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Pillar stability is an important condition for safe work in room-and-pillar mines.

The instability of pillars will lead to large-scale collapse hazards, and the accurate

estimation of induced stresses at di�erent positions in the pillar is helpful for

pillar design and guaranteeing pillar stability. There are many modeling methods to

design pillars and evaluate their stability, including empirical and numerical method.

However, empirical methods are di�cult to be applied to places other than the

original environmental characteristics, and numerical methods often simplify the

boundary conditions and material properties, which cannot guarantee the stability

of the design. Currently, machine learning (ML) algorithms have been successfully

applied to pillar stability assessment with higher accuracy. Thus, the study adopted

a back-propagation neural network (BPNN) and five elements including the sparrow

search algorithm (SSA), gray wolf optimizer (GWO), butterfly optimization algorithm

(BOA), tunicate swarm algorithm (TSA), and multi-verse optimizer (MVO). Combining

metaheuristic algorithms, five hybrid models were developed to predict the induced

stress within the pillar. The weight and threshold of the BPNN model are optimized

by metaheuristic algorithms, in which the mean absolute error (MAE) is utilized as

the fitness function. A database containing 149 data samples was established, where

the input variables were the angle of goafline (A), depth of the working coal seam

(H), specific gravity (G), distance of the point from the center of the pillar (C), and

distance of the point from goafline (D), and the output variable was the induced

stress. Furthermore, the predictive performance of the proposed model is evaluated

by five metrics, namely coe�cient of determination (R2), root mean squared error

(RMSE), variance accounted for (VAF), mean absolute error (MAE), and mean absolute

percentage error (MAPE). The results showed that the five hybrid models developed

have good prediction performance, especially the GWO-BPNN model performed

the best (Training set: R2 = 0.9991, RMSE = 0.1535, VAF = 99.91, MAE = 0.0884,

MAPE = 0.6107; Test set: R2 = 0.9983, RMSE = 0.1783, VAF = 99.83, MAE = 0.1230,

MAPE = 0.9253).
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1. Introduction

The bord and pillar method has the advantages of less equipment

investment, flexible equipment operation, fast production, short

construction period, and simple support. It is widely used in the

United States, Australia, India, South Africa, and other countries, and

is the dominant method of coal mining. Among them, the stability

of the pillar determines the stability of the room-and-pillar goaf site

and is one of the prerequisites for the safe working conditions of

the room-and-pillar mine (1). Pillar design is the key to the success

of bord and pillar coal mining. Estimating the stress at different

positions in a pillar is very important to work out the pillar size

under the coal pillar strength conditions (2). The mining induced

stresses of the pillars constantly change and are highly influenced by

the dynamics of the formation equilibrium during the development

and depilating phases of coal mining.

There are various methods to evaluate mining-induced stresses

on coal pillars, such as empirical (3–7) and numerical methods

(8–12). An empirical method is a method of inductive analysis

by collecting some previous cases. Singh et al. (13) modified the

earlier developed empirical relationship to estimate the extent of

influence and the value of the final mining-induced stress on a

coal pillar. Although these empirical formulas are used to predict

pillar stress, they take fewer factors into account and have been

validated in only a few engineering sites, and cannot be applied

well beyond the original environmental characteristics. Numerical

modeling techniques based on the finite element method (FEM),

boundary element method (BEM), finite difference method (FDM),

and discrete element method, etc. are more advantageous than

the empirical methods in the complex stress conditions caused by

coal seam mining with compound geometric shapes (14). Some

researchers used numerical simulation methods to study pillar stress

state, pillar stability, and other characteristics (15–21). However,

despite the low cost and ease of operation of numerical methods,

there are many assumptions in the simulation process that require

simplified boundary conditions and material properties, leading to

idealized results that differ from the actual ones. In addition, the

results and accuracy vary due to the different forms of structural

discretization, which does not guarantee the accuracy of predictions,

and it is difficult to successfully apply this specially developed model

to other situations.

