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How does the air pollution
prevention and control action plan
a�ect sulfur dioxide intensity in
China?

Shuhai Niu, Yidong Chen, Ruiwen Zhang and Yanchao Feng*

Business School, Zhengzhou University, Zhengzhou, China

As a part of China’s e�orts to mitigate and control air pollution in key areas, the Air

Pollution Prevention and Control Action Plan was implemented in 2013, and several

regulatory measures were introduced. Based on the data from 271 prefecture-level

cities between 2008 and 2018, the di�erence-in-di�erences model is used to explore

the e�ect of it on sulfur dioxide intensity in our study, and several significant results

are as follows: (1) The baseline results suggest a 23% reduction in sulfur dioxide

intensity in pilot cities compared to non-pilot cities. (2) The total factor productivity

fails to play a partial mediating role in reducing the sulfur dioxide intensity under the

implementation of the policy. (3) The results of the triple di�erences model suggest

that the policy still exerts significant adverse e�ects on sulfur dioxide intensity in the

pilot areas of the carbon emission trading scheme.
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sulfur dioxide intensity, air pollution control policy, total factor productivity, quasi-natural
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1. Introduction

Taking advantage of China’s reform and openness, China has made remarkable economic

progress and improved people’s living conditions. However, it also leads to some problematic

environmental issues. Air pollution, represented by sulfur dioxide pollution, is a serious problem

that many developing countries, such as China, pay close attention to Arceo et al. (1). On the one

hand, sulfur dioxide pollution causes very high environmental costs due to its contribution to

fog-haze episodes (2). However, sulfur dioxide pollution can adversely affect human health and

ecological environment (3). China’s air pollution is severe as the world’s largest energy consumer

(4). For example, the 2007World Development Indicators data show that some cities exceed the

maximum air pollution index (above 500), while more than 60% of the world’s most polluted

cities are located on the Chinese mainland. According to the 2018 Environmental Performance

Index (EPI), China’s environmental performance index ranked fourth from the bottom in 2018.

Although the Chinese government has implemented a series of policies since the 1980’s to control

sulfur dioxide emissions and improve air quality, sulfur dioxide pollution remains high due to

large amounts of sulfur dioxide emissions into the atmosphere in some regions of China (5).

From the comparison presented in Figure 1, areas polluted with sulfur dioxide are still primarily

concentrated in the central and eastern regions. However, sulfur dioxide emissions in 2018 have

decreased, compared to sulfur dioxide pollution in 2008.

To improve air quality, China has been doing its best to control air pollution, as evidenced

by the 148 policy documents issued by the central government from 1973 to 2016 (6). For

instance, the first national conference on environmental protection was held in 1973, marking
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FIGURE 1

Sulfur dioxide emission in (A) 2008 and (B) 2018.

the beginning of China’s air pollution control efforts. In addition, the

Tentative Standards for Industrial Wastes Emission was promulgated

in 1973, which set industrial emission standards. In 1995, China tried

to achieve coordinated development of the regional economy, society

and atmospheric environment by issuing air pollution regulatory

standards, formulating planning opinions, issuing action plans,

and implementing policies and measures. In 2000, the Chinese

government promulgated the Law on the Prevention and Control

of Air Pollution, aiming to establish “two control areas” throughout

the country, namely acid rain prevention and control areas and

sulfur dioxide prevention and control areas. However, implementing

this policy can only curb the trend of acid rain and sulfur dioxide

pollution. It cannot reverse the problem of acid rain and sulfur

dioxide pollution. In particular, since General Secretary Xi Jinping

took office, the country has paid more attention to controlling

air pollution. In 2013, the State Council issued the “Action Plan

for Prevention and Control of Air Pollution,” which contains 10

provisions requiring that by 2017, the PM10 concentration at the

prefecture level and above cities will drop by more than 10%

compared to 2012, and the number of days with air quality standards

will increase year by year. PM2.5 concentrations in the Beijing-Tianjin

Hebei region, the Yangtze River Delta, and the Pearl River Delta

should fall by about 25, 20, and 15%, respectively (7). In addition,

the APPCAP policy has been called the strictest air pollution control

system in human history. From the data in Figures 2, 3, we can see

that in the second year after the implementation of the APPCAP

policy, sulfur dioxide emissions decreased significantly in 2015. At the

same time, the sulfur dioxide intensity also maintained a downward

trend year by year, but it remains to be explored whether this benefit

from implementing the APPCAP policy is worth further exploration.

Although there is growing evidence of the correlation between

environmental protection policy and environmental pollution (7–

9), there is a massive scarcity of empirical effort regarding China’s

APPCAP policy on air pollution intensity, especially sulfur dioxide

intensity. We regard the implementation of the APPCAP policy in

China as a quasi-natural experiment and study the impact of the

implementation of the APPCAP policy on sulfur dioxide intensity.

