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Introduction: This study sets out to provide scientific evidence on the spatial risk

for the formation of a superspreading environment.

Methods: Focusing on six common types of urban facilities (bars, cinemas, gyms

and fitness centers, places of worship, public libraries and shopping malls), it first

tests whether visitors’ mobility characteristics di�er systematically for di�erent

types of facility and at di�erent locations. The study collects detailed human

mobility and other locational data in Chicago, Hong Kong, London, São Paulo,

Seoul and Zurich. Then, considering facility agglomeration, visitors’ profile and the

density of the population, facilities are classified into four potential spatial risk (PSR)

classes. Finally, a kernel density function is employed to derive the risk surface in

each city based on the spatial risk class and nature of activities.

Results: Results of the human mobility analysis reflect the geographical and

cultural context of various facilities, transport characteristics and people’s lifestyle

across cities. Consistent across the six global cities, geographical agglomeration

is a risk factor for bars. For other urban facilities, the lack of agglomeration is a risk

factor. Based on the spatial risk maps, some high-risk areas of superspreading are

identified and discussed in each city.

Discussion: Integrating activity-travel patterns in risk models can help identify

areas that attract highly mobile visitors and are conducive to superspreading.

Based on the findings, this study proposes a place-based strategy of non-

pharmaceutical interventions that balance the control of the pandemic and the

daily life of the urban population.

KEYWORDS

pandemic, superspreading environment, public facilities, spatial risk, facility

agglomeration, place-based strategy

1. Introduction

Disease outbreaks can be triggered by superspreaders who infect a disproportionately

larger number of people than would be suggested by the basic reproduction number (Rt)

(1–4). From a public health perspective, identifying and isolating these patients in a timely

manner can be critical in stopping the spread of an epidemic. This was one of the major

lessons learned from the severe acute respiratory syndrome (SARS) outbreak in 2002–2004

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1128889
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1128889&domain=pdf&date_stamp=2023-04-05
mailto:kahotsoi@hku.hk
https://doi.org/10.3389/fpubh.2023.1128889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1128889/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Loo et al. 10.3389/fpubh.2023.1128889

(5). Beyond individuals, a superspreading environment can exist

across space and time. While research on superspreaders focuses

on people, a superspreading environment needs to consider

the interactions of people, environment and the pathogen.

Theoretically, an individual’s reproductive number can be seen

as a random variable representing the expected number of cases

caused by a particular infected individual (6). The spatial risk factor

is affected by the number and characteristics of visitors, and the

functions and conditions of a place, among others. Identifying

and closing down selected facilities can help stop the spread

of an epidemic within a community by eliminating high-risk

superspreading environments (7). However, focused research on

spatial risk factors contributing to a superspreading environment

has been limited. Moreover, the relationship is highly complex.

In particular, a superspreading environment is not only caused by

physical or environmental factors, such as ventilation and building

design, but also a multitude of human factors, including the

characteristics and activities of visitors. Medical factors, including

and the transmission mechanisms and Rt, also play a crucial role.

With COVID-19, many governments have implemented non-

pharmaceutical interventions to avoid overwhelming hospital and

intensive care unit capacity during 2020–2022 (8, 9). While early

interventions have proven to be effective in slowing down the

disease, there are enormous socio-economic costs that hugely

disrupt the economy and daily life of people (10, 11). So

far, government interventions tend to follow a rather broad-

brush approach based on complete lockdowns or the closure

of public facilities by broad categories (12). Can a more

differentiated approach be adopted? This study sets out to provide

scientific evidence for more differentiated non-pharmaceutical

interventions. Focusing on six common types of facilities (bars,

cinemas, gym and fitness centers, places of worship, public libraries

and shopping malls), it first tests whether visitors’ mobility

characteristics vary for different facility types and at different

locations. Stemming from classical locational theories of Christaller

and Losch, facility agglomeration is not only associated with

external economies of scales but also different social mix of people

(13). This pattern has been validated in a recent study about

COVID-19 in Hong Kong (7). In order to establish evidence

beyond one city, this study collects detailed human mobility data

in six major global cities across four continents (Chicago, Hong

Kong, London, São Paulo, Seoul and Zurich) to see whether

the identified patterns are consistent. Again, as validated in

the case of Hong Kong, although the historical mobility data

do not cover the COVID-19 period, human mobility patterns

demonstrate a high degree of temporal regularity which can

provide very useful implications in epidemic prevention (14,

15). Methodologically, this study offers a novel approach that

integrates human mobility, facility and activity data in identifying

a superspreading environment. More broadly, the integration of

mobility patterns in superspreading analysis is essential because a

visitor who has a high travel intensity (a visitor making more trips

and longer distances on the same day) is more likely to spread the

disease. Just examining the density or volume of visitors does not

take into account the disease spread risk based on the travel profile

of visitors. The attempt of applying mobility data in understanding

superspreading is, therefore, timely and needed.