Recently, various machine learning algorithms have been

increasingly used in the engineering field and have shown excellent

predictive performance (21–32). A study by Cavaleri et al. (33)

demonstrated the good performance of BPNN in predicting the

average surface roughness of EDM surfaces. Psyllaki et al. (34) used

artificial neural networks (ANN) to conduct the corresponding study.

Armaghani et al. (35) constructed a hybrid model of a particle

swarm optimization neural network to predict the settlement of pile

foundations. Lu et al. (36) used tree prediction models and as well as

feature selection techniques to predict the punching shear capacity

of steel fiber reinforced concrete. Asteris et al. (37–40) also used

different machine learning models for prediction in their study and

the results proved that these machine learning models have excellent

prediction performance. The values of induced stresses on coal pillars

are related to several factors, and the influencing factors are complex

non-linear relationships with each other. Machine learning can

overcome the limitations caused by the non-linear high-dimensional

problems involved in engineering, has powerful data processing

capabilities, and develops machine learning algorithm models with

high applicability and flexibility. Based on this, machine learning

algorithms have been used to predict the relative performance of

pillars. Zhou et al. (41) applied Support Vector Machines (SVMs)

to determine pillar stability for underground mines selected from

various coal and stone mines by using various indicators, such as

width (W), height (H), W/H ratio, uniaxial compressive strength

of rock and pillar stress. It was found that the SVMs showed good

performance and can be applied as a practical tool for predicting pillar

stability. Ahmad et al. (42) proposed random trees and C4.5 decision

trees algorithms to predict pillar stability in underground coal and

quarry mines, and both models were able to predict pillar stability

with reasonable accuracy. Liang et al. (43) used Gradient Boosting

Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and

Light Gradient Boosting Machine (LightGBM) algorithms to predict

hard rock pillar stability and found good prediction capability of the

models. Monjezi et al. (2) used an artificial neural network (ANN)

to predict the stress of the mine pillar in the room-pillar method

and found the coefficient of determination (R2) 0.988 between

the calculated and predicted pillar stresses. The results were also

compared with the BEM and found that the predictive competence

of the artificial neural network was far better than that of the BEM

numerical solution.

Currently, neural-metaheuristic hybrid models are considered

and developed in many fields with high reliability (44–50).

Therefore, in this study, five hybrid models were constructed

to estimate the induced stresses at different locations within the

coal pillar by combining back-propagation neural network (BPNN)

and metaheuristic algorithms. Since the selection of weights and

thresholds of BPNN has a great impact on the network training,

and the random selection of hyper-parameters can lead to unstable

prediction performance of BPNN models, the optimal weights and

thresholds are selected by optimization techniques to ensure that the

models have the best performance. The five metaheuristics selected

for this study are the sparrow search algorithm (SSA), gray wolf

optimizer (GWO), butterfly optimization algorithm (BOA), tunicate

swarm algorithm (TSA), and multi-verse optimizer (MVO).

2. Methods

2.1. Sparrow search algorithm

SSA was inspired by the foraging behavior and anti-predation

behavior of sparrows (51) and has been applied to solve many

complex engineering optimization problems (52–55). A brief

description of SSA is as follows.

Sparrow population members are divided into three categories:

finders, entrants, and scouts. The role of finders is to find food,

providing all entrants with a foraging area and direction. The

position update of the finder during each iteration is described by

Equation (1).

Xt+1
ij =

{
Xt
ij · exp(

−i
α·Tmax

), R2 < ST

Xt
ij + Q · L, R2 ≥ ST

(1)

where t represents the current iteration number, Tmax is the

maximum number of iterations, Xt
ij is the position of the i sparrow
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in the j dimension, α is a uniform random number between [0, 1], Q

is a random number that follows a standard normal distribution, L is

a 1 × d matrix whose elements are all 1. R2 ∈ [0, 1], represents the

warning value; ST ∈ [0.5, 1], represents the safety value.

Entrants will follow the finders for foraging in order to obtain

food, and its position update is described by Equation (2).

