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In late 2019, the coronavirus disease 2019 (COVID-19) pandemic soundlessly

slinked in and swept the world, exerting a tremendous impact on lifestyles. This

study investigated changes in the infection rates of COVID-19 and the urban built

environment in 45 areas in Manhattan, New York, and the relationship between

the factors of the urban built environment and COVID-19. COVID-19 was used

as the outcome variable, which represents the situation under normal conditions

vs. non-pharmacological intervention (NPI), to analyze the macroscopic (macro)

and microscopic (micro) factors of the urban built environment. Computer vision

was introduced to quantify the material space of urban places from street-level

panoramic images of the urban streetscape. The study then extracted the

microscopic factors of the urban built environment. The micro factors were

composed of two parts. The first was the urban level, which was composed

of urban buildings, Panoramic View Green View Index, roads, the sky, and

buildings (walls). The second was the streets’ green structure, which consisted of

macrophanerophyte, bush, and grass. The macro factors comprised population

density, tra�c, and points of interest. This study analyzed correlations from

multiple levels using linear regression models. It also e�ectively explored the

relationship between the urban built environment andCOVID-19 transmission and

the mechanism of its influence from multiple perspectives.

KEYWORDS

COVID-19, urban built environment, relevance, street view images, computer vision, deep

learning

1. Introduction

Novel pneumonia caused by coronavirus 2019 (COVID-19), which leads to severe

acute respiratory syndrome, has been raging worldwide for nearly 3 years since December

2019 (1). The speed of transmission of the virus, its infectiousness, and the number of

mutations have been the most unprecedented in human medical history. Large cities

and metropolitan areas have been the areas most affected by the spread of the virus,

exacerbated by the areas’ dense population distribution (2). To strictly control the rate

of COVID-19 transmission and to reduce the rates of infection and deaths, countries

have adopted non-pharmaceutical interventions (NPIs) including urban lockdown, home
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isolation, controlled social distancing, and travel restrictions (3,

4). Ever since it reared its ugly head, COVID-19 has attracted

substantial attention from the global community, and various

studies on COVID-19 have emerged accordingly. A majority of the

studies have focused on the related factors of sociodemographics

and the urban built environment. The results vary from two

different research perspectives.

From the sociodemographic perspective, the risk of COVID-

19 infection is much higher for the elderly and children than it is

for young and middle-aged adults (5–7). In addition, the degree

of economic development across regions may exert an impact

on the transmission rate of COVID-19 (8, 9). For example, the

availability of health insurance has been highly correlated with

the spread of COVID-19 (10). Low-income areas, especially older

communities with low levels of income, have beenmore susceptible

to COVID-19 infection (11, 12), all of which have been related to

regional economic development. Using logistic regression models,

several studies have demonstrated that levels of regional literacy

are also associated with the prevalence of COVID-19 (13). Other

factors have also been correlated with COVID-19 transmission,

such as blood type, respiratory disease, and chronic diseases.

Additionally, personal habits have been associated with COVID-

19 transmission (14, 15). The strict implementation of NPI against

COVID-19 has proven effective in mitigating the spread of the

virus (16, 17). In the post-pandemic era, the patterns of behavior

in daily life have changed due to reliable NPIs implemented by

governments (18). Under the influence of NPIs, the range of

activities of urban residents has been significantly reduced, thereby

rendering them increasingly dependent largely on the surroundings

of their homes, the natural urban environment, and the built

urban environment (19). The surroundings of urban homes and

the built environment have exerted a direct effect on the physical

and mental health of urban residents (20). Simultaneously, low-

density neighborhoods, large homes, developed urban residential

surroundings and infrastructure, rich urban greenery, and large

urban green spaces can greatly enhance the life satisfaction and

wellbeing of residents under COVID-19 NPIs (21).

From the perspective of the urban built environment, the

impact of the urban built environment on COVID-19 is extremely

important in addition to socio-demographic factors, which has

been confirmed by many studies. The relationship between

COVID-19 transmission and population density is relatively

controversial. Previous studies demonstrate that the incidence

and transmission of COVID-19 are higher in densely populated

areas with high population contact (22). A comparison of the

results of linear regression models from 182 countries points to

a positive association between population density and COVID-19

transmission (23). In contrast, the results of structural equation

modeling at the city level illustrate that population density is

negatively associated with COVID-19 transmission in Tehran (24).

This result is interesting, where a few studies argue that urban

population density is non-significantly correlated with the spread

of COVID-19 (25). The relationship between urban population

density and the transmission rate of COVID-19 is complex. Thus,

the various responses of governments and urban residents to the

pandemic across nations may lead to different results, which are

reasonably explained by the findings of Hamidi et al. (26) in the

United States, Lin et al. (27) in China, and Boterman (28) in the

Netherlands. Meanwhile, the relationship between urban building

density and COVID-19 lacks elucidation and is subject to a certain

degree of controversy (29). A few studies demonstrate that no

correlation exists between building density and COVID-19 after

omitting certain confounding factors (28). During the COVID-19

pandemic and under government NPIs, the wellbeing of residents

living in high-density areas was negatively correlated with living

density due to changes in the scope of life and lifestyle behaviors.

However, this compact urban form leads to relatively easy access to

urban healthcare resources, which could improve the health status

of residents (18, 30).

From the perspective of the urban built environment alone,

different factors in the urban built environment may have an

impact on the spread and transmission of COVID-19 during

an epidemic pandemic. For example, public transportation (31)

and points of interest (POI) (32), among others, are generally

considered to exhibit a positive association with COVID-19

transmission. When the outbreak was in its emergent stage,

public transportation was considered the main method of COVID-

19 transmission. Therefore, many governments advised urban

residents to avoid public transportation as much as possible

while introducing corresponding NPIs and limiting the range of

activities of residents. In addition, they frequently urged urban

residents to use multiple modes of transportation, such as self-

driving, walking, and cycling (33). The results of analyses using

multiscale geographically weighted regression suggested that the

high availability of medical resources around a community could

effectively inhibit the spread of COVID-19 (7). Through structural

equation modeling and categorical regression modeling, other

analyses demonstrated high-quality housing and high-quality green

space as being negatively associated with the spread of COVID-

19 (10, 34). Green spaces around large residential areas exerted

an inhibitory effect on the deterioration of urban health and

wellbeing due to COVID-19 (30). Notably, the risk of infection and

transmission rates were high for neighborhoods with high levels of

community convenience (35). Integrating all patients with COVID-

19 into high-grade urban hospitals is unrealistic because hospital

capacity is far from adequate for treating such a large number of

patients at the burgeoning stage of a pandemic such as COVID-

19. Moreover, the risk of collapse of urban public healthcare is

prevalent as demonstrated by the collapse of public healthcare

to varying degrees in various countries during the COVID-19

outbreak. Therefore, a community-level system for identifying and

isolating individuals with infection is essential to the response to

COVID-19 (36).