In 2013, the Chinese government established the APPCAP pilot

region in 47 cities. The APPCAP policy not only strictly constrains

the total amount of pollutants discharged, but also emphasizes the

comprehensive treatment of sulfur dioxide, NO compounds, volatile

organic compounds and micro-particulate matter. The APPCAP

policy can guide more social capital in the field of air control and

restrict the production activities of the heavily polluting industry

to a certain extent, thus benefiting air pollution control. In this

context, concerns are raised: Can the APPCAP policy reduce the

intensity of sulfur dioxide? If so, through which channels? Also,

is there heterogeneity in the APPCAP policy effects on sulfur

dioxide intensity among different regions? Answering these issues

provides helpful insights for China and other developing countries

to formulate similar environmental governance policies.

The contributions of our paper are primarily manifested in

four aspects. First, our research differs from previous literature

on the effect of air pollution control. We focus on pollution

on the intensity level, which provides a novel perspective for

analyzing the air pollution control effect of APPCAP. Secondly,

in this paper, various models are applied, such as, DID model,

PSM-DID model, IV test, DDD model, etc., which effectively

solve the problems of model selection bias, endogenous problem,

and sample selection bias and obtain sound research conclusions.

Third, to clarify the impact mechanism and mediating influence,

we select total factor productivity (TFP) as the mediating

variable in this paper. Last but not least, exploring the sulfur

dioxide intensity reduction effect of the APPCAP policy can

provide strong evidence for further expansion of this plan in

China and benefit other developing countries seeking to reduce

air pollution.

The remainder of our paper is structured as follows: Section

2 presents the literature review, and the empirical strategy is

described in Section 3. Section 4 shows the empirical results

and a series of analyses. Section 5 draws conclusions and

policy recommendations.
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FIGURE 2

National sulfur dioxide emission changes from 2000 to 2020.

2. Literature review

Our paper is mainly related to three types of literature. The first

type of literature is on research on energy efficiency and air pollution.

Energy efficiency is divided into single-factor energy efficiency and

total-factor energy efficiency. Although single-factor energy efficiency

can be measured in terms of energy consumption per capita of

GDP, total-factor energy efficiency considers the impact of multiple

input-output variables on energy factors. Gu and Yan (10) used data

from all A-share listed companies from 2008 to 2018 to find that

the promulgation of ambient air quality standards can significantly

reduce PM2.5 concentrations, and its implementation has remarkably

improved the total factor productivity of listed enterprises in pilot

cities. Wang et al. (11) found that regulating the atmospheric

environment can significantly inhibit the growth of industrial total

factor productivity by selecting panel data from 37 industrial sectors

in China from 2003 to 2016 as the research object. Using the panel

vector auto-regressive method (PVAR) and panel data from 30

provinces in China between 2005 and 2018, Li et al. (12) found that

improving agricultural green total factor productivity by significantly

reducing air pollution, in line with the work of Ahmed et al. (13),

who used the PMG method and panel data of 50 states of America

from 2005 to 2019. Based on the data from 30 provinces on the China

from 2004 to 2017, Liu et al. (14) use the difference-in-differences

(DID) method to find that the APPCAP policy has promoted the

improvement of provincial energy efficiency. However, the impact on

energy efficiency in different provinces is heterogeneous. Referring

to the research ideas and methods of the above paper, it is necessary

to consider the total factor productivity in our study and explore the

role of the total factor productivity in the control of air pollution by

the APPCAP policy.

The second type of literature describes and estimates the

temporal and spatial changes in air pollutants after implementing

the APPCAP policy. Based on panel data from 271 prefecture-level

cities from 2008 to 2018 and using difference-in-differences (DID)

and propensity score matching difference-in-differences (PSM DID)

methods, Yu et al. (7) found that APPCAP significantly reduced

PM2.5 concentration and SO2 emissions in the pilot areas. Based on

the panel data of PM2.5 concentration in 197 cities at the prefecture

FIGURE 3

National sulfur dioxide intensity changes from 2000 to 2020.

level and above in China from 2006 to 2016, Zhao et al. (15)

found that the APPCAP policy has a significant smog control effect

on the Beijing-Tianjin-Hebei region, but do not have noticeable

policy effects on the Yangtze River Delta and Pearl River Delta

regions. Zhang et al. (16) found that APPCAP effectively reduced

China’s per capita carbon emissions at the national level without

considering spatial spillover effects. Using the empirical data of 109

resource-based cities from 2004 to 2018, Wu et al. (17) find that

air pollution prevention and control actions significantly affect the

air quality of growing, mature, and declining cities. However, the

policy effect on regenerative resource-based cities is not apparent.