Xt+1
ij =




Q · exp(

Xt
w−Xt

ij

i2
), i > N

2

Xt+1
p + |Xt

ji − Xt+1
p |A+L, otherwise

(2)

where Xt+1
p represents the best position of the finder at the t+1

iteration; Xt
w represents the global worst position at the t iteration;

A is a matrix of size 1 × d with elements randomly assigned to 1 or

−1, and A+ = AT
(
AAT

)−1
; N is the population size.

Scouts are responsible for reconnaissance and early warning,

alerting the entire population to give up foraging when danger

is detected. The position update of the scout is described by

Equation (3).

Xt+1
ij =





Xt
b
+ β ·

∣∣∣Xt
ij − Xt

b

∣∣∣ , fi > fg

Xt
ij + K ·

( ∣∣∣Xt
ij−Xt

w

∣∣∣
(fi−fw)+ε

)
, fi = fg

(3)

Where Xt
b
represents the global optimal position at the t iteration;

β is the step size parameter, which obeys the normal distribution

random number with mean 0 and variance 1; K is a random number

in the range [−1, 1]. fi, fw and fg are the individual fitness value, the

global worst fitness value, and the global optimal fitness value of the

current sparrow, respectively. ε is an extremely small constant that

prevents the denominator from being zero.

2.2. Gray wolf optimizer

GWO is a novel swarm intelligence optimization algorithm

inspired by the group predation behavior of gray wolves (56), which

has been applied in many engineering fields (57–60). There is a strict

hierarchy within the gray wolf group, and the entire wolf group is

divided into four levels, namely α, β , δ, and ω. As shown in Figure 1,

α is the optimal gray wolf, which is the leader of the wolf group and

has the right to decide all major issues of the entire wolf group; β is the

second-best gray wolf, assisting the leader wolf to make decisions; δ

is at the third level, responsible for sentry, reconnaissance and other

tasks; ω is the lowest level wolf and is under the command of the

first three levels of gray wolves in action. More descriptions of the

principle of GWO can be found in the literature (56, 61).

The predation process of gray wolves is divided into three

processes: search, surround, and attack. During the hunting process,

the individual gray wolf realizes the update of the position according

to the following formula to round up the prey.

D =
∣∣EC · EXp (t) − EXp (t)

∣∣ (4)

EX (t + 1) = EXp (t) − EA · D (5)

EA = 2Ea · Er1 − Ea (6)

EC = 2 · Er2 (7)

Where, t is the current number of iterations; D is the distance

between the individual gray wolf and its prey; EX is the position vector

of the individual gray wolf; EXp is the position vector of the prey; EA and
EC are coefficient vectors; Ea is the convergence factor that decreases

linearly from 2 to 0 with the number of iterations; Er1 and Er2 are vectors

of random numbers between [0,1].

2.3. Butterfly optimization algorithm

BOA is a metaheuristic algorithm proposed based on the foraging

and courtship behavior of butterflies (62). Assume that each butterfly

releases a certain intensity of scent and the concentration of the

released scent is related to its adaptation, while each butterfly senses

the scent of other butterflies around it and moves toward those

that emit more scent. The intensity of the fragrance produced by

butterflies is represented by Equation (8).

fi = cTα (8)

where fi is the scent intensity perceived by the i-th individual

butterfly, c is the sensory modality of the butterfly, T is the stimulus

intensity, α is a power exponential parameter that depends on the

sensory modality.

When the individual butterfly feels that a certain butterfly emits

more fragrance in this area, it will conduct a global search toward the

source of the fragrance. This process is represented by Equation (9).

xt+1
i = xti + r ∗

(
g∗ − xti

)
∗ fi (9)

where xti is the solution vector of the i-th butterfly in the t-th iteration;

g∗ represents the optimal solution among all solutions in the current

iteration; r is a random number between [0, 1].

When a butterfly cannot perceive a scent higher than its own, it

will fly randomly and perform a local search. The local search can be

expressed by Equation (10).

xt+1
i = xti + r ∗

(
xtk − xtj

)
∗ fi (10)

where xtj and xt
k
represent the solution vectors of the j-th and k-th

butterflies in the solution space of the t-th iteration. If xtj and xt
k

belong to the same population, and r is a random number within

(0, 1), it means a local random walk.