2. Literature review

A superspreading environment exists when several conditions

are met. Figure 1 shows these risk factors. The first group of

factors relate closely to the absolute number of visitors at a

location. As in safety analysis, the density and volume of vehicles

and people directly increase the exposure of individuals to traffic

crashes (16, 17). In the context of disease spread, the more

visitors that a place has, the higher is the chance that one gets in

touch with an infected individual, especially when asymptomatic

individuals continue to carry out daily activities outside homes

(18–20). In relation, many cities introduced non-pharmaceutical

interventions, such as the banning of mass gatherings. In Hong

Kong, a major indicator on the intensity of such interventions

is the maximum group size allowed in restaurants; it ranged

from 2 only during the tighter period to 30 during more

relaxed time (21). These are the exposure-related factors in

Figure 1.

The next group is human-mobility factors which capture the

characteristics of people visiting a particular location (Figure 1).

Some places attract visitors who are highly mobile and socially

active. They carry out diverse activities by traveling and meeting

a lot of people throughout the day. In contrast, some facilities may

mainly be used by people who stay in their neighborhoods most of

the time. A recent study uses a historical dataset on urban mobility

to calculate the generalized activity space and the volume of space-

time prisms of individuals in Hong Kong during a pre-pandemic

period (7). It was found that the concentration of some facilities,

such as bars, can greatly increase the chance of disease outbreaks as

they tend to attract highly mobile and socially active patrons from

far away. Yet, the lack of agglomeration can give rise to a highly

mobile profile of visitors for other facilities. In other words, the

nature and type of public facilities matter in explaining mobility

characteristics of visitors and the formation of a superspreading

environment (7, 22).

The third group is comprised of environmental factors

(Figure 1). They include the physical settings of a place. Indoor

places with poor airflow and ventilation are at risk (23). In

particular, aerosol transmission is likely as respiratory droplets

(diameter >5–10µm) and droplet nuclei (diameter <5µm)

tend to build up in closed spaces (24). Other meteorological

conditions like temperature and humidity are relevant, with

cold temperature combined with high humidity being more

favorable to coronavirus survival and disease spread (25, 26). The

chemical nature and concentration of particulate matters, as well

as surface characteristics, also count (27). In an area where the

population density is high and indoor environment with central air

conditioning is common, the risk of disease spread also increases

(28, 29).

The fourth group refers to activity-related factors (Figure 1).

Places have different functions. Some activities that involve close

physical contact (such as dancing) and taking off face masks (such

as singing, eating, drinking and doing physical exercise) are high-

risk (30, 31). The duration of engaging in these activities without

face masks and without social distancing also matters (32, 33).

Reports of irresponsible behavior of infected individuals, such as

intentionally ignoring self-isolation, going to crowded places, as
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FIGURE 1

A schematic diagram of risk factors for the formation of a superspreading environment.

well as deliberately sneezing or coughing in public spaces and on

common items, have raised concerns (1).

While these factors have been examined in isolation, it is only

recently that a synthesis of the analysis in specific geographical

settings and at a city scale has been conducted (7, 22, 34). This

is the research gap that this study aims to fill. Can data on

facility location, activities and human mobility be combined to

identify a superspreading environment? In particular, is there

any relationship between facility agglomeration and visitors’ travel

intensity? Would a concentration of facilities attract highly mobile

visitors that further increases the chance of superspreading? By

answering these questions, this research contributes to the literature

of the spatial spread of diseases. Practically, identifying areas of

higher superspreading risks can help governments to formulate

place-based measures, such as closing selected public facilities

at designated places rather than a uniform policy of complete

lockdown or closing of all major public facilities in a non-

discriminatory manner. With the COVID-19 pandemic, there

are more focused studies on the value of non-pharmaceutical

interventions in controlling disease spread and mitigating the

impacts of the pandemic. One highly-relevant study evaluates

the impacts of implementing confinement measures and mobility

restrictions based on the calculation of the effective reproduction

number (35). Other studies suggest that government interventions

implemented in different periods of the pandemic, such as

confinement, limiting geographical mobility and displacing high-

risk passenger groups in public transport, were effective in

controlling disease spread (36–38). Adopting more differentiated

non-pharmaceutical interventions could help maintain a balance

between public health risk and urban vibrancy, especially in global

cities. It would also allow the urban population to maintain at least

some social activities, such as eating out with friends, reading books

in libraries, attending religious events, and doing physical exercise.

Urban social life plays an important role in the psychological and

physical wellbeing of the population.

3. Materials and methods

Following the daily routines in cities, we select six common

types of urban facilities. Bars, shopping malls, cinemas, public

libraries, and sports centers are also the points of interest (PoIs)

examined in Loo et al. (7). However, as small shopping centers are

difficult to define in a cross-country setting, only department stores

and shopping malls are included in this international comparison.

In addition, we also include places of religious worship due to the

identification of disease clusters associated with religious places

where the sharing of common items, such as bibles and food, is

common (32). The detailed procedures are explained in Section 3.3.