However, Huang et al. (18) estimated the health impact of APPCAP

on 74 critical cities from 2013 to 2017, suggesting that the effect

of APPCAP on ozone and nitrogen dioxide emission control was

not noticeable.

The third type of literature is the impact on human physical

and mental health and disease risk after implementing the APPCAP

policy. For example, Maji et al. (19) used air pollution data

from 35 points in Beijing from 2014 to 2018 and found that

Beijing’s air quality improved significantly over the past 5 years,

while PM2.5 and O3 mortality rates dropped remarkably. Yue

et al. (20) combine chemical transport models with remote

sensing and monitoring data and find a reduction in disease

and mortality associated with exposure to lower concentrations

of PM2.5 after implementing APPCAP. Zhao and Kim (21) use

nationally representative CFPS survey data conducted in 2012, 2014,

and 2016 and find that APPCAP significantly reduces physician-

diagnosed chronic diseases of the respiratory and circulatory systems.

However, Yue et al. (20) found that the policy implementation

effect of APPCAP is limited. More ambitious policies are needed

if DAPP (deaths attributable to PM2.5 pollution) is to be further

significantly reduced.

In summary, although the existing literature has done much

affluent research on the implementation effect of the APPCAP policy

from different perspectives, there is still a lack of analysis of the

national distribution data of APPCAP pilot cities (7), as well as little if

any empirical work has been done to investigate the APPCAP policy

effect on sulfur dioxide intensity.
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3. Empirical strategy

3.1. Empirical framework

Taking China’s APPCAP policy as a quasi-natural examination,

we conduct a DID model to explore such policy’s impact on sulfur

dioxide intensity. As a magnificent tool for policy assessment,

the DID estimation can principally avoid endogeneity problems.

Explicitly, our DID estimation can contrast sulfur dioxide intensity in

APPCAP cities (treatment group) and non-APPCAP cities (control

group) in the pre-and post-implementation of the APPCAP policy,

and the estimated equation is as follows.

ISOit = α0 + α1Timei × Treatt + γi Controlit + µi + θi + εit (1)

Where i denotes city, t indexes year, respectively. ISOit is the

independent variable and refers to sulfur dioxide intensity. If city

i implements the APPCAP policy, the value of Timei is 1, and

0 otherwise. Treati is the dummy variable. Treati =1 denotes the

APPCAP policy has been implemented and Treati = 0 represents

the APPCAP policy has not been implemented. Controlit is a series

of control variables. The city fixed effects (µi), and the year fixed

effects (θt) are also included in our equation. εit indicates the random

error term.

The coefficient of Time×Treat, α1, captures the net impact of

China’s APPCAP policy on sulfur dioxide intensity. Explicitly, a

negative and significant indicates that the APPCAP policy effectively

reduces sulfur dioxide intensity and approves the pollution-reduction

effect of the APPCAP policy. Instead, a positive and significant

indicates that the APPCAP policy aggravates sulfur dioxide intensity.

Furthermore, the insignificant suggests that the APPCAP policy fails

to influence pollutant emissions. In addition, Controlit implies the

control variables selected in this study, including per capita GDP,

industrial structure, industrialization level, population density, FDI,

temperature, and rainfall.

According to the method of Wen et al. (22), in order to figure

out the mediating effect of the mechanism, we choose the total factor

productivity (TFP) as our mediating variable to investigate the extent

of the influence of the explanatory variable on the explained variable

through the mediating variable. Furthermore, the explicit test model

is as follows:

ISOit = β1 + ω1Timei × Treatt + ρ1 (2)

TFPit = β2 + ω2Timei × Treatt + ρ2 (3)

ISOit = β3 + ω3Timei × Treatt + ω4TFPit + ρ3 (4)

Where β represents a constant and ω represents a coefficient

Matrix, ρ represents the error term, and TFPitrepresents the total

factor productivity. In addition to using the OLS estimation method,

the Bootstrap test is also used to verify whether TFP played an

intermediary role in the APPCAP policy’s effect on sulfur dioxide

intensity in our study. Among them, the Bootstrap method is

a non-parametric estimation method. When the final Bootstrap

confidence interval does not contain a value of 0, the mediating

effect is significantly not equal to 0. Through the Bootstrap test, the

robustness of the mediation effect can be further judged.

The test step is as follows: In step (1), we test the total effect;

if the coefficient ω1 is significant, step (2) is performed; otherwise,

the test ends. In step (2), we test the coefficients ω2 and ω4, and

when both are significant, the indirect effect is significant, and we

go directly to step (4) for further testing. If at least one of the two

is not significant, the test for step (3) will be performed. In step

(3), we perform a bootstrap check. When the results are significant,

indicating significant indirect effects and the procedure progresses

to step (4); Otherwise, the mediating effect is insignificant, and the

test stops. In step (4), we test the coefficient ω3; if the result is

significant, it indicates that the direct effect is significant, and the

process enters step (5); if it is not significant, then the direct effect

is not significant, we only find an intermediate effect, and the effect is

wholly mediated. In step (5), we compare whether ω2×ω4 and ω3 are

the same, if they are the same, indicating a partial mediating effect,

if different, indicating the presence of a masking effect. The above

process can determine whether the APPCAP policy is associated with

sulfur dioxide intensity by influencing the mediating variable, total

factor productivity (TFP).