2.4. Tunicate swarm algorithm

TSA is a metaheuristic algorithm based on the jet propulsion

and swarm behavior of tunicates in the ocean during foraging (63).

Tunicates use two of their own behaviors to find food sources, jet

propulsion and swarm intelligence. A specific description of the

principle of the algorithm can be found in the literature (63). For

mathematical modeling of jet propulsion behavior, tunicates should

satisfy the following three conditions.

Avoid conflicts between search populations. To avoid the conflict

between tunicates, TSA calculates the new tunicate position through

Equation (11).

EX =
c2 + c3 − 2c1

|Vmin + c1 · Vmax − Vmin|
(11)
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FIGURE 1

Schematic diagram of GWO.

Where EX is the new tunic position; Vmin and Vmax are the minimum

and maximum initial speed of social interaction, respectively, and are

generally set as [1, 4]; c1, c2, c3 are random numbers between [0,1].

Move to the position of the best search individual.

ED =
∣∣EF − r · EP(x)

∣∣ (12)

where ED is the distance between the food and the searched individual;
EF is the position of the table food; x is the number of iterations; EP (x)

represents the position of the tunicate individual in the x-th iteration.

r is a random number between [0,1].

Converge to the optimal position.

EP
(
x∗
)
=

{
EF + EX · ED, r ≥ 0.5
EF − EX · ED, r < 0.5

(13)

where EP (x∗) is the updated position.

After modeling the individual jet propulsion behavior, the swarm

behavior is modeled. TSA saves the first two optimal solutions and

updates the positions of other search individuals according to the

position of the best search individual. Group behavior can be defined

using Equation (14).

EP (x+ 1) =
EP (x) + EP (x+ 1)

2+ c1
(14)

2.5. Multi-verse optimizer

MVO is a metaheuristic optimization algorithm, which has been

widely used in many fields (64–67). It is based on the principle that

matter in the universe is simulated by transferring from a white hole

to a black hole through a wormhole, which can be described in the

literature (64). Here are some brief introductions about MVO.

Assuming that the universe matrix exists in the search space is:

U =




x11 x21 . . . xd1
x12 x22 . . . xd2
. . . . . . . . . . . .

x1n x2n . . . xdn


 (15)

Where d is the spatial dimension, n is the number of universes.

Due to the different inflation rates of each individual universe, the

individuals in the universe are able to transfer through white or black

holes, chosen randomly using the roulette wheel method, as shown in

Equation (16).

x
j
i =

{
x
j

k
r1 < NI(Ui)

x
j

k
r1 ≥ Nl(Ui)

(16)

Where x
j
i is the j-th variable of the i-th universe, x

j

k
is the j-th

variable of the i-th universe selected by a roulette wheel selection

mechanism, Ui shows the i-th universe, NI(Ui) is a normalized

inflation rate of the i-th universe, r1 is a random number in [0,1].

The random transport of matter between universes through

wormholes to ensure population diversity and the movement of

individual universes toward the current optimal universe to increase

the inflation rate is given by the following equation.

x
j
i =





{
Xj + TDR ∗ ((ubj − lbj) ∗ r4 + lbj) r3 < 0.5

Xj − TDR ∗ ((ubj − lbj) ∗ r4 + lbj) r3 ≥ 0.5

xij r2 ≥ WEP

(17)

where Xj is the j-th variable of the optimal position found so far,

ubjand lbj respectively represent the upper and lower boundaries of

the search space where the j-th parameter is located, r2, r3, and r4 are

all random numbers between [0, 1].WEP and TDR are the wormhole

existence probability and the travelling distance rate, respectively, and

their expressions are as follows.

WEP = WEPmin + l ∗ (
WEPmax −WEPmin

L
) (18)

TDR = 1−
l1/p

L1/p
(19)

Where WEPmin and WEPmax are the minimum and maximum

values of parameter WEP, l, and L are the current number of

iterations and the maximum number of iterations, p is the exploit

precision in the algorithm.
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FIGURE 2

BPNN model framework for estimating induced stress.