3.1. Study areas

The six global cities selected in this study are Chicago in the

United States, Hong Kong in China, São Paulo in Brazil, London

in the UK, Seoul in South Korea and Zurich in Switzerland. The

selection criteria are primarily based on geographical coverage

(covering as many continents as possible), connectivity (Alpha

cities in the Globalization and World Cities Research Network,

GaWC, city classification), and the availability of disaggregate travel

databases for detailed mobility analysis. These cities are in four

different world regions, that is, Asia, Europe, North America and

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1128889
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Loo et al. 10.3389/fpubh.2023.1128889

South America. The study area statistics, including the territorial

size, population, GDP per capita, number of COVID cases, and

number of COVID fatalities (up data available in May, 2022) are

summarized in the Supplementary material.

3.2. Data

Three major types of data are used to conduct the analysis of

superspreading environment. Table 1 summarizes the sources and

information of the extracted datasets. Firstly, locational data were

compiled. The data sources are the OpenStreet Map database and

local authorities’ geographical information system databases. We

adopted the amenity classification from OpenStreet Map to extract

the six types of PoIs in each city based on the amenity/shop/leisure

tags. This is to maintain consistency across cities. To illustrate,

we first used several keywords to identify the six types of PoIs,

including “amenity = bar” for bars, “amenity = cinema” for

cinemas, “leisure = fitness center” for gym and fitness centers,

“amenity = place_of_worship” for places of worship, “shop =

mall” for shopping malls, and “amenity = library” for public

libraries. The extracted datasets were then further validated and

checked manually. To illustrate, we have cross-validated the

OpenStreet Map datasets for libraries against the official locations

of public libraries from the respective government websites and

spatial databases.

Secondly, human mobility data were extracted from travel

surveys. These datasets generally record detailed travel and activity

information (i.e., trip origins, trip destinations, trip purpose, travel

time, and transport modes) covering at least one sample survey day.

Travel data in Chicago, Hong Kong and São Paulo were extracted

from the most updated large-scale travel diary surveys conducted

by local authorities. The Zurich dataset was compiled from a

research project by ETH Zurich that has applied the methods of

both survey questionnaires and GPS tracking on mobile phones

to record human travel behavior (45). Datasets of Chicago, São

Paulo and Zurich used in this study were trimmed from a larger

survey database. For instance, relevant travel records within the

city of Chicago came from a bigger dataset that covers the region

of North-eastern Illinois. Note that only data within the city areas

were consolidated and analyzed. For most mobility datasets, data

expansion factors are provided officially so we apply the data

expansion factors before analysis. For those without expansion

factors (i.e, Zurich and Seoul), we calculated the expansion factors

based on the actual sociodemographic features (i.e., age groups

and gender) and sociodemographic profiles of respondents in the

survey. To conduct travel behavior analysis, network datasets were

also extracted from respective government websites.

3.3. Methodology

This paper makes use of the association between facility

agglomeration and visitors’ travel intensity to help determine the

potential spatial risks for different PoIs; it then estimates the

overall risk of superspreading in a city based on kernel density.

Figure 2 illustrates the methodological framework. Firstly, we

locate different types of urban facilities and capture individuals who

have visited them from the six mobility datasets. Secondly, applying

the individual travel data, we use the space-time prism (STP)

methodology to measure visitors’ travel intensity (section 3.3.1).

In parallel, facility agglomeration is measured by a geometrical

approach known as Thiessen polygons (section 3.3.2). Combining

the two measures, we use the independent sample t-tests to test

the association between the travel intensity of visitors and the level

of facility agglomeration. Thirdly, a classification of spatial risk

is developed based on the travel intensity, facility agglomeration,

and population density nearby (section 3.3.3). Finally, integrating

information about the spatial risk class and nature of activities

at these facilities (30), we compile a risk map of superspreading

environment (SE-risk map) for each city (section 3.3.4).

3.3.1. Space-time constructs of samples visiting
the PoIs

A first task is to examine the mobility or travel behavior

of people visiting each facility. Individuals who have high travel

intensity (notably those making more trips and longer distances)

and are spending more time on out-of-home activities (whether

mandatory, discretionary or subsistence) with a larger geographical

coverage and over a longer time period are more likely to spread

infectious diseases under the pandemic (7). To identify individuals

visiting a targeted PoI, there are two steps. Based on the mobility

datasets, we first find out individuals who visited the spatial unit

where the targeted PoI is located. We then determine whether

the trip purpose matched. For instance, a survey respondent who

went to the spatial unit where a shopping mall is located and

reported a trip purpose of “shopping” is considered to be visiting

the shopping mall.