3.1.1. Measures of sulfur dioxide intensity
Sulfur dioxide emission and GDP are selected to measure the

magnitude of sulfur dioxide intensity in our work, and we use sulfur

dioxide emissions to GDP to express sulfur dioxide intensity. In

particular, our empirical analysis below is dominated by Log (sulfur

dioxide intensity) and supplemented by sulfur dioxide intensity.

3.1.2. Measures of the APPCAP policy
Time × Treat, our core explanatory variable, represents a proxy

measure for the APPCAP policy shock. Specifically, if a city is an

APPCAP city, then the key explanatory variable is 1 in the ongoing

and subsequent years and 0 in all others. There are 47 cities in the

“three districts and ten groups” that belong to the vital air pollution

areas in APPCAP policy, such as Beijing–Tianjin–Hebei, Yangtze

River Delta, Pearl River Delta, central Liaoning, Shandong, Wuhan,

and its surrounding areas, Chang-Zhu-Tan, Chengdu, Chongqing,

the economic zone on the west side of the straits, central and northern

Shanxi, Shaanxi, Guanzhong, Ganning and Urumqi, accounting for

17.34% of all-city sample (271 cities) during sample period. These 47

cities are treated as the pilot cities (i.e., treated groups), and the rest

224 cities are treated as the non-pilot cities (i.e., control groups). The

mean values of the critical variables in the pilot and non-pilot cities

are provided in Table 1.

3.1.3. Measures of TFP
Malmquist was first proposed by the Swedish economist Sten

Malmquist in 1953 and has been widely recognized by the academic

community. Therefore, this paper uses Malmquist to measure TFP,

and its calculation formula is as follows:

Malmquistt =
Dt

(

xt+1, yt+1
)

Dt
(

xt , yt
) (5)

3.1.4. Source of data
APPCAP has been implemented since 2013, and therefore, this

study selects 2008–2018 as the regression period. The data of the

explained and explanatory variables and control variables in our

study are obtained from the “China City Statistical Yearbook,” “China
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TABLE 1 The main values of key variables in the pilot and non-pilot cities.

Variables Non-pilot period Pilot period

Non-pilot samples Pilot samples Non-pilot samples Pilot samples

Sulfur dioxide intensity 109.748 46.728 51.687 16.192

Urbanization level 51.812 52.952 52.760 52.559

Proportion of secondary industry 51.155 51.735 46.496 45.980

Proportion of tertiary industry 34.355 41.183 40.783 48.939

Industrialization level 44.646 44.665 41.424 41.710

Per capita gdp (yuan) 63,626.530 109,657.200 57,801.030 114,894.700

Proportion of energy saving expenditure 3.098 2.781 55,862.660 24,312.610

Population density (10,000 people/km2) 386.577 803.607 390.729 769.853

Energy consumption (10,000 tons of coal) 1,298.165 3,120.640 970.167 2,347.052

FDI (10,000 yuan) 45,117.020 281,775.100 57,811.600 320,500.500

Rainfall (mm) 959.056 1,082.276 3,740.900 4,717.751

Statistical Yearbook on the Environment from 2008 to 2018,” and

“The local Statistical Yearbook.” The per capita GDP is deflated using

the per capita GDP index based on 1978. Foreign direct investment

(FDI) is initially converted using the exchange rate and then deflated

using the fixed asset investment price index in 1990 as the base year.

The descriptive statistics of the variables are listed in Table 2.

4. Empirical findings

4.1. Baseline results

Table 3 reveals the baseline regression results of the effect of

China’s APPCAP policy on sulfur dioxide intensity. The logarithm

of sulfur dioxide intensity is taken as the outcome variable. Both

columns (1) and (2) control for the city-fixed effects, whereas the

difference is that column (2) also adds six city-level control variables.

Furthermore, we include year-fixed effects; the results are in columns

(3) and (4). Whether control variables are included or not, the

coefficients of Time×Treat are significantly negative at the level of

1%, indicating that the APPCAP policy can reduce the sulfur dioxide

intensity in pilot cities.

Through the analysis of column (4) in Table 3, we can find that

the estimated coefficient of the core explanatory variable is reduced

by 0.230 due to the implementation of the APPCAP policy. In other

words, sulfur dioxide intensity in pilot cities dropped by an average of

23% compared to non-pilot cities. Furthermore, the APPCAP policy

was first implemented in 2013; hence, the DID estimate captures

a 6-year average treatment effect. This means the APPCAP cities

reduce the intensity of SO2by 3.83% per year (23%/6). In sum, China’s

APPCAP policy effect is statistically and economically significant.