FIGURE 3

Plan of a sub-panel (2).

2.6. Back propagation neural network

The back propagation neural network (BPNN) is a multi-

layer network that forwards signals and propagates errors

backwards. BP neural network has been studied and applied to

solve many problems (68–72), and is one of the most widely

used networks at present. It can simulate the information

transmission mode of human brain neurons, perform non-

linear transformation and regression processing on complex

information variables, and obtain operation results with a high

fitting degree. The structure of the BP neural network consists

of three layers: input layer, hidden layer, and output layer (52).

The number of hidden layers is not fixed, it can be one layer or

multiple layers.

Suppose the number of nodes in the input layer, hidden layer,

and output layer are l, m, n. The weight from the input layer to the

hidden layer is ωij, the weight from the hidden layer to the output

layer is ω
′

jk
, the threshold from the input layer to the hidden layer

is qj, and the weight from the hidden layer to the output layer is q
′

k
.

The excitation function g(t) is taken as a Sigmoid function with the

following equation.

g (t) =
1

1+ e−t
(20)
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FIGURE 4

Data distribution of the training set and testing set for the model.

TABLE 1 Descriptive statistics for input and output parameters.

Category Symbol Parameter Unit Min Max Mean Std.

Input A Angle of goafline ◦ 60 72 65.05 4.30

Input H Depth of the working coal seam m 186 253 231.65 29.18

Input G Specific gravity t/m3 2.01 2.5 2.16 0.21

Input C Distance of the point from the center of

the pillar

m 0.5 0.7 0.58 0.10

Input D Distance of the point from goafline m 2 82 38.28 20.19

Output S Induced stress MPa 8.9 28.3 16.48 4.90

Then the output of the neuron in each layer is:





Hj = g
(∑l

i=1 ωijxi − qj

)
, j = 1, 2, . . . ,m

Ok = f
(∑m

j=1 ω
′

jk
Hj − q

′

k

)
, k = 1, 2, . . . , n

(21)

where Hj is the output of the jth neuron in the hidden layer, Ok is the

output of the neural network, and xi is the input data.

Just like the information transmission between neurons in the

brain, after the input variables are input in the input layer, a linear

combination of the input variables will be obtained according to the

initially set weights. When the weights are continuously modified

such that the linear combination value exceeds the threshold, the

information is passed to the output layer (73). Figure 2 illustrates the

BPNN model framework for predicting induced stress at different

locations within the pillar in this study based on 5 input variables and

1 output variable.

3. Materials

3.1. Data description

The data used in this study refer to reference (2), and the database

used is from several coal mines whose geological and geometrical

conditions are basically the same and which are excavated by bord

and pillar method. The main purpose of this study is to predict the

induced stress at different locations within the same pillars. Figure 3

shows the plan of the sub-panel, in which Arabic numerals are used to

represent different locations within the same pillars. The parameters

affecting the induced stress level in the point are the angle of goafline

(A), depth of the working coal seam (H), specific gravity of the coal

(G), distance of the point from the center of the pillar (C), and

distance of the point from goafline (D). These five parameters have

been taken as input variables and the induced stress (S) within the

coal pillar point as the output variable in this study.
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FIGURE 5

Flowchart of SSA-BP, GWO-BP, BOA-BP, TSA-BP, and MVO-BP prediction models.

A total of 149 datasets were collected in this study to predict

stress magnitudes. Table 1 presents some statistics about the input

and output parameters (mean, range, and standard deviation) along

with their units and descriptions to better illustrate the used data

samples. In addition, in order to train and test themodel, the database

is randomly divided into a training set and a test set, and their

data distribution status is represented by a violin plot, as shown in

Figure 4. The violin plot is a combination of a box plot and a kernel

density plot, where the black boxes indicate the range from the lower

quartile to the upper quartile and the red dots in the middle represent

the mean (61). From the figure, it can be seen that the parameter data

distributions of the training set and testing set are approximately the

same in order to ensure that the results obtained in this study will

be reliable.