In summary, several questions can be elicited from the

influence of the urban built environment on the spread of COVID-

19: (I) how the macroscopic urban built environment and the

microscopic urban built environment have an impact on the

spread of COVID-19 in the urban built environment; and (II)

what is the impact of the macroscopic urban built environment

and the microscopic built environment on the incidence and

lethality of COVID-19. However, most of the community-level

studies at this stage have used administrative boundaries to

delineate the selection of variables, and the disadvantage of this

method of variable selection is that it does not reflect the actual
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activities of residents. In this regard, Li et al. used structural

equation modeling to reveal the relationship between commercial

vitality and transportation infrastructure on the increase in the

number of confirmed cases, and innovatively used buffer zones

to extract urban built environment factors around confirmed

cases (37). Wang et al. used walking circles at different times

to investigate the correlation between urban built environment

and community level spatial distribution (38). By extracting the

established environmental factors in both spatial dimensions and

examining the correlation between these factors and the prevalence

of COVID-19, the issue of the transmission mechanism of COVID-

19 before and after the implementation of community-level NPI

measures was then analyzed. Studies at this stage ignore the

lack of multi-level studies on the mechanisms of the urban

micro-built environment influencing the spread of COVID-19.

Whether the urban street green environment and urban street

spatial quality have an impact on the spread of COVID-19 has

not been explored, and the impact of urban built environment

on the long-term trend and overall trend of COVID-19 has not

been considered comprehensively. In this study, based on the

study of the influence mechanism between the macroscopic built

environment and COVID-19, the influence mechanism between

the microscopic built environment and COVID-19 was considered

at multiple levels using Google Street View panoramic street view

images. The impact of urban built environment on the long-

term trend and overall trend of COVID-19 is investigated using

multiple variables, and the influence mechanism of urban built

environment on COVID-19 is examined at multiple levels (macro

level and micro level) and multiple dimensions (time dimension).

The results of the study can provide a basis and reference for

governmental decision makers to formulate more reasonable NPI

policies to slow down the spread of COVID-19 during pandemic

periods. The results of the study may provide a reference solution

to control the spread and spread of the virus, and the results may

provide effective recommendations to contain potential respiratory

disease outbreaks.

2. Data

2.1. Research region

New York City is considered the first epicenter of the COVID-

19 outbreak in the United States. It has a population of ∼8.51

million (as of 2017) and an area of ∼1,214 km2 (including the

sea). With an average of 28 people per square mile, New York

City is the main international maritime, airport, and financial

metropolis of the United States and has five boroughs under its

jurisdiction, namely, Brooklyn, Queens, Manhattan, the Bronx, and

Staten Island.

Manhattan is the most densely populated and smallest of the

five boroughs of New York City, which translates to a very high

population and housing density when compared with those of

other boroughs in New York City. Manhattan is described as

the economic and cultural center of the United States and is

home to New York’s central business district, which houses the

headquarters of most Fortune 500 companies and the headquarters

of the United Nations. Thus, the nearly 50 million tourists who

visit New York City each year significantly contribute to the risk

of COVID-19 transmission and routes of transmission. Figure 1

describes the study area and its road network. As the center of

the metropolitan area, a major outbreak of COVID-19 is likely to

spread rapidly to other areas of the metropolis and continue to

expand outward. Thus, understanding the relationship between the

spread of COVID-19 and the factors of the urban built environment

is an important aspect for urban decision-makers in mitigating the

spread of the disease and in developing openness measures.

2.2. Google street view images and dataset

2.2.1. Google street view images
The study obtained urban street panorama images from

Google Maps to reflect the physical characteristics of the urban

environment. Factors related to the urban environment were

extracted from these images as evaluation indexes of the urban

environment. To improve the representativeness of the physical

features and environmental factors of the urban environment, the

study created a collection point for every 100m on all urban

roads in the study area. A total of 67,025 collection points were

set up to collect images with each collection point having one

image based on a 90◦ view. Moreover, the study collected four

images for each collection point to synthesize the panoramic

streetscape images, which reached 268,100 images. The images

were cleaned according to the availability of data, and all images

were collected from Google Street View (GSV) to analyze the

physical characteristics of the city and extract the factors of the

urban environment. By appropriately establishing the parameters

for image retrieval, the images captured both sides and frontal

images of the street. This image acquisition covered all roads in

Manhattan. Figure 2 provides a demonstration of the acquisition

of the GSV images.

2.2.2. Dataset for training the neural network
model

The study used datasets from Cityscape, ADE20K, and S-S-G-S

to train the neural network model, a dataset open to researchers

at the Mercedes-Benz R&D Center and Darmstadt University

of Technology and published in the 2016 Clean Vehicle Rebate

Project. The dataset was collected from 50 cities in Germany and

nearby countries, including street scenes in spring, summer, and

autumn. Different annotators with 96 and 98% pixel consistencies

repeatedly annotated the 30 selected data after omitting categories

that could be annotated as unclear. The drawback was that the

segmentation dataset contained 33 classes, whereas the validation

dataset was composed of only 19 semantic segmentation classes

because the data volume of a few classes was very sparse. The

ADE20K dataset is intended for Scene Understanding, which was

opened by theMassachusetts Institute of Technology (MIT) in 2016

and can be used, for instance, in semantics and part segmentation.