Considering the control variables, we primarily figure out the

estimation results in column (4) of Table 3. The coefficient of GDP

per capita is statistically and significantly negative, implying that

the increase in GDP per capita comes at the cost of more air

pollution. The positive effect of GDP per capita on sulfur dioxide

intensity outweighs the negative effects. The annual average rainfall

is significantly and negatively associated with sulfur dioxide intensity,

illustrating that cities with higher rainfall can effectively remove SO2,

in line with the findings of Dong et al. (23). As presented in Table 3,

other control variables, such as industrialization level and population

density, do not remarkably affect sulfur dioxide intensity.

4.2. Dynamic DID

The DID model requires no systematic differences in the trend

of sulfur dioxide intensity before implementing the APPCAP policy,

and even if there are differences, these differences are fixed. The

horizontal axis in Figure 4 implies the years before and after the

APPCAP policy, e.g., pre_3 suggests the third year prior to the

APPCAP policy and time_3 presents the third year after the APPCAP

policy. The results of the parallel trend test shown in Figure 5

show that the coefficient estimates for the APPCAP pilot cities in

the periods leading up to policy implementation are insignificant.

In the second year after the implementation of the policy, the

estimation coefficient gradually becomes significant and negative,

which indicates that the implementation of the policy has a specific

lagging effect and cannot have significant results in the current

period of policy issuance. In summary, there was no significant

difference between the pilot and non-pilot cities before the policy

implementation, and the effect began to be produced in the second

year after the policy implementation, so we consider that our study

sample passed the parallel trend test.

4.3. Robustness checks

4.3.1. PSM-DID estimates
In order to solve systematic differences, we further combine

propensity score matching with DID (PSM-DID). Namely, we

cannot guarantee that APPCAP and non-APPCAP cities have similar

characteristics before implementing the APPCAP policy. There may

be a considerable variation in the 271 cities we have chosen as samples

before, so we use the PSM-DID approach to mitigate systematically.

Table 4 shows the PSM-DID test results, indicating that the APPCAP

can reduce the sulfur dioxide intensity because the four cross-term

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1119710
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Niu et al. 10.3389/fpubh.2023.1119710

TABLE 2 Descriptive statistics.

Variables Unit Obs Mean Std. dev. Min Max

Sulfur dioxide intensity Tons/100 million yuan 2,663 69.82 98.069 0.078 1,117.189

Per capita GDP Yuan 2,758 69,588.108 44,479.502 11,282.535 704,725.910

Industrial structure Secondary/tertiary 2,758 1.358 0.597 0.234 5.714

Industrialization level 2,393 42.957 12.015 3.91 87.252

Population density Person/km2 2,733 457.602 390.154 1.499 3,822.741

Foreign investment 10,000 yuan 2,621 98,399.062 202,774.81 17 3,175,038.7

Rainfall Annual average rainfall 2,763 2,595.635 3,860.889 29.3 20,855.373

TABLE 3 DID regression results.

Variables (1) (2) (3) (4)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Time∗treat −1.273∗∗∗ −0.630∗∗∗ −0.243∗∗∗ −0.230∗∗∗

(−15.860) (−11.343) (−5.261) (−4.928)

Per capita GDP (ln) 0.211∗∗∗ 0.328∗∗∗

(3.361) (6.744)

Industrial structure 0.471∗∗∗ −0.032

(10.319) (−0.820)

Industrialization level (%) 0.133 0.010

(0.519) (0.050)

Population density (ln) −0.011 0.018

(−0.163) (0.345)

FDI (ln) −0.102∗∗∗ −0.011

(−5.060) (−0.676)

Rainfall (ln) −0.559∗∗∗ −0.084∗∗∗

(−34.086) (−3.358)

City fixed effect
√ √ √ √

Year fixed effect
√ √

Constant term 3.664∗∗∗ 5.714∗∗∗ 4.372∗∗∗ 1.341∗∗

(199.354) (7.096) (149.657) (2.087)

N 2,663 2,209 2,663 2,209

R2 0.095 0.544 0.754 0.731

t statistics in parentheses,∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

coefficients are significant at the significant level of 1%. The PSM-

DID approach is the same as the results of the DID approach, and

there is no significant difference in the estimated coefficients of the

interaction, implying that the APPCAP policy still effectively reduces

sulfur dioxide intensity, lending further support to the robustness of

the results.