The overall analysis and modeling process of the five hybrid

models is shown in Figure 5. All data sets were normalized to

the range [−1, 1] in order to improve prediction accuracy and

avoid redundant computational costs. To build the mixture model

effectively, the collected database was randomly divided into 80%

training set and 20% test set based on the Pareto principle (74).

The weights and thresholds of the BPNN were then optimized

using five metaheuristic algorithms, and the mean absolute error
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FIGURE 6

Changes in the fitness values of hybrid models: (A) SSA-BP; (B) GWO-BP; (C) BOA-BP; (D) TSA-BP; (E) MVO-BP; (F) the fitness values of five di�erent

optimal population size models.

(MAE) was used as the fitness value in the optimization process to

determine whether to stop, and the optimal weights and thresholds

were assigned to the network predictions. Finally, the predictive

performance of the developed neural-metaheuristic hybrid model

was evaluated for the training and test sets using five evaluation

indicators (R2, RMSE, VAF, MAE, and MAPE).
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TABLE 2 GPI values for di�erent population sizes of the hybrid models.

SSA-BPNN GWO-BPNN BOA-
BPNN

TSA-
BPNN

MVO-
BPNN

GPI 50 3.029 −5.639 −1.966 −3.635 2.322

100 −0.618 −0.012 1.018 −1.155 0.257

150 −3.346 −3.845 1.099 4.861 −0.535

200 −3.929 1.454 3.686 0.331 −3.231

250 2.218 1.300 0.959 1.956 5.264

300 0.429 3.289 −5.667 1.444 −2.103

3.2. Model validation and evaluation

3.2.1. Evaluation indicators
Validation and evaluation of model performance play an

important role in the model building process. Therefore, in order

to effectively evaluate the quality of five hybrid prediction models,

namely SSA-BPNN, GWO-BPNN, TAS-BPNN, BOA-BPNN, and

MVO-BPNN, this study adopts coefficient of determination (R2),

root mean squared error (RMSE), variance accounted for (VAF),

mean absolute error (MAE), and mean absolute percentage error

(MAPE) as the evaluation indicators of the models. Generally, R2

and VAF values equal to 100, and RMSE, MAE, and MAPE values

equal to 0 indicate the best predictive performance of a model. The

interpretation of these indicators is given in the literature (75–89),

and their expressions are shown in Equations (22–26).

R2 = 1−

n∑
i

(
Si − Ŝi

)2

n∑
i

(
Si − S̄i

)2
(22)

RMSE =

√√√√ 1

n

n∑

i=1

(
Si − Ŝi

)2
(23)

VAF =

[
1−

var
(
Si -̂Si

)

var (Si)

]
× 100 (24)

MAE =
1

n

n∑

i=1

∣∣∣Si − Ŝi

∣∣∣ (25)

MAPE =
1

n

n∑

i=1

∣∣∣Si − Ŝi

∣∣∣
Si

× 100 (26)

where n is the number of input-output data pairs, S is the actual

column stress, Ŝ is the predicted column stress, and S̄ is the average

value of the actual column stress.

3.2.2. Global performance indicator
To avoid complex and tedious integration of scoring rankings,

this study uses the global performance indicator (GPI) for the

comprehensive evaluation of the model (75, 90). Before calculating

the GPI, each evaluation indicator needs to be normalized in the

interval [0, 1], after calculating according to the following equation.

GPIi =

5∑

j=1

βj

(
ỹj − yij

)
(27)

where βj is equal to 1 for RMSE, MAE, andMAPE, and−1 for R2

and VAF. ỹj is the median of the scaled values of indicator j and yij is

the scaled value of indicator j of model i. The less the RMSE, MAE,

andMAPE are than the median value, and the higher the R2 and VAF

are above the median value, the higher the GPI value is. It can be seen

that the better the performance of the model, the higher its GPI value.