Using image information for Scene Understanding and parsing, the

dataset consists of 27,000 images from Scene Understanding (an

open dataset released by Princeton University in 2010) and Places

(an open dataset by MIT released in 2014). The ADE20K contains
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FIGURE 1

Study area: (A) Map of the United States; (B) New York County; and (C) Manhattan road network.

more than 3,000 object classes, which greatly compensates for the

shortcomings of the Cityscape dataset. The S-S-G-S dataset was

constructed by Zhang et al. (39) in 2022 and is mainly used for the

analysis of urban vegetation communities. A neural network model

trained using this dataset can classify and visualize the structure

of urban street vegetation communities. S-S-G-S differs from the

Cityscape and ADE20K datasets in that it is directed toward the

analysis of urban greenery. The study mainly used the trained

DeepLabV3+ neural networkmodel to extract urban features at the

micro level.

2.3. COVID-19 dataset

The first confirmed case of COVID-19 was reported in

Manhattan onMarch 1, 2020. At the time, the number of confirmed

cases of COVID-19 in the entire United States was only 76.

However, as of March 25, 2020, the number of confirmed COVID-

19 cases in the United States spiked to 69,008, and the number

of deaths reached 1,045, such that COVID-19 rampaged through

the country at a rate of 10,000 per day for three consecutive

days. However, according to the Centers for Disease Control and

Prevention, nearly 50% of all confirmed cases in the United States as

of March 25, 2020, are in New York State, which establishes it as the

epicenter of the outbreak. Out of the 33,006 cases diagnosed in New

York State, 20,011 were derived fromNewYork City. Over time and

with the introduction of various restrictive policies and concerted

national efforts to combat the outbreak, the spread of COVID-19

decelerated. Moreover, the outbreak appeared to be moving in a

positive direction with the advent of COVID-19 vaccines.

Moving forward to late December 2021, a variant of COVID-19

(omicron) is once again ravaging New York State with a record-

breaking 21,908 cases detected in New York State on December

18, 2021, alone. Moreover, an alarming spike in cases was noted in

several highly vaccinated neighborhoods inManhattan.With 7-day

positivity rates exceeding 10% in more than 10 areas of New York

City from December 10 to 16, 2021, Manhattan, once again, clearly

became a hotbed of COVID-19 transmission. A total of 790.87 cases

were identified per 100,000 people, and an extremely alarming rate

was noted in specificManhattan neighborhoods as of December 24,

2021. Greenwich Village and SoHo reported 2,850 confirmed cases

per 100,000 people, and Chelsea reached 2,400 confirmed cases per

100,000 people. Nevertheless, no pandemic hotspot in the nation

could compare to the dire outbreak in Greenwich Village.

The COVID-19 case data in the study were derived from

the publication by NYC Health (https://www1.nyc.gov/site/doh/

index.page), which included cumulative totals since the COVID-

19 outbreak in New York City. The Department of Health (DOH)

defined the first case of COVID-19 as the one confirmed on

February 29, 2020. In addition, the DOH recommended the
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FIGURE 2

Demonstration of the acquisition of GSV images.

avoidance of interpreting the daily changes in these files as 1-

day data due to the discrepancy between the date of the event

and the date of reporting. The internal division of the study

area was divided according to the Modified ZIP Code Tabulation

Areas (MODZCTA).

NYC Health uses MODZCTA to report information according

to geographic location. However, several issues emerge when

mapping data reported based on ZIP codes because they do not

designate a single area but a collection of points that compose

the route of mail delivery. Moreover, a few buildings and non-

residential areas were frequently assigned unique ZIP codes. To

address these issues, the DOH uses ZIP Code Tabulation Areas

(ZCTA) to convert ZIP codes into area units. The United States

Census Bureau developed ZCTA geography to map data reported

according to ZIP codes using ZCTA. MODZCTA geography

combines census blocks with small populations to provide stable

estimates of population size for rate calculations. The visualization

is available on the website of NYC Health, which also open-

sources the case data (https://github.com/nychealth/coronavirus-

data#geography-zip-codes-and-zctas). In this manner, accessing

appropriate data is easy for researchers.

This study used Manhattan, New York in the United States

as the study area and created a fishing network according to the

68 zones of MODZCTA to compare the mechanisms between

the factors of the urban built environment and COVID-19

transmission in different zones and to investigate the reason

Manhattan became the center of the pandemic many times during

the outbreak.
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3. Methodology

3.1. Outcome variable: COVID-19

The outcome variables of the study were the

number of confirmed and suspected cases of COVID-19

[COVID_CASE_COUNT (CCC)] and the incidence of

confirmed and suspected cases of COVID-19 per 100,000

people [COVID_CASE_RATE (CCR)] in Manhattan, New York,

United States. The difference between CCC and CCR is that CCR

is a longer-term trend than CCC, and the relationship between the

factors of urban built environment and COVID-19 under NPIs can

be determined by comparing with CCC.

According to MODZCTA, the Manhattan area of New York

City, United States, was divided into 68 areas. After data filtering,

the study identified 45 valid areas, and a fishing net was generated

within the study area for a total of 1,551 grids. These grids will

be used for analysis and spatial cells. The study calculated the

CCC and CCR of the 45 independent areas and averaged them

according to the fishing nets to reflect the overall number of cases in

Manhattan. In addition, by calculating and visualizing the average

of the number of valid POIs and environmental factors of the urban

streetscape within the grids, the study intends to better establish

the relationship of the urban built environment at the macro-

and micro-levels to COVID-19. Figure 3 presents the visualization

results of CCC and CCR in the study area.

3.2. Macro-scale: Factors of urban built
environment

The study selected only three aspects, namely, density, diversity,

and traffic, from the 5D’s model framework (40, 41) for the

evaluation of the factors of the built urban environment and the

physical characteristics of the city at the macro level. In terms of

density, the study used urban population density as an evaluation

indicator. In the evaluation index of diversity, the study selected the

data on POIs to measure the diversity of the urban environment.

A POI consists of fine-grained data that comprehensively reflect

accurate information on urban land use. The POI data used in

the study were downloaded from OpenStreetMap (OSM) and

reclassified according to the basic functions of the city after the data

were screened, which included the omission of irrelevant, duplicate,

and empty data. The study obtained 16,003 valid entity POIs

for Manhattan, which were classified using C·M·E·P·R (Table 1).

The C·M·E·P·R classification, as a method of classifying urban

POIs on the basis of built-up characteristics, categorizes urban

POIs according to urban functions such as commerce, healthcare,

education, public services, and entertainment. Moreover, the POIs

were classified according to C·M·E·P·R. The valid POIs were

mapped to the fishnet grid of the study area, and the entropy score

of the POI data per grid was calculated to determine diversity (42),

which is calculated as follows:

Mix Index = −

∑n

i= 1
pilnpi.