4.3.2. Placebo test
To check whether omitted variables influence the DID estimates,

we designed a placebo test by randomly assigning APPCAP status

to cities so that we can figure out whether our findings are the

result of APPCAP policy. Because 47 cities are treated as pilot cities,

we decided to randomly select the same number of cities as the

treatment group, constituting a pseudo-interaction term. Then, we

perform the regression with the setting of Equation (1). Based on

our assumptions, and the results should not be remarkable unless

the random cities are the same as the actual cities. To make the

results more convincing, we ran the random procedure 500 and 1000

times, respectively.

Figures 4A, B show the distribution of the p-value obtained from

500 and 1,000 simulations randomly assigning the APPCAP status to

cities and the curve is the kernel density distribution of the estimation

coefficient. Furthermore, the horizontal dashed line is a significance

level of 0.1, andmost of the estimates’ p-value is more prominent than

0.1, implying that passing the great test is a small probability event.
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These observations suggest that unobserved factors do not drive the

adverse and significant effects of APPCAP on sulfur dioxide intensity.

4.3.3. Substitute dependent variable
To further eliminate the possibility of primary regression results

being influenced by other factors, we conduct a robustness test on

the DID model result by substituting the dependent variable because

we consider that the impact of the APPCAP is not limited to sulfur

dioxide intensity. Therefore, we choose carbon dioxide emissions and

carbon intensity as the dependent variable. We can assume that the

result is robust if the cross-term coefficients between the time and

treat dummy variable are remarkable. The result in Table 5 shows that

the core conclusions of this study still stand.

4.3.4. DDD estimates
To further demonstrate that our results are robust, this study

expands the DID model to a DDDmodel by introducing the dummy

variable of the carbon emission trading scheme, and the areas

covered by the carbon emission trading scheme include Chongqing,

Beijing, Tianjin, Shanghai, Guangdong, and Hubei. The triple cross-

term can be understood as a change in sulfur dioxide intensity

of the pilot area after the implementation of the carbon emission

trading scheme and the APPCAP simultaneously. The coefficient of

triple cross-term can be understood as the net effect of APPCAP

on sulfur dioxide intensity in pilot areas after taking into account

initial differences in policy effect caused by various external factors,

the influence of different explanatory variables, differences between

pilot and non-pilot areas, and the implementation of carbon market

construction policies. As we can see in Table 6, both columns (1) and

(2) control for the city-fixed effects, whereas the difference is that

column (2) also adds six city-level control variables. Furthermore,

we include year-fixed effects; the results are given in columns (3)

and (4). In column (4) of Table 6, the coefficients are significantly

negative at the 5% level, indicating that the implementation of

the APPCAP has significantly reduced the sulfur dioxide intensity

in the pilot areas when the carbon emission trading scheme

is implemented.

4.4. IV estimates

Various potential factors can affect the selection of APPCAP

cities, which will further lead to the estimation bias of the DID

model. Furthermore, our DID estimates would inevitably suffer

from endogeneity problems if these factors simultaneously influence

Time × Treat and sulfur dioxide intensity. Therefore, our study

takes an IV test as an additional robustness test by using the

ventilation coefficient as an instrumental variable based on Hering

and Poncet (24).

An IV should satisfy both relevance and exogenous. First,

does the ventilation coefficient satisfy the relevance requirement?

According to the study by Box (25), wind speed influences horizontal

pollution dispersion, and the mixed layer height can affect vertical

pollution dispersion. Therefore, we define the ventilation coefficient

as the product of wind speed and mixed layer height. The higher

the value, the faster the pollution spreads; this means that there

is a negative relevance between the ventilation coefficient and the

FIGURE 5

Parallel trend test of sulfur dioxide intensity in the experimental and

control groups.

FIGURE 4

Placebo test. (A) 500 times. (B) 1,000 times.
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sulfur dioxide intensity, in line with the relevance requirement.

Second, does the ventilation coefficient satisfy the exogenous

requirement? According to the method of Yu et al. (7), we

collect wind speed information for 10m height and boundary

layer height (used to measure mixed layer height for 75 × 75

grids) in the ERA data. This data is from the European Center

for Medium Weather Forecasting (ECMWF), which means that

the ventilation coefficient has no direct relationship with sulfur

dioxide intensity. Therefore, the ventilation coefficient fulfills the

exogenous requirement.

Table 7 represents the estimated results of our IV test, and the

estimated coefficients of Time∗ventilation coefficient from column (1)

to column (4) are significantly negative at the 1% level. Therefore,

our results are still robust. To sum up, even considering the potential

selection bias problem in pilot cities, APPCAP policy still contributes

to reducing sulfur dioxide intensity, which highlights the robustness

of the core finding of this study.

4.5. Heterogeneity analysis

The pilot areas differ in many ways, for instance, in the climate,

human factors, economic conditions, and natural environment.