Next, we quantify the spatiotemporal extent of their daily

activity-travel patterns. To do so, the extracted human mobility

datasets are organized in a trip-based format, that is, each row is

an origin-destination record (i.e., OD pairs) for an individual. For

databases that were originally organized in a person-based format,

they were first transformed by database restructuring. The travel

intensity is measured by the STP methodology. Based on time

geography, this methodology has been applied in previous studies

to determine the level of travel and activities across space and

time (7, 46). As shown in Figure 2, the volume of a travel STP is

the product of a minimum bounding 2-dimensional activity space

generated using the shortest network travel route of each trip and

the associated travel time. An activity STP is a measure of the space-

time volume of an individual’s activity, such as work and shopping.

Over a day, the volumes of travel and activity STPs can be summed

up for each individual to calculate his/her total dailymobility (STP).

A larger value of STP suggests that the individual takes part in out-

of-home activities with a larger spatiotemporal extent. For further

analysis, individuals with the top 25% of daily STP are considered

as being highly mobile or having “large STP”.

3.3.2. Analyzing the relationship between spatial
agglomeration and potential spatial risk

Facility agglomeration is examined by the Thiessen

Polygon method, which divides the area based on the
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TABLE 1 Data sources.

Cities Human mobility datasets Public facilities PoIs Population data

Chicago The 2018 My Daily Travel Survey (HTS) Survey period: September

2018–December 2018 Spatial coverage: Northeastern Illinois Sample: 12,400

households; over 30,700 individuals.

Openstreet Map database; Chicago

Data Portal

U.S. Census Bureau (39)

Hong Kong Travel Characteristics Survey 2011 (TCS2011) Spatial coverage: Hong

Kong SAR Survey period: September 2011–January 2012 Sample: 32,000

households; over 58,000 individuals.

Openstreet Map database;

GeoCommunity database

Population Census 2011 (40)

London London Travel Demand Survey Survey period: 2015–2016 Sample: 8,000

households; over 18,000 individuals.

Openstreet Map database 2011 UK Censuses (41)

São Paulo The Origin and Destination Survey 2017 Spatial coverage: The Municipality

of São Paulo Survey period: June 2017–October 2018 Sample: 32,000

households; over 86,000 individuals.

Openstreet Map database The Origin and Destination

Survey 2017 (42)

Seoul National Household Travel Survey of Korea 2016 Spatial coverage:

South Korea Survey period: May, 2016 Sample: 219,686 households; 523,989

individuals. (for Seoul only 42,740 households; 103,032 individuals.)

Openstreet Map database (Seoul

Open Data Plaza and other

databases)

2016 Population and Housing

Census (43)

Zurich MOBIS (Mobility Behavior in Switzerland) Spatial coverage: Switzerland

Survey period: September 2019–October 2020 Sample: 5,375 participants

Openstreet Map database; Open

Data Zürich

Federal Statistical Office (44)

FIGURE 2

Methodological framework.

distribution of point features (i.e., locations of PoIs). Each

PoI is then featured with the size of divided polygons. More

clustered PoIs (higher density) will have smaller polygons

than those that are sparsely located (lower density). In this

study, we follow the threshold of high agglomeration as

in Loo et al. (7), such that for each type of PoI, the 25%

with the smallest Thiessen polygons will be considered as

“high agglomeration”, whereas others will be considered as

“low agglomeration”.

As we ask whether there is an association between the

degree of facility agglomeration and the travel intensity of people

visiting them, we conduct an independent sample t-test to

determine whether there is a statistically significant difference of the

population means (i.e, STP) among two independent groups (i.e.,

low and high spatial agglomeration). The results of the compare-

means test will lead to three possible theoretical outcomes: (i) the

agglomeration (high density) of PoIs is associated with a larger

STP (Group A), (ii) the lack of agglomeration (low density) of
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PoIs is associated with larger STP (Group B) and (iii) no statistical

relationship between agglomeration and STP level (Group C).

Results of this geographical analysis will inform our next step of

assigning the spatial risk class based on the type of facility and the

level of agglomeration.

3.3.3. Defining PoIs based on the four potential
spatial risk classes

Then, we define four potential spatial risk (PSR) classes

based on facility agglomeration, travel intensity, and population

density nearby. For Group A, since higher facility agglomeration

is associated with a larger STP, highly-concentrated facilities are

conducive to a superspreading environment (Class 1). On the

contrary, for Group B, since the lack of agglomeration is associated

with visitors with high mobility, low facility agglomeration is

considered the most vulnerable (Class 1). As Class 1 is contributing

much more to the risk of superspreading, we also test a more

stringent threshold for facility agglomeration (12.5% or half of the

25% used throughout this study) in identifying Class 1 PoIs. For

PoIs with low facility agglomeration and low visitor mobility, we

further classify them into two sub-categories based on population

density. If a PoI is located at a census unit of the top 25% of

population density in the city, it is considered “high population

density”. Facilities located within a densely populated area are

vulnerable to localized outbreak (7). These areas are assigned

Class 2. If population density, facility agglomeration and mobility

of visitors are all low, the spatial risk is the lowest and these

PoIs are classified as Class 4. Other combinations belong to

Class 3.