The formula pi is the proportion of the ith type of POI, and n

is the total number of all POI types in the fishing grid. In turn, it

better reflects the influence relationship between the urban built

environment and COVID-19. Figure 4 provides the visualization

results of macro factors of the urban built environment.

3.3. Micro-scale factors of urban built
environment

In this study, micro-level urban built environment specifically

refers to the direct perception of the features of the urban landscape

by pedestrians. Many studies demonstrate that computer vision

combined with panoramic urban streetscape images can extract

the features of the urban built environment and evaluate the

urban built environment at the street level. This tendency proves

that computer vision has gradually entered the scope of urban

research. The current study selects the network model open-

sourced by Chen et al. (43) in 2018, which pertains to a semantic

segmentation network based on the DeepLabV3+ neural network

model. The study made this selection for two reasons. The first is

that the DeepLabV3+ neural network model is the latest version

in the DeepLab series, which modifies VGG16 to introduce null

convolution in DeepLabV1. The Atrous Spatial Pyramid Pooling

(ASPP) model is designed in DeepLabV2; DeepLabV3 combines.

The model proved its accuracy by outperforming mainstream deep

learning algorithms (such as SegNet and PSPNet) in performance

evaluation competitions such as the PascalVOC and Cityscapes

benchmark tests in 2012. The second is that DeepLabV3+ features

a better recognition effect compared with other mainstream deep

learning models in the interpretation of urban scenes. The reason

is that the model is designed for analyzing urban scenes, such

that it exhibits certain advantages compared with those of other

models when recognizing green structures in urban streets. The

third is that the model uses DeepLabV3 as an encoder to generate

the features of arbitrary dimensions using Atrous Convolution

and adopts the ASPP strategy to use multiple effective sites with

upsampling to achieve multiscale feature extraction. Moreover, it

uses a cascade decoder to recover boundary detail information.

Depthwise Separable Convolution is also used to reduce the

number of parameters to further improve the accuracy and speed of

the segmentation algorithm. This study selects the panoramic green

view rate, the green structure of urban streets, buildings, roads,

walls, and sky visibility to represent the micro-scale features of the

urban built environment (Figure 5).

3.4. Statistical analysis

The study conducted a four-step statistical analysis, namely:

(i) Pearson’s correlation analysis of the CCC and CCR data using

all data on the macro- and micro-level factors of the urban

built environment, respectively.

(ii) Z standardization of two independent variables. The z-score

can transform two or more sets of data into unitless z-scores,

which renders data standards uniform and, thus, improves
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FIGURE 3

Visualization of CCC and CCR in the study area. (A) CCC Visualization in Manhattan, New York. (B) CCR Visualization in Manhattan, New York.

TABLE 1 Classification of POI types according to C·M·E·P·R and corresponding categories in the original OpenStreetMap (OSM) dataset.

POI types Categories in the OSM dataset Count Percentage

C Restaurants, beverages, malls, markets, stores, various shops, greengrocers,

hairdressers, vendors, cinemas, car dealerships, car rentals, etc.

8,997 56.22%

M Chemist, clinic, dentist, doctor, hospital, optician, pharmacy, veterinary, etc. 630 3.94%

E College, kindergarten, library, playground, school, university, etc. 357 2.23%

P Governmental organization, social group, communal facilities, financial facilities,

convenience, camera surveillance, etc.

5,331 33.31%

R Scenic spot, park, open square, tourist attraction, theater, viewpoint, etc. 688 4.30%

C, commercial; M, medical; E, education; P, public service; R, recreation.

data comparability and weakens data interpretation. The z-

standardization formula is as follows:

Z =
X − µ

σ
,

Where µ is the mean and σ is the standard deviation.

(iii) The existence of a degree of correlation (approximate

covariance) between the explanatory variables can also

be called multicollinearity. In this case, the results of

parameter estimation are no longer valid; thus, the current

study uses variance inflation factor (VIF) to test for

potential multicollinearity between the macro- and micro-

level independent variables (Table 2). VIF is calculated

as follows:

VIF =
1

1− R2
,
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FIGURE 4

Visualization of macro-scale factors of urban built environment. (A) Commercial, (B) education, (C) public, (D) medical, (E) recreation, and (F) POP.

Where R2 denotes goodness-of-fit or the determination

coefficient of linear regression and describes the percentage of

explanatory variables in the regression equation. The results

indicate the absence of covariance for all independent variables,

VIF values are <5, and all factors can be included in the linear

regression model.

Lastly, data at different levels with various dependent variables

were included in the ordinary least squares (OLS) model.

Furthermore, the study employed the White and BP tests to verify

whether or not heteroscedasticity exists in the data, to test the

original hypothesis that there was no heteroscedasticity in the

model, to confirm whether or not the results rejected the original

hypothesis, and to determine if there was a rejection of the original

hypothesis that there was heteroscedasticity. To address these

concerns, the study employed the robust regression method.

4. Results

4.1. Pearson’s correlation analysis

This study used Pearson correlation analysis to examine

the correlations between CCC and CCR and 12 macro-level

urban built environment (Public, Education, Commercial, Medical,

Recreation, Airports, Bus Station, Bus Stop, Ferry, Railway, Taxi,

and POP) and 8 micro-level urban built environment (i.e.,
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FIGURE 5

Visualization of micro-scale factors of urban built environment. (A) PVGVI, (B) bus stop, (C) road, (D) macrophanerophytes, (E) bush, and (F) grass.

Sky, Building, Road, Wall, Macrophanerophyte, Grass, Bush,

and PVGVI) in Manhattan, New York, USA, respectively, using

Pearson’s correlation coefficient (PCC) to indicate the strength of

the correlations.