Therefore, to test whether regional differences will lead to bias in

the regression results, in other words, we need to figure out if

the APPCAP policy affects the pilot areas in different conditions,

so we perform a heterogeneity analysis. We further divide the 47

pilot cities into three dimensions for DID regression, respectively,

and the three dimensions are east and mid-west, heating and

non-heating, and coastal and inland. Finally, we can consider our

conclusion of this study to be robust if the cross-term coefficient

is remarkable. Table 8 shows that all the cross-term coefficients are

significantly negative at the 1% level, which means that the APPCAP

policy has significantly reduced the sulfur dioxide intensity in the

east or mid-west, heating or non-heating, and coastal and inland

pilot areas.

4.6. Impact mechanism test

Table 9 reports the regression results for Equation (2), (3), and

(4). Column (1) is the result of regression to Equation (1); the test

results in column (1) show that the influence coefficient of the core

explanatory variables on sulfur dioxide intensity is −0.299, which is

significantly negative at the 1% level. Furthermore, it means that the

implementation of the APPCAP policy can reduce the sulfur dioxide

TABLE 4 PSM-DID estimates.

Variables (1) (2) (3) (4)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Time∗treat −1.273∗∗∗ −0.630∗∗∗ −0.243∗∗∗ −0.230∗∗∗

(−15.860) (−11.343) (−5.261) (−4.928)

Control variables
√ √

City fixed effect
√ √ √ √

Year fixed effect
√ √

Constant term 3.664∗∗∗ 5.714∗∗∗ 4.372∗∗∗ 1.341∗∗

(199.354) (7.096) (149.657) (2.087)

N 2,663 2,209 2,663 2,209

R2 0.095 0.544 0.754 0.731

t statistics in parentheses, ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 5 Substitute dependent variable estimates.

Variables (1) (2) (3) (4)

Carbon dioxide (ln) Carbon dioxide (ln) Carbon intensity (ln) Carbon intensity (ln)

Time∗treat −0.053∗∗∗ −0.051∗∗∗ −0.003∗∗ −0.001∗

(−7.253) (−7.159) (−2.423) (−1.671)

Control variables
√ √

City fixed effect
√ √ √ √

Year fixed effect
√ √ √ √

Constant term 2.955∗∗∗ 2.474∗∗∗ 0.026∗∗∗ 0.057∗∗∗

(635.583) (25.897) (30.957) (5.477)

N 2,723 2,241 2,722 2,241

R2 0.697 0.732 0.269 0.406

t statistics in parentheses, ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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TABLE 6 DDD test estimates.

Variables (1) (2) (3) (4)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Time∗treat∗market 0.814∗∗∗ 0.218 −0.238∗∗ −0.234∗∗

(3.855) (1.498) (−2.081) (−2.020)

Treat∗carbon market 0.425 0.622∗∗ 0.892∗∗∗ 0.697∗∗∗

(1.029) (2.288) (4.048) (3.281)

Time∗carbon market −1.106∗∗∗ −0.556∗∗∗ −0.078 −0.009

(−10.556) (−7.635) (−1.311) (−0.150)

Time∗treat −1.206∗∗∗ −0.576∗∗∗ −0.196∗∗∗ −0.194∗∗∗

(−13.104) (−9.179) (−3.681) (−3.649)

Control variables
√ √

City fixed effect
√ √ √ √

Year fixed effect
√ √

Constant 3.699∗∗∗ 5.926∗∗∗ 4.331∗∗∗ 1.464∗∗

(141.209) (7.464) (141.067) (2.276)

N 2,663 2,209 2,663 2,209

R2 0.136 0.559 0.756 0.733

t statistics in parentheses, ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 7 IV estimates.

Variables (1) (2) (3) (4)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Time∗ventilation coefficient −3.060∗∗∗ −1.464∗∗∗ −4.133∗∗∗ −2.687∗∗∗

(−4.594) (−2.950) (−10.893) (−7.733)

Control variables
√ √

Year fixed effect
√ √

City fixed effect
√ √

Constant term 4.355∗∗∗ 1.168 3.931∗∗∗ 3.587∗∗∗

(35.164) (1.507) (94.768) (3.232)

N 2,653 2,200 2,653 2,200

z-statistics in parentheses, ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

intensity. Column (2) is the result of regression to Equation (2),

showing that the coefficient is insignificant. Column (3) is the result

of regression to Equation (3). The test results in column (3) show that

after controlling TFP, the impact coefficient of the core explanatory

variables on sulfur dioxide intensity is −0.289, which is significantly

negative at the 1% level. So we cannot directly conclude whether

TFP has a mediating effect, so we further perform a Bootstrap test

to find out whether the mediating effect of TFP exists. Based on

the above results, we further perform a Bootstrap test, as shown

in Table 10, the revised confidence interval does not contain 0, so

we can conclude that implementing the APPCAP policy can reduce

the sulfur dioxide intensity, and TFP failed to play a mediating role

in it.