3.3.4. Generating the risk maps of superspreading
environment

Finally, we generate the SE-risk map for each city. A kernel

density function is employed to derive the risk surface for the six

types of PoIs. Apart from the spatial distribution of facilities and

population density, this study integrates two additional risk factors

in estimating the superspreading risk—PSR class and nature of

activities. The four PSR classes are weighted exponentially (i.e, 1,

10, 100 and 1,000) to illustrate the different risk levels. Different

from Loo et al. (7), the nature of activities is also considered

as a factor that affects the risk of disease spread. For instance,

drinking at bars tends to be more prone to disease spread than

reading books at libraries, as the former usually involves people

taking off masks and having louder conversations. Hence, the six

types of facilities are weighted with a scale of 1–5 by referring

to the Risk Assessment Chart (30) that ranks different activities

on various risk levels. Accordingly, we assign a weight of 5 to

bars, cinemas, and gym & fitness centers; 4 to places of worship;

3 to shopping malls; and 2 to public libraries. Integrating the

above factors and using the kernel density function, a risk map

is generated to illustrate the potential risk surface for each city.

In general, the higher the kernel density values, the higher the

superspreading risk. The kernel density values are displayed in eight

equal quantiles for better visualization. Areas with the top 25%

values in the city (i.e., the 75th percentile) are defined as “high-

risk”.

4. Results

4.1. Descriptive statistics

Table 2 depicts the descriptive statistics for the number of

facilities, mobility characteristics of visitors, number of samples,

and population after data expansion in the six global cities. The

total number of PoIs (visited by respondents in the travel surveys)

across cities ranges from 235 in Hong Kong to 978 in Seoul.

In general, there is a comparable number of PoIs among several

common types of facilities including cinemas, public libraries, and

shopping malls (typically with each accounting for <10% of total

PoIs in a city). Although the number of PoIs visited varies across

different cities, the highest proportion of facilities visited is bars.

The share varies from 29.42% in London to 63.04% in Chicago.

Gym rooms in Hong Kong and Seoul got fewer reported visits

(5.96 and 4.81%, respectively) possibly due to cultural differences

that Asians tend to go to gyms and fitness centers less often. They

were more popular in London (22.76%) and São Paulo (16.65%).

Places of worship were well frequented in Seoul (46.32%), London

(29.85%), São Paulo (28.65%) and Hong Kong (28.09%).

Regarding the size of daily STP, the highest average was found

in Chicago (>360 km2h), which may be attributed to the higher

mobility and car-oriented culture in the United States. To recall,

the STP is calculated based on the spatial extent of an individual’s

activity and travel space and the duration spent at a location. The

other five cities were having a lower level of daily mobility (STP

< 120 km2h). While analyzing the factors of affecting STP is not

the major focus of this paper, some research has examined the

impacts of built environment (e.g., facility density and accessibility

to opportunities), trip characteristics (e.g., mode choices), and

activity patterns on STP (47, 48).

Across different facility types, people traveling to places of

worship and bars typically had larger STP in Chicago (776.75

and 350.8 km2h, respectively) and Hong Kong (210.77 and 197.28

km2h, respectively). The STP was substantially lower in London

(16.88 and 74.42 km2h, respectively), São Paulo (52.27 and 98.04

km2h, respectively), Seoul (39.55 and 45.61 km2h, respectively)

and Zurich (62.85 and 92.69 km2h, respectively). On the contrary,

people visiting shopping malls had higher daily STP in Chicago

(287.8 km2h) and São Paulo (121.15 km2h) but not in London

(14.34 km2h) and Seoul (50.08 km2h). All these observations reflect

the geographical and cultural context of various facilities, transport

characteristics and people’s lifestyle observed across cities.

4.2. Spatial agglomeration and individual
daily STP

Based on the two groups of high and low facility agglomeration,

Figure 3 summarizes the different mobility characteristics for

visitors and results of the difference-of-means tests. To illustrate

the magnitude of difference between the two groups, the values are

normalized to 100 based on the STP of the group with a bigger

value. Consistent with the findings in Hong Kong, geographical

agglomeration is a risk factor for bars (Group A). In other

words, the average STP of visitors in bars of high agglomeration
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TABLE 2 Descriptive statistics.