Figures 6A, 7A depict the relationship between CCC and

CCR and macro-level factors, where CCC presents a significant

negative correlation with Public (PCC = −0.12, p < 0.001),

Recreation (PCC = −0.16, p < 0.001), and Ferry (PCC = −0.077,

p < 0.01). Moreover, the study observes a significant negative

correlation between Public and Recreation. Both correlations

indicate significance at the 0.001 level. Education (PCC = 0.11,

p < 0.001), Bus Stop (PCC = 0.13, p < 0.001), and POP (PCC

= 0.30, p < 0.001) displayed significant positive correlations

with CCC at the 0.001 level of significance. Although the study

noted no correlation among Commercial, Medical, Airports, Bus

Station, Railway, Tax, and CCC, their PCC values are close to

0, and all p-values are >0.05. Figure 4C illustrates that Public,

Education, Commercial, Medical, Bus Stop, Railway, Taxi, and

POP have significant positive correlations with CCR, where

Commercial (PCC = 0.26, p < 0.001), Medical (PCC = 0.11,

p < 0.001), Bus Stop (PCC = 0.16, p < 0.001), Railway (PCC

= 0.10, p < 0.001), and POP (PCC = 0.092, p < 0.001)

demonstrated showed significance at the 0.001 level, which

indicate a significant positive correlation with CCC. Lastly, the

study found no correlation among Recreation, Airports, Ferry,

and CCR.
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FIGURE 6

Correlation coe�cient between urban built environment and CCC Pearson. (A) Correlation coe�cient between macro urban built environment and

CCC Pearson. (B) Correlation coe�cient between micro urban built environment and CCC Pearson. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 7

Correlation coe�cient between urban built environment and CCR Pearson. (A) Correlation coe�cient between macro urban built environment and

CCR Pearson. (B) Correlation coe�cient between micro urban built environment and CCR Pearson. *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 2 Summary statistics of all variables in Manhattan, New York, United States (n = 1,551).

Variables (unit) Min Max Mean SD VIF (Z-score)

Dependent variable

COVID Case Count (CCC) (N) 0 27,410 13814.951 6340.799

COVID Case Rate (CCR) (N) 0 54364.28 30825.563 7509.91

Independent variables

Macro-scale built environment

Public service (N) 0 97 3.437 6.911 1.296

Education (N) 0 5 0.23 0.576 1.029

Commercial (N) 0 63 5.801 8.736 1.417

Medical (N) 0 18 0.406 1.055 1.287

Recreation (N) 0 14 0.444 1.016 1.244

Airports (N) 0 1 0.001 0.025 1.001

Bus station (N) 0 2 0.008 0.098 1.041

Bus stop (N) 0 8 0.932 1.275 1.175

Ferry (N) 0 2 0.004 0.072 1.005

Railway (N) 0 3 0.102 0.348 1.144

Taxi (N) 0 2 0.006 0.088 1.043

POP (N) 0 5722.99 1042.108 1033.205 1.167

Micro-scale built environment

Sky View Factors (SVF) (%) 0 0.279 0.038 0.042 1.224

Building (%) 0 0.45 0.186 0.109 2.245

Road (%) 0 0.504 0.253 0.131 1.999

PVGVI (%) 0 0.529 0.111 0.104 1.791

Wall (%) 0 0.459 0.058 0.077 1.256

Street greening structure

Macrophanerophytes (%) 0 0.59 0.114 0.098 1.667

Bush (%) 0 0.399 0.016 0.032 1.518

Grass (%) 0 0.234 0.012 0.029 1.496

(i). All VIF values were standardized using z-score; (ii). Min., minimum; Max., maximum; SD, standard deviation; N, number; %, Percentage; (iii). Concerning the problem that the minimum

value of the micro-scale factors of the built environment is 0, the reason is that during panoramic streetscape crawling, certain indoor images will be crawled, which leads to the minimum value

of certain micro-scale factors at 0. At the same time, model recognition errors were noted, but the sample size is very small, which will not influence the results.

Figures 6B, 7B present the relationship of CCC and CCR to

micro-level factors, where positive correlations were noted among

Building (PCC = 0.15, p < 0.001), Road (PCC = 0.26, p <

0.001), and CCC, and all of them show. The study found negative

correlations among Wall, Grass, Bush, PVGVI, and CCC, where

Grass (PCC = −0.18, p < 0.001) and Bush (PCC = −0.15, p <

0.001) at the 0.001 level of significance, which indicates a significant

negative correlation with CCC, whereas no correlation was

found between Sky and Macrophanerophytes to CCC. Figure 4D

points to a positive correlation among Building, Road, Wall,

and CCR at the 0.001 level of significance, which indicates a

significant negative correlation with CCR. The correlation between

Macrophanerophytes, Grass, Bush, PVGVI, and CCR was all

negative at the 0.001 level of significance, among which the PCC

value of Macrophanerophytes was−0.5, which extremely exceeded

the other variables and indicates a significant negative correlation

with CCR.

4.2. Robust regression model

The OLS linear regression of CCC and CCR as outcome

variables resulted in four models. Macro- and micro-level factors of

the urban built environment were separately included as variables

in the models to determine the relationship of CCC and CCR to
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TABLE 3 Results of the white and BP tests.

White heteroscedasticity
test

BP heteroscedasticity
test

X2 P X2 P

White test and BP test results of CCC and macro urban built environment

91.844 0.034 24.380 0.018

White test and BP test results of CCC and micro-level urban built environment

182.923 0.000 120.011 0.000

Results of white test and BP test of CCR and macro urban built environment

182.923 0.034 120.011 0.000

Results of white test and BP test of CCR and micro-level urban built environment

435.371 0.000 273.668 0.000

the independent variables at different levels. The equation for OLS

linear regression is as follows:

Y = Xβ + ε,

Where Y is the dependent variable, X denotes the matrix of

explanatory variables, β represents the vector of coefficients, and

ε is the vector of random error terms.

The variables were included in the OLS model for the

White and BP tests. Table 3 presents the results. In the case of

heteroscedasticity, the study conducted the White and BP tests to

verify the original hypothesis, that is, no heteroscedasticity exists

in the model. Table 3 illustrates that both tests reject the original

hypothesis at p< 0.05, which indicates that heteroscedasticity exists

in the model.

Table 3 suggests that heteroscedasticity exists in the regression

data, and the conclusions obtained by the commonly used OLS

regression estimation method may be biased because it considers

the minimized residual sum of squares as a criterion. Therefore, it

also considers anomalous data. In this case in the model regression

considered for robust regression analysis (M-estimation), the study

uses the Huber robust method with the following formula:

n
∑

i=1

ρ

(

P
1
2
i

(

aTi X − L
)

)

= min

n
∑

i=1

ρ

(

P
1
2
I

(

aTi X − L
)

)

,

where a real function ρ defined in a one-dimensional Euclidean

space R is selected for the independent identically distributed equal

precision model, such that aTi denotes the row vector of the design

matrix; X is the extreme value solution; and P represents the weight

of the corresponding observation or observation error.