5. Conclusions and policy implications

It is generally believed that implementing environmental

regulatory policies is an effective tool for air pollution governance.

To improve air quality, China has piloted the APPCAP policy since

2013. Evaluating the influence of the APPCAP policy on sulfur

dioxide intensity is of great significance for environmental regulatory

policy formulation and economic development in China and other

developing countries. Based on a panel data covering 271 prefecture-

level cities between 2008 and 2018, our paper isolates the effect of

the APPCAP policy on sulfur dioxide intensity with the employment

of DID method and PSM-DID approach. We draw several main

findings: (1) The baseline results suggest a 23% reduction in sulfur
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TABLE 8 Heterogeneity analysis.

Variables (1) (2) (3) (4) (5) (6)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Sulfur dioxide
intensity (ln)

Time∗treat −0.200∗∗∗ −0.416∗∗∗ −0.176∗∗∗ −0.255∗∗∗ −0.285∗∗∗ −0.240∗∗∗

(−3.294) (−4.805) (−2.621) (−3.859) (−3.202) (−4.193)

Control variables
√ √ √ √ √ √

City fixed effect
√ √ √ √ √ √

Year fixed effect
√ √ √ √ √ √

Constant term 3.043∗∗∗ −1.754∗ 1.123 1.117 1.270 0.620

(3.325) (−1.865) (1.139) (1.255) (0.959) (0.815)

N 1,031 1,178 1,083 1,126 514 1,695

R2 0.732 0.749 0.742 0.731 0.726 0.741

t statistics in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 9 Impact mechanism estimates.

Variables (1) (2) (3)

Sulfur dioxide intensity (ln) TFP Sulfur dioxide intensity (ln)

Time∗treat −0.299∗∗∗ 0.068 −0.289∗∗∗

(−4.576) (0.947) (−4.456)

TFP −0.113∗∗∗

(−5.969)

Control variables
√ √ √

City fixed effect
√ √ √

Year fixed effect
√ √ √

N 2,164 2,204 2,164

R2 0.325 0.001 0.336

Standard errors in parentheses, ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

TABLE 10 Bootstrap test: Total factor productivity.

Trails E�ect ω-value S Z-value P-value 95% confidence interval

Lower limit Upper bound

ω3 Direct effect −0.235 0.035 −6.66 0.000 −0.304 −0.180

ω2
∗ω4 Intermediary effect 0.001 0.001 0.99 0.321 0.001 0.003

dioxide intensity in APPCAP cities compared to non-APPCAP

cities. (2) An IV test deals with potential endogeneity problems,

corroborating the baseline results. (3) The results of the DDD model

suggest that China’s APPCAP still exerts significant adverse effects

on sulfur dioxide intensity in the pilot areas of the carbon emission

trading scheme. (4) Our mechanism analysis indicates that total

factor productivity (TFP) fails to play a partial mediating role in

reducing the sulfur dioxide intensity under the implementation of

the APPCAP policy. (5) The APPCAP policy significantly adversely

affects the sulfur dioxide intensity in the heterogeneous analysis.

We derive three policy recommendations from our results. First,

the Chinese government should further expand the scale of its

APPCAP policy. Our main finding is that the APPCAP policy

has a powerful sulfur dioxide intensity reduction effect. Further

expansion of the APPCAP policy can improve air quality while

ensuring rapid economic development. Moreover, non-APPCAP

regions can learn from APPCAP regions’ successful experiences.

Because of the regional difference, the APPCAP policy should be

formulated with sufficient consideration of local air pollution and

economic development. It is vital to combine policies tailored to

local conditions. In addition, if we properly combine the APPCAP

policy with other local policies in different cities, it will likely have an

excellent synergistic effect.

Second, the government should further improve the APPCAP

policy to cover as many air pollutants as possible and specify specific

emission control targets, such as adding long-term specific emission

control indicators for air pollutants such as SO2, NO2, CO, and O3,

in order to achieve the vision of gradually upgrading air quality
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standards and catching up with national air quality standards as

soon as possible. At the same time, the specific formulation of policy

formulation should also depend on improving air quality and cannot

be rigid, blind, and “one-size-fits-all.”

Third, as a potential intermediary factor, total factor productivity

is vital in reducing sulfur dioxide intensity under the APPCAP

policy, while the effectiveness of it is poor in this study. Therefore,

China’s local government departments should pay more attention

to the energy efficiency of enterprises and how to improve the

energy efficiency of enterprises in the first place, which not only

has a positive impact on air governance but also helps to improve

the level of local economic development. In addition, government

departments should establish the concept of green development

and innovative development, increase investment in R&D subsidies

for local enterprises, and encourage enterprises to develop new

technologies and improve energy efficiency to improve air quality.
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