PoIs Chicago Hong Kong London São Paulo Seoul Zurich

Bars

No. of PoIs 232 96 411 143 306 308

Mean STP 350.80 197.28 74.42 98.04 45.61 92.69

Std. of STP 740.10 419.44 118.33 202.12 81.25 275.37

Samples visiting the PoIs 2,136 195 914 373 2,834 2,518

Population after data expansion 417,178 12,708 429,090 40,566 70,751 411,521

Cinemas

No of PoIs 11 28 66 19 49 20

Mean STP 376.10 204.19 127.53 49.25 29.88 121.15

Std. of STP 521.02 322.51 436.52 74.96 69.69 529.03

Samples visiting the PoIs 83 69 433 120 2,225 462

Population after data expansion 19,681 42,56 187,849 13,721 61,526 136,417

Gyms and fitness centers

No of POIS 33 14 318 59 47 52

Mean STP 465.51 67.79 120.78 63.45 17.61 160.79

Std. of STP 794.42 91.66 478.59 89.54 48.86 528.22

Samples visiting the PoIs 230 30 733 287 8,215 672

Population after data expansion 39,727 5,876 328,431 34,510 236,785 135,890

Places of worship

No of PoIs 34 66 417 108 453 106

Mean STP 776.75 210.77 16.88 52.27 39.55 62.85

Std. of STP 1,127.48 385.30 56.24 90.27 85.38 184.36

Samples visiting the PoIs 46 93 496 301 1,791 635

Population after data expansion 16,286 13,468 210,576 46,565 50,284 148,306

Public libraries

No of PoIs 31 20 112 25 100 19

Mean STP 465.22 80.25 31.76 85.92 22.52 50.83

Std. STP 1,034.10 137.56 79.24 149.18 63.73 170.19

Samples visiting the PoIs 85 68 198 157 4,649 270

Population after data expansion 23,353 4,292 95,898 22,919 13,3873 68,630

Shopping malls

No of PoIs 27 11 73 23 23 15

Mean STP 287.80 83.07 14.34 121.15 50.08 72.63

Std. of STP 554.09 152.36 140.32 112.81 132.08 297.10

Samples visiting the PoIs 405 895 2,928 54 1,070 1,200

Population after data expansion 94,776 57,450 1,336,250 8,927 29,285 223,033

Total

No of PoIs 368 235 1,397 377 978 520

Mean STP 365.03 119.63 46.88 73.72 27.07 94.18

Std. of STP 743.48 256.68 240.40 136.05 69.69 347.56

Samples visiting the PoIs 2,985 1,350 5,702 1,292 20,784 5,757

Population after data expansion 611,002 98,049 2,588,094 1,67,208 583,045 1,123,798
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(i.e., orange circles) is statistically higher than those of low

agglomeration (i.e., gray circles) in all six cities. This indicates that

an agglomeration of bars tends to attract patrons of higher travel

intensity, which in turn enhances the spatial risk of superspreading.

For other PoIs, the lack of agglomeration is a risk factor (Group

B). Take gyms as an example, the average STP of visitors in less

agglomerated gyms (i.e., gray circles) is statistically higher than

those of highly agglomerated (i.e., orange circles). This suggests

that “standalone” gyms tend to attract visitors of higher travel

intensity and may potentially lead to higher superspreading risk.

The results suggest that there is a clear association between facility

agglomeration and travel intensity, but the relationship depends on

the type of facilities.

4.3. Potential spatial risk of six types of PoIs
in six global cities

Following our analysis, Figure 4 shows the pattern of spatial

risk at the city level. The maps on the left illustrate the distribution

of public facilities by PSR classes. Among the Class 1 facilities,

the shares of bars, public libraries, cinemas, shopping malls, gym

and fitness centers, and places of worship are 30.1, 9.0, 5.3, 5.1,

18.9, and 31.5%, respectively. Before delving into the city-level

analysis, we further compare our findings with a simpler approach

of only considering PoI density. The PoI density maps are provided

in the Supplementary Figure 1. When comparing both maps in

each city, it is clear that the spatial patterns are not the same.

Notably, many areas of low PoI density are actually having high

superspreading risk when human mobility data are considered.

Methodologically, integrating activity-travel patterns in riskmodels

can enrich and supplement traditional methods (e.g., based on PoI

density only). To test the robustness of our modeled results, we also

tested another threshold of the top 12.5% of facility agglomeration

as “high agglomeration”. The corresponding SE-risk maps are also

provided in the Supplementary Figure 2. When the SE risk maps

using the two thresholds are compared, the change does not affect

the overall spatial patterns of SE risks. In most cases, the high-risk

areas identified in themaps using the 25% threshold are still spotted

in the ones using the 12.5% threshold. In the following paragraphs,

we move on to the city-level discussion.

In Chicago, the highest superspreading risk can be found in

Downtown Chicago, which is composed of the community areas of

Chicago Loop (downtown area) and Near North Side. Both areas,

in particular River North, are found with abundant recreational

activities including bar clusters and some cinemas. Another high-

risk cluster is the north of the downtown, which is near Lincoln

Park and Lakeview community areas which are featured by night

life and bars. The northeastern part of the city (i.e., Rogers Park)

is a community with a university nearby and several beaches along

the coast, where bars and cinemas are found. For other hotspots

of superspreading risk, they are mainly associated with scattered

places of worship, public libraries, shopping malls that attract

highly-mobile visitors.