4. Results and discussion

4.1. Determination of the optimal population
size for the model

To determine the optimal weights and thresholds to obtain

the best column stress prediction performance, five meta-heuristic

algorithms (SSA, GWO, BOA, TSA, andMVO) were used to tune the

weights and thresholds in the BPNN model, and the mean absolute

error (MAE) was used as the fitness. In this study, six population

sizes of 50, 100, 150, 200, 250, and 300 were designed for each of

the five hybrid models. the maximum number of iterations was set

to 500 to select the best optimal parameters. Figures 6A–E shows the

fitness curves of the five hybrid models with different population

sizes, and it can be seen that the optimal process is different for

different population sizes, and the MAE value decreases with the

increase of the number of iterations. The lowest fitness values of SSA-

BPNN, GWO-BPNN, BOA-BPNN, TSA-BPNN, and MVO-BPNN

were 1.0827, 0.92683, 1.03569, 1.10515, and 0.99775, corresponding

to the mixed models with population sizes of 200, 300, 200, 200, and

250, in that order. It indicates that these hybrid models perform best

in the training set. Of course, the fitness curve alone is not sufficient

to determine the optimal population size. Therefore, to determine the

optimal population size, we evaluated the model performance with

five indicators and calculated the GPI values of each model based

on the evaluation indicators, and the results are shown in Table 2.

Better models have higher GPI values, so the optimal population size

of SSA-BPNN is 50 (Training set: R2 = 0.9984, RMSE = 0.2009,

VAF = 99.84, MAE = 0.1262, and MAPE = 0.8477; Test set: R2 =

0.9980, RMSE= 0.1846, VAF= 99.80, MAE= 0.1400, and MAPE=

1.0736), the optimal population size of GWO-BPNN is 300 (training
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FIGURE 7

Correlation analysis between measured and predicted induced stress. (A) SSA-BP (Training). (B) SSA-BP (Testing). (C) GWO-BP (Training). (D) GWO-BP

(Testing). (E) BOA-BP (Training). (F) BOA-BP (Testing). (G) TSA-BP (Training). (H) TSA-BP (Testing). (I) MVO-BP (Training). (J) MVO-BP (Testing).

set: R2= 0.9991, RMSE = 0.1535, VAF = 99.91, MAE = 0.0884,

MAPE = 0.6107; test set: R2= 0.9983, RMSE = 0.1783, VAF = 99.83,

MAE= 0.1230, and MAPE= 0.9253), the optimal population size of

BOA-BPNN is 200 (training set: R2 = 0.9988, RMSE = 0.1750, VAF

= 99.88, MAE = 0.0934, and MAPE = 0.6607; test set: R2 = 0.9973,

RMSE= 0.2207, VAF= 99.71, MAE= 0.1543, andMAPE= 1.1900),
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TABLE 3 Ranking of di�erent models according to GPI.

SSA-BPNN GWO-BPNN BOA-BPNN TSA-BPNN MVO-BPNN BPNN RF RBF

GPI 0.060 0.191 0.072 0.056 0.017 −2.210 −9.809 −2.469

FIGURE 8

Model performance comparison in Taylor graph.

and the optimal population size of TSA-BPNN is 150 (Training set:

R2 = 0.9989, RMSE = 0.1667, VAF = 99.89, MAE = 0.1041, and

MAPE= 0.7292; Test set: R2 = 0.9975, RMSE= 0.2234, VAF= 99.75,

MAE= 0.1642, and MAPE= 1.2421), the optimal population size of

MVO-BPNN is 250 (training set: R2 = 0.9989, RMSE = 0.1692, VAF

= 99.88, MAE = 0.1076, and MAPE = 0.7078; test set: R2 = 0.9968,

RMSE= 0.2498, VAF= 99.67, MAE= 0.1754, andMAPE= 1.2480).

4.2. Comparative analysis of hybrid models

The correlations between predictions and measured induced

stresses for the five optimal mixedmodel training and test datasets are

shown in Figure 7. It can be seen from the figure that the training and

testing sample points of these hybrid models are basically distributed

near the perfect fitting line (“measured stress value= predicted stress

value”), and the R2 values are above 0.99, indicating that the five

optimization techniques based on BP neural network proposed in this

paper can achieve high training and testing outcome results.