Tables 4, 5 depict Models 1 and 2, respectively. The difference

between the models is the use of CCC and CCR as the dependent

variables, respectively. CCR can be used to illustrate the long-term

trend of COVID-19, which could help in analyzing the impact

of NPIs on the relationship between the urban built environment

and COVID-19. Alternatively, CCC can be used for analyzing the

relationship between the impact of a pure urban built environment

and COVID-19.

Table 4 depicts the correlation between Model 1 with CCC

as the dependent variable and 20 factors of the urban built

environment as the independent variables. It uses robust regression

analysis (M-estimation) to construct the correlation between

the variables of urban built environment and COVID-19. The

study finds that the macro-level factors, Education, Commercial,

POP, and Bus Stop, exert a significant positive influence on the

relationship between the urban built environment and COVID-

19. The correlation coefficient of POP was 0.297, which exceeded

all other variables. In particular, Commercial is the only factor

that exerts a significant positive effect on CCC and CCR as the

dependent variables for both regression models. The regression

coefficient of Public is−0.255 with a p-value of 0.004, which is more

significant than the other variables.

The micro-level factors that displayed significant negative

effects in the micro-urban built environment were significantly

higher; Building, Wall, Grass, Bush, and PVGVI exerted significant

negative effects on CCC, where Grass obtained a regression

coefficient of −0.357 and a p-value of 0.000, which were higher

than those of the other variables in the same model in terms of

significance and regression coefficient. PVGVI and Grass exhibited

a significant negative effect relationship for Models 1 and 2. The

regression coefficient for Grass was higher in Model 1 than that

in Model 2; however, the significance of both Models is the

same (p-values = 0.000). Road and Macrophanerophytes exerted a

significant positive effect on CCC; both p-values were 0.000, which

is higher than the other variables in terms of significance, except for

Grass, which is equal.

Table 5 presents the results of the robust regression analysis

for Model 2 with CCR as the dependent variable and the 20

urban built environment factors as the independent variables. The

finding indicates that Public and Commercial show a significant

positive relationship with CCR at the macro level, whereas POP

indicates a significant negative relationship with CCR. Public and

POP produced the opposite results for both models (Model 1:

Public: regression coefficient=−0.255, POP: regression coefficient

= 0.297; Model 2: Public: regression coefficient = 0.07, POP:

regression coefficient=−0.088).

The micro-level factors Sky, Building, and Wall presented

a significant positive relationship with CCR, whereas

Macrophanerophytes, Grass, and PVGVI pointed to a significant

negative relationship with CCR. PVGVI is more significant

in Model 2 than it was in Model 1 (Model 1: PVGVIp =

0.023; Model 2: PVGVIp = 0.000). Macrophanerophytes

present opposite results in Models 1 and 2 (Model 1:

regression coefficient = 0.213; Model 2: regression coefficient

=−0.047).

5. Discussion

This study investigated the relationship between the factors

of the urban built environment and COVID-19 using robust

regression analysis (M-estimation) based on solving the

heteroscedasticity of the OLS regression model. The study

categorized urban built environment into two dimensions,

namely, macro and micro, in two urban spatial dimensions, where
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TABLE 4 Model 1: Robust regression results of CCC and urban built environment (n = 1,551).

Regression
coe�cient

SD t p 95% CI R2 Adjusted

R2
F

Constant 0.423 0.02 21.266 0.000∗∗ 0.384 to 0.462 0.193 0.183 F(20, 1,530) = 18.302,

p= 0.000

Macro urban built environment

Public −0.255 0.088 −2.884 0.004∗∗ −0.428 to−0.082

Education 0.141 0.049 2.885 0.004∗∗ 0.045 to 0.236

Commercial 0.116 0.055 2.107 0.035∗ 0.008 to 0.224

Medical −0.013 0.107 −0.122 0.903 −0.222 to 0.196

Recreation −0.235 0.085 −2.747 0.006∗∗ −0.402 to−0.067

POP 0.297 0.037 8.001 0.000∗∗ 0.224 to 0.369

Traffic factors

Airports −0.06 0.217 −0.278 0.781 −0.485 to 0.365

Bus station 0.026 0.115 0.228 0.82 −0.199 to 0.251

Bus stop 0.138 0.038 3.612 0.000∗∗ 0.063 to 0.212

Ferry −0.363 0.155 −2.351 0.019∗ −0.666 to−0.060

Railway −0.09 0.051 −1.765 0.078 −0.189 to 0.010

Taxi 0.029 0.128 0.225 0.822 −0.222 to 0.280

Micro-level urban built environment

Sky 0.053 0.043 1.237 0.216 0.384 to 0.462

PVGVI −0.05 0.022 −2.276 0.023∗ −0.094 to−0.007

Building −0.145 0.037 −3.891 0.000∗∗ −0.218 to−0.072

Road 0.141 0.032 4.374 0.000∗∗ 0.078 to 0.204

Wall −0.115 0.041 −2.8 0.005∗∗ −0.196 to−0.035

Macrophanerophytes 0.213 0.05 4.259 0.000∗∗ 0.115 to 0.311

Grass −0.357 0.058 −6.136 0.000∗∗ −0.470 to−0.243

Bush −0.198 0.08 −2.481 0.013∗ −0.355 to−0.042

Dependent variable: CCC; ∗p < 0.05, ∗∗p < 0.01.

macro-level factors include variables related to urban traffic, and

micro-level factors pertain to urban green structures.

5.1. COVID-19 and urban built environment

The study used the relationship between the number (CCC)

and incidence (CCR) of confirmed and suspected cases of COVID-

19 per 100,000 people in Manhattan, United States, as an entry

point for the factors of the urban built environment. However,

in the regression analysis with CCR as the dependent variable,

POP exhibited a significant negative effect on CCR. In analyzing

this entirely contradictory result, the study considered the effect

of Commercial, which exerted a significant positive effect on

CCC and CCR but with different factors at 0.116 and 0.041,

respectively. In other words, residents can obtain necessities in a

small area after the outbreak of a potential pandemic, and NPIs

are better compared with those in areas with low population

density. Residents in these areasmust travel long distances to obtain

essential resources, where long-distance travel implies increased

chances of contact with strangers and COVID-19 infection. In

summary: (i) high population density increases the likelihood of

human contact, which facilitates the spread of the virus. However,

with the implementation of NPIs, residents could only move

within a small area; thus, the virus could not spread among areas.