In Hong Kong, areas of the highest superspreading risk are

mainly identified in the central business district (CBD) and urban

cores. CBD is a term used in urban planning and management

to describe the “core” of a city with an agglomeration of business

establishments and services (49, 50). Central district is located in

the CBD with office buildings; and there is also a famous bar cluster

(i.e., Lan Kwai Fong). The urban core in Hong Kong (i.e., Tsim Sha

Tsui) is also a major hotspot where clusters of bars and shopping

malls are found. Several new towns in the northwest and northern

part of Hong Kong (i.e., Tuen Mun, Yuen Long, Tseun Wan and

Sha Tin) are also observed with high superspreading risk. These

areas are mainly for residential use, where limited PoIs in the

neighborhood (e.g., shopping malls or gyms and fitness centers)

can attract visitors from far away. Also, some places with high

population density (like Kwai Fong) have high potential risk of

localized outbreak. It is observed that the bar clusters in Lan Kwai

Fong and several types of PoIs with a lack of agglomeration located

near new towns were associated with superspreading events (7, 51).

In London, areas with high PSR are concentrated in central

and Inner London, particularly within zone 1, such as in the

City of London, and the Boroughs of Westminster, Camden and

Kensington and Chelsea. Many places of interest (e.g., Big Ben,

Sherlock Holmes Museum), Soho (bars, cinemas), national library

(the British Library), department stores (Harrods, Selfridges),

and place of worship (Westminster Abbey, St. Paul’s Cathedral)

are all located in central London, where people tend to gather.

Furthermore, there were a few superspreading points unevenly

distributed in Outer London across different London Boroughs.

Further research could also investigate, for instance, specific

socially deprived and/or displacement areas in Greater London

(52–55), which may exacerbate the possibility of a higher rate

infection transmission (56).

In São Paulo, higher superspreading risk is clearly observed in

the downtown area (i.e. Zone Central). Some sub-districts of Bela

Vista and República are also characterized by a wide range of bars

and clubs that may contribute to a superspreading environment.

Moreover, the area is observed with other recreational PoIs

such as cinemas and shopping malls near the metro station of

República. Two other districts (i.e., Perdizes and Sumaré) are

mainly residential areas where a wide variety of PoIs, including a

larger number of places of worships, a library, some gym centers

and a cinema, can be found. Finally, the scattered hotspots of

superspreading are typically places of worship and gym centers

located across the outskirt of the city.

In Seoul, superspreading environment is found around major

transport hubs in old and new CBDs, Jongro in the middle

and Gangnam in the southeast, and a few other secondary

employment centers spread across space. In addition, many subway

stations along the subway lines connecting these downtowns and

employment centers present high potential infection risk. Like

many other cities around the world, bars, movie theaters, and

shopping malls are in the CBDs and employment centers to better

serve customers who look for places for social and recreational

activities after work. Not surprisingly, over time these PoIs also

serve visitors from outside, who do not necessarily work nearby

but find these PoIs more appealing than others. Note also that

communities along those subway stations provide a great number

of high-rise condominiums (i.e., “apartments”), which have been

built rapidly since the early 1970s in response to rapid population

growth, housing shortage, a lack of modern infrastructure, and
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FIGURE 3

Space-time volume of public facilities with di�erent levels of spatial agglomeration. Note: The prisms indicate the average volume of daily STP

(km2h). Di�erence-of-means tests are conducted for the low-density and high-density PoIs in the six selected cities. All are statistically significant

di�erence at p<0.05 level. For better illustration and comparison within a city, the size of STP is normalized that the higher STP (for low-density or

high-density) in a city for a facility is set to an index of 100.
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FIGURE 4

Maps of superspreading environment in six global cities. (A) Public

facilities by potential spatial risk (PSR). (B) Risk map of

superspreading environment (SE-risk map).

slums. These hyper-dense residential areas have been created first

in Gangnam (i.e., the southern half of Seoul) and later spread

to Gangbuk (i.e., the northern half of Seoul). Again, localized

outbreaks at these localities are likely. Our results also align with

the empirical superspreading clusters in the Guro-gu district and

the nightclubs clusters in Itaewon (57).

In Zurich, the major superspreading environment is District 4

(Aussersihl), which is a focal point for relaxation and night life in

the entire city. It is a touristy area that features a cluster of bars,

clubs, restaurants, as well as hotels. In addition, the traditional old

town of the city (Altstadt) is a hotspot for disease spread, where

some bar clusters and places of worships are located. Moreover,

District 5 (Industriequartier), a neighborhood under gentrification,

is a high-risk area where several bars and fitness centers are

found. Finally, a local hotspot is found in District 11 (north of

the city), which is a mixed residential and commercial area with

some shopping malls, libraries, cinemas and fitness centers located.

Empirically, one of the earlier superspreading events happened at a

night club in District 5 (58).

