of implemented

plans by policymakers.

In conclusion, the two main lessons are that we must be

prepared to face another pandemic like COVID-19 and that it is

more important to make more effort to follow up the ICU patients,

which are highly correlated with dead confirmed by COVID-19.

To tackle the first lesson, in future work, we want to improve

the computational cost of the parametric bootstrap technique

or use another technique more efficiently. The aim would be

to reconstruct epidemiological curves to predict the combined

NPIs and vaccination policies’ impact on the ICU curve trend

in real time, providing scientific evidence to help anticipate

policymakers’ decisions.
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