In order to compare and evaluate the prediction performance

of the hybrid models, based on the previous discussion, three

classical machine learning models, BPNN, random forest (RF) and

radial basis function network (RBF), were also introduced in this

study for comparison, and the GPI values of each model were

calculated, and the detailed data are listed in Table 3. from the table,

it can be seen that the GWO-BPNN model has the best prediction

performance (on the training set, R2 = 0.9991, RMSE = 0.1535,

VAF = 99.91, MAE = 0.0884, and MAPE = 0.6107; on the test

set, R2 = 0.9983, RMSE = 0.1783, VAF = 99.83, MAE = 0.1230,

and MAPE = 0.9253). Figure 6F gives an iterative graph of the

objective optimization of the five hybrid models, from which it can

be seen that the GWO-BPNN hybrid model shows the best results on

the training set. In addition, to further demonstrate the superiority

of the hybrid model, the Taylor graph is utilized to more visually

show the performance of the model on the test set (as shown in

Figure 8). The Taylor graph shows the correlation coefficient, RMSE,

and standard deviation between the actual and predicted values of

the model (65, 75, 91–93). The Taylor graph shows that the hybrid

model significantly outperforms the un-optimized classical model.

In conclusion, while all hybrid models performed well in predicting

induced stress with high accuracy, the GWO-BPNN showed the

best predictive performance overall. It is therefore recommended to

apply GWO-BPNN to predict the induced stress at different locations

within the pillar.

It is important to note that the data used in this article are from

a study conducted with Monjezi et al. (2). They developed an ANN

model to predict induced stress at different locations in pillar and

pillar recovery. They report that in the testing phase, the optimal

ANNmodel has an R2 value of 0.988, an RMSE value of 0.056233, an

MAE value of 0.309281, and a MAPE value of 2.337007. Compared

with this study, the proposed GWO-BPNN model has an R2 value

of 0.9983, RMSE value of 0.1783, MAE value of 0.1230, and MAPE

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1119580
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhou et al. 10.3389/fpubh.2023.1119580

value of 0.9253, which is better than the ANN model developed by

Monjezi et al. (2).

5. Conclusions

Estimation of pillar stress plays an important role in determining

pillar size, room width and roof conditions. Thus, in order to predict

the induced stress at different positions within the coal pillar in room-

and-pillar mining method, five hybrid models based on BPNN and

metaheuristic algorithms were constructed in this study. The five

hybrid models (SSA-BPNN, GWO-BPNN, BOA-BPNN, TSA-BPNN,

and MVO-BPNN) were trained and tested using the established

database. The angle of goafline (A), Depth of the working coal seam

(H), specific gravity (G), distance of the point from the center of

the pillar (C), and distance of the point from goafline (D) were

taken as input variables, whereas the induced stress (S) were taken

as output variable. Model prediction performance was evaluated

using five evaluation indicators, GPI, and Taylor diagrams. The

experimental results show that the prediction performance of the five

hybrid models is significantly better than that of the un-optimized

models, and were better than the prediction results of the earlier

developed ANN model developed. Among them, the GWO-BPNN

model performed the best in both the training phase and the testing

phase (Training set: R2 = 0.9991, RMSE= 0.1535, VAF= 99.91,MAE

= 0.0884, MAPE = 0.6107; Test set: R2 = 0.9983, RMSE = 0.1783,

VAF= 99.83, MAE= 0.1230, MAPE= 0.9253).

It is worth noting that the prediction model developed in this

study can only be used to predict the induced stress in the mine

pillar, but the algorithms used can be applied to other engineering

practices. In addition, the limitation of using the mixed model to

predict induced stress in this research is that the data set is small, and

themodeling process only involves 149 cases. In the future, a database

with more samples and features needs to be established to ensure the

performance and stability of the prediction model.
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