5. Policy implications and conclusions

Based on the spatial risk maps, some high-risk areas of

superspreading are identified across six global cities in four

continents. As there is increasing evidence to show that COVID-

19 is characterized by overdispersion in transmissibility that

propels superspreading (3), our findings can be useful for

city governments to formulate a more elaborate action plan

during COVID-19, especially when a consistent or sudden

increase in the number of cases is detected. Methodologically,

our approach that integrates mobility data can identify areas

that attract highly mobile visitors and are conducive to

superspreading. As the pathogen is carried by human beings,

the incorporation of human mobility data in risk mapping

enriches and supplements more traditional approaches (e.g.,

PoI density) of disease risk mapping. Apart from facility

agglomeration and travel intensity, other factors of superspreading

environment, such as sociodemographic features (i.e., different

age groups), social interactions, centrality of PoIs, and micro-

environment of the PoIs would also need to be considered as

further methodological refinements.

As the number of COVID-19 cases increases, it is

recommended that the government can take rapid actions to

adopt a place-based strategy of non-pharmaceutical interventions

by locating areas with high risk of a superspreading environment

in city and implement possible interventions to those PoIs with

PSR Class 1 and Class 2. This can be done relatively quickly

within a week that coincides with the onset of a new wave of

the pandemic. This avoids the more drastic non-pharmaceutical

interventions of a complete city lockdown or closing all facilities

in a non-discriminatory manner throughout the city, as commonly

practiced during the early pandemic (8, 9, 12, 35–38). Policy-

makers, being better informed by the superspreading risk,

can consider more targeted and place-based measures to

suppress the formation of a superspreading environment.
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However, as for all non-pharmaceutical interventions, the

implications, especially those on the vulnerable and disadvantaged

groups of society, should be carefully considered (10, 11).

As demonstrated in this study, though some common trends

were identified, both the travel intensity (as measured by

STP) and the level of facility agglomeration varied a lot

among the six global cities. In addition, people’s responses

to government measures may also vary significantly (59–

61). For instance, one recent study analyses activity patterns

upon different COVID-19 measures (e.g., facility closures)

among 149 countries (60). Though the measures introduced

were targeted at specific facilities (rather than area-based, as

suggested in this paper), the study found strong variations

in the responses among grocery, park and work visits across

different countries. Hence, the potential consequences of any

non-pharmaceutical intervention, and how people respond to

those measures are context-specific. Further in-depth research

is warranted.

In the medium term, the physical settings of PoIs with

PSR Class 1 should be improved with higher requirements of

air ventilation and hygiene measures, as well as other tracing

mechanisms, to lower the risk of superspreading. In the longer

term, there are also planning implications for cities. Given

that a lack of spatial agglomeration can give rise to a highly

mobile profile of visitors to public facilities such as shopping

facilities, karaoke/cinemas, public libraries, and sports centers. City

administrators and planners should aim to further decentralize

such facilities and encourage the creation of smaller, neighborhood

sports centers and libraries to avoid residents having to travel far to

use these basic facilities.

As the virus mutates, it can become more infectious. Recent

evidence further suggests that the emergence of SARS-CoV-2

variants is facilitated by superspreading events (62). This has

happened with the OMICRON variants that are much more

contagious than those with which the pandemic began in 2020

(63). Under these circumstances, the virus is much more effective

at creating a superspreading environment. The density of the

population, activity type, facility agglomeration and visitors’ profile

are all significant factors in the spread of the disease. The failure

to identify and close down a superspreading environment, for

instance, within a restaurant or a housing estate, in a rapid

manner can lead to large-scale local outbreaks. The failure of the

Hong Kong SAR Government to isolate and enforce confinement

at the Kwai Tsing Estate, where many confirmed cases were

concentrated and first identified before the Chinese New Year

2022, was likely to have been a major reason for the eventual

large-scale outbreak during the Fifth Wave of the pandemic in

Hong Kong. This study underscores the importance of monitoring

and controlling superspreading environment in relation to disease

outbreak management.

As pointed out by Lloyd-Smith et al. (6), individual-specific

control measures rather than population-wide measures can be

much more effective in controlling disease outbreak. Similarly,

the implementation of lockdown measures or closure of all

public facilities of the same type is a type of population-wide

measures that can be improved by informed superspreading

environment analysis and location-specific control measures. Our

analysis widens the investigation from a pure medical science focus

to the environment, encompassing functions of places, location

agglomeration, population density and human mobility patterns.

Moreover, the empirical evidence generated can facilitate a better

calibration and further refinements of theoretical models, such

as the susceptible-infected-recovered and agent-based approaches

[e.g., (4, 63, 64)]. It is recognized that the travel behavior and spatial

agglomeration of PoIs might have changed before, during, and

after the pandemic periods. Hence, future research can examine

the dynamic relationship among travel characteristics, spatial

agglomeration and the formation of superspreading environment

based on real-time travel data (e.g., GPS trajectories of visitors).

Future research can delve into the relationship between STP and

other environmental variables. If mobility data of individuals

infected by COVID-19 (e.g., travel diaries and GPS trajectories) are

available, it will be feasible to conduct a more rigorous validation

of the SE risk maps. Finally, further research directions include

adding spatial heterogeneity to epidemic models that consider the

people-environment interaction in a more holistic manner.
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