(ii) Areas with high-density populations typically have relatively

well-developed infrastructure to provide convenient and timely

treatment for residents, which, thereby, inhibits the spread of NPI

(26, 29). In particular, under strict NPIs, the outdoor activities

of residents are restricted, which effectively inhibits the spread of

the virus in high-density areas (24). However, at the CCC level,

the government for areas with high population density and high

commercial activities performs better in terms of pandemic control

and detection than did areas with low population density with a

higher detection rate than that of areas with low population density.

This finding results in a higher number of confirmed and suspected

cases compared with those of areas with low population density.

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1137489
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1137489

TABLE 5 Model 2: Robust regression results of CCR and urban built environment (n = 1,551).

Regression
coe�cient

SD t p 95% CI R2 Adjust

R2
F

Constant 0.557 0.006 93.445 0.000∗∗ 0.545 to 0.568 0.283 0.273 F(20, 1,530) = 30.130,

p= 0.000

Macro urban built environment

Public 0.07 0.026 2.63 0.009∗∗ 0.018 to 0.122

Education −0.006 0.015 −0.416 0.677 −0.035 to 0.023

Commercial 0.041 0.017 2.473 0.013∗ 0.008 to 0.073

Medical 0.006 0.032 0.198 0.843 −0.056 to 0.069

Recreation 0.044 0.026 1.706 0.088 −0.007 to 0.094

POP −0.088 0.011 −7.893 0.000∗∗ −0.110 to−0.066

Traffic factors

Airports −0.031 0.065 −0.47 0.639 −0.158 to 0.097

Bus station 0.028 0.034 0.819 0.413 −0.039 to 0.095

bus stop 0.012 0.011 1.066 0.287 −0.010 to 0.035

Ferry −0.032 0.046 −0.688 0.492 −0.123 to 0.059

Railway −0.01 0.015 −0.65 0.516 −0.040 to 0.020

Taxi 0.049 0.038 1.263 0.207 −0.027 to 0.124

Micro-level urban built environment

Sky 0.029 0.013 2.27 0.023∗ 0.004 to 0.055

PVGVI −0.063 0.007 −9.421 0.000∗∗ −0.076 to−0.050

Building 0.079 0.011 7.074 0.000∗∗ 0.057 to 0.101

Road 0.009 0.01 0.882 0.378 −0.010 to 0.027

Wall 0.069 0.012 5.574 0.005∗∗ 0.045 to 0.093

Macrophanerophytes −0.047 0.015 −3.123 0.002∗∗ −0.076 to−0.017

Grass −0.115 0.017 −6.594 0.000∗∗ −0.149 to−0.081

Bush 0.023 0.024 0.952 0.341 −0.024 to 0.070

Dependent variable: CCR; ∗p < 0.05, ∗∗p < 0.01.

At the same time, control and control efforts are correspondingly

lower due to the lower population density, which results in an

increased number of cases without data. The situation of no data

collection. The number of bus stops tends to be proportional

to population density; the higher the population density, the

higher the number of bus stops. Essentially, bus stops are places

where urban residents are most likely to come into contact with

strangers. A high frequency of contact with strangers implies an

increased chance of infection. In general, public transportation

infrastructure that increases population contact is considered a key

factor in the spread of infectious diseases (25). Thus, a range of

effective measures should be taken to limit the spread of disease in

public transport, including limiting passenger density, increasing

the frequency of services, and reserving tickets. Other low-carbon

and environmentally friendly active transportation modes, such as

walking and bicycling, should also be encouraged.

Similarly, at the public level, the results of CCC and CCR

indicate a clear contradiction. From the CCR level, the higher

the use of public facilities, the higher the probability of exposure

to unfamiliar environments. Thus, the virus is likely to spread

through public facilities before the introduction of corresponding

NPIs. The number of public facilities in areas with high population

density far exceeds that in areas with low population density,

such that corresponding transmission rates and probability of

transmission are also higher. On the contrary, at the CCC level,

the frequency of the use of public facilities is suppressed due to

NPIs, and residents will voluntarily reduce their frequency of use

of public facilities when they are aware of a potential pandemic.

This scenario indirectly leads to a negative correlation between

CCC and the Public with a regression index of −0.235 over other

factors. Schools tend to be places where pedestrian traffic is high,

no less than in commercial areas, and the interaction between

students and teachers may accelerate the spread of the virus. When

students are infected with the virus at school, NCPI can easily

infect family members through parent–child interaction, and the

spread of the virus within colleges and universities is typically

difficult to reasonably control. As the implementation of NPIs

led to school closure, the correlation between schools and CCR
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became negligible; instead, many schools were requisitioned for the

isolation of patients, which exerted a positive effect on the control of

the outbreak after lockdowns. Alfano et al. (44) demonstrated that

the premature opening of schools increased the number of COVID-

19 cases in Italy. This result suggests that during an outbreak,

the government should implement strict NPIs in schools while

ensuring equity in education.

The higher the PVGVI, the farther away from the city center,

the lower the population density, and the less space and medium

for virus transmission and corresponding inhibitory effects on

virus transmission.

Macrophanerophytes exerted a significant positive effect on

CCC, whereas Bush and Grass exerted a significant negative effect

on CCC when analyzed from the perspective of the green structure

of urban streets. The reason for this phenomenon may be that

in densely populated areas with developed commercial activities,

the green structure is relatively homogeneous and shows a single-

tree state. Conversely, areas with a rich green structure have

correspondingly low population density and more homogeneous

commercial activities, which can be analyzed in combination with

macro-level POP and Commercial.

5.2. Research values

A series of recommendations for the results of the study have

the following applications: (i) they can be applied at the level

of prevention of widespread spread of COVID-19 in cities to

minimize the risk of infection and the rate of virus transmission

among urban residents by exploring the mechanisms of influence

of the built environment and COVID-19. Effective control of

virus transmission was achieved at the early stage of the outbreak.

(ii) Based on the results of the study, government officials and

policy makers can better formulate more reasonable NPI policies

to prevent widespread infection and cross-infection and reduce

the risk of infection among urban residents, while ensuring

the wellbeing, health and comfort of urban residents. (iii) The

study uses Google Street View panoramic street view images to

extract and quantify urban micro built environment factors from

the macro built environment and the micro built environment,

respectively, to explore the impact of COVID-19 at the urban street

level, and the results provide a data base for future urban renewal.

This enables cities to play a more important role in facing the trend

of COVID-19 epidemic normalization.

5.3. Research limitations

This study has its limitations. First, the data published by NYC

Health are divided according to the MODZCTA, where individual

buildings are designated unique zip codes in several instances. This

tendency can exert a confounding effect on the data, and although

the study screened a few of the confounding factors at certain levels,

this data-level confounding continues to exist. Moreover, although

the study sample was expanded according to fishnet divisions, the

original sample only comprises 45 areas, which is not representative

of all areas in the United States. Second, other demographic data for

Manhattan were not available or could not be specifically mapped

within each study area, such as household income structure,

demographics, gender, underlying disease status, occupation, and

ethnic composition, which have been noted in previous studies

to be associated with 2019 coronavirus disease transmission. At

the same time, within the time point of the COVID-19 pandemic,

the lives of residents were frequently restricted by various NPIs,

which resulted in extremely complex and confusing life activities

and social relationships. Thus, the study selected only 20 variables,

which indicates the exclusion of other potential variables such as the

density of foot traffic in the region. Previous studies demonstrated

that individual behaviors exerted an effect on the spread of

COVID-19; however, such variables are statistically unavailable,

relatively difficult to obtain, and more difficult to collect in the

field due to various policy restrictions imposed by NPIs. The

absence of such variables may have led to certain anomalies in the

results of the study. Moreover, the effect of spatial autocorrelation

cannot be avoided despite the multilevel and multidimensional

considerations. Thus, future studies should consider additional

aspects and potential variables to explore the relationship between

the factors of the urban built environment and COVID-19. This,

data on COVID-19 published by NYC Health provided substantial

support to various urban studies on COVID-19. However, the

published information on the number of cases is, in fact, incomplete

due to the lack of statistical data on the number of cases due to

the current pandemic policy implemented in the United States.

Thus, certain individuals contracted COVID-19 but displayed

no symptoms (asymptomatic) due to the lack of assurance of

the detection rates of COVID-19 in the population. Moreover,

individuals with the infection were not sampled for nucleic acids;

thus, they remained unaware of their COVID-19 infection, which

rendered their network and range of activities and transmission of

the virus virtually uncontrollable and unavoidable. Possible non-

linear effects of the variables in this study. The starting point of the

robust regression is still based on the processing method of linear

data, but the principle of adopting themethod should be considered

when processing the experimental data, and if the data have non-

linear effects, the experimental data can be made permutation

substitution so that they are transformed into a linear functional

relationship for the test. In future studies, we will apply multiscale

geographically weighted regression models with added potential

factors to calibrate the existing models for further accuracy in the

analysis given that more data are available at the city level.

6. Conclusion

The study draws preliminary conclusions on the relationship

between the urban built environment and COVID-19 transmission,

which focused on the relationship between CCC and CCR

as the independent variables and the influence of the urban

built environment. The correlation between the urban built

environment and COVID-19 transmission was determined using

Robust regression analysis (M-estimation). The major findings are

summarized as follows:

(i) Education, Commercial, POP, and Bus Stop exerted a

significant positive relationship with CCC at the macro
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level. Public and Commercial displayed a significant positive

relationship with CCR. Public and Recreation have a

significant negative relationship with CCC. POP has a

significant negative relationship with CCR.

(ii) Macrophanerophytes, Grass, and PVGVI have a significant

negative effect on CCR. Road and Macrophanerophytes have

a significant positive effect on CCC. Sky, Building, and Wall

have a significant positive effect on CCR.

(iii) Medical, Airports, Bus Station, Railway, and Taxi do not exert

any influence on the relationship between CCC and CCR at

the macro- and micro-levels of the urban built environment.

The current COVID-19 situation remains severe, and

predicting the direction of the pandemic is difficult. To cope

with more severe pandemic situations, this study provides several

recommendations for urban built environments in the context

of its results. First, the government should provide easy access to

essential resources for urban residents within a controlled range,

reduce the frequency of long-distance travel, save travel costs,

reduce unnecessary human contact, and control the medium

of transmission to reduce the speed and efficiency of the virus

transmission. Second, for areas with high population density and

commercial activities, strict NPIs should be implemented, such

that if a potential outbreak occurs, then the area can quickly and

adequately mobilize favorable resources to effectively control

the outbreak. Third, the frequency of use of public facilities

should be controlled. Although urban public transportation is

an important part of the future low-carbon city, it continues to

play an important role in the spread of the virus at this stage.

In addition, the number of passengers should be controlled,

their health status should be strictly tested, and safe social

distancing should be observed to effectively control the spread

of the virus. The government can promote and introduce

incentives to encourage residents to use other modes of travel.

Fourth, schools or educational settings were found to be at risk

during outbreaks of COVID-19 due to their dense population

and foot traffic; thus, a series of strong measures should be

taken such as distance teaching or a limited number of people

in schools.

The recommendations may serve as a reference for solutions

for other cities at the level of controlling the transmission and

spread of the virus. Meanwhile, the findings may provide valid

suggestions for curbing potential outbreaks of respiratory diseases.

However, the applicability of the variables is limited and does

not reflect the regional economic level, demographic, and other

sociodemographic characteristics of the city due to the limitations

of this study and the data sources. Therefore, the generalizability of

the results should be carefully considered.

Author’s note

The S-G-S-S datasets used in this study can be downloaded and

used from our GitHub site (https://github.com/muteisdope/S-G-S-

S-Dataset.git), allowing users to modify, upload, and optimize the

datasets. We will continue to upload new datasets and optimize the

datasets in the future. Our research team based on Python language,

Pytorch deep learning framework, DeepLabV3+ neural network

used in our research, the code can be downloaded from our GitHub

website (https://github.com/muteisdope/Model.git).
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