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Wastewater surveillance has gained traction during the COVID-19 pandemic as 
an effective and non-biased means to track community infection. While most 
surveillance relies on samples collected at municipal wastewater treatment 
plants, surveillance is more actionable when samples are collected “upstream” 
where mitigation of transmission is tractable. This report describes the results 
of wastewater surveillance for SARS-CoV-2 at residence halls on a university 
campus aimed at preventing outbreak escalation by mitigating community 
spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2  in a 
non-clinical setting. Passive sampling devices were deployed in sewer laterals 
originating from residence halls at a frequency of twice weekly during fall 2021 
as the Delta variant of concern continued to circulate across North America. A 
positive detection as part of routine sampling in late November 2021 triggered daily 
monitoring and further isolated the signal to a single wing of one residence hall. 
Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive 
days led to a coordinated rapid antigen testing campaign targeting the residence 
hall occupants and the identification and isolation of infected individuals. With 
knowledge of the number of individuals testing positive for COVID-19, fecal 
shedding rates were estimated to range from 3.70 log10 gc ‧ g feces−1 to 5.94 
log10 gc ‧ g feces−1. These results reinforce the efficacy of wastewater surveillance 
as an early indicator of infection in congregate living settings. Detections can 
trigger public health measures ranging from enhanced communications to 
targeted coordinated testing and quarantine.

KEYWORDS

COVID-19, RT-qPCR, SARS-CoV-2, wastewater, public health

OPEN ACCESS

EDITED BY

David Champredon,  
Public Health Agency of Canada (PHAC),  
Canada

REVIEWED BY

Hayley Danielle Yaglom,  
Translational Genomics Research Institute,  
United States
Kristina Træholt Franck,  
Statens Serum Institut, Denmark

*CORRESPONDENCE

R. Michael McKay  
 Robert.McKay@uwindsor.ca

RECEIVED 07 January 2023
ACCEPTED 28 April 2023
PUBLISHED 17 May 2023

CITATION

Corchis-Scott R, Geng Q, Al Riahi AM, Labak A, 
Podadera A, Ng KKS, Porter LA, Tong Y, 
Dixon JC, Menard SL, Seth R and 
McKay RM (2023) Actionable wastewater 
surveillance: application to a university 
residence hall during the transition between 
Delta and Omicron resurgences of COVID-19.
Front. Public Health 11:1139423.
doi: 10.3389/fpubh.2023.1139423

COPYRIGHT

© 2023 Corchis-Scott, Geng, Al Riahi, Labak, 
Podadera, Ng, Porter, Tong, Dixon, Menard, 
Seth and McKay. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Brief Research Report
PUBLISHED 17 May 2023
DOI 10.3389/fpubh.2023.1139423

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1139423%EF%BB%BF&domain=pdf&date_stamp=2023-05-17
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1139423/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1139423/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1139423/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1139423/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1139423/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1139423/full
mailto:Robert.McKay@uwindsor.ca
https://doi.org/10.3389/fpubh.2023.1139423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1139423


Corchis-Scott et al. 10.3389/fpubh.2023.1139423

Frontiers in Public Health 02 frontiersin.org

1. Introduction

SARS-CoV-2 is the virus responsible for COVID-19 (Coronavirus 
Disease 2019). SARS-CoV-2 infection produces less severe illness than 
SARS-CoV and MERS-CoV with lower mortality (1, 2). However, the 
basic reproduction number (R0) of SARS-CoV-2 is substantially 
higher than previous coronavirus epidemics (1). Strong evidence of 
airborne transmission largely explains higher transmissibility of 
SARS-CoV-2 (3, 4). Additionally, asymptomatic cases of COVID-19 
likely promote transmission as individuals can pass the infection 
without knowing they are contagious (5, 6). Testing populations 
widely is complicated by the fact that clinical testing is expensive and 
can overwhelm healthcare resources. Alternate means of ascertaining 
disease prevalence has emerged as an important public health goal for 
pandemic management.

SARS-CoV-2 can be  shed in the digestive tract of infected 
individuals and excreted in feces (7, 8). Consequently, SARS-CoV-2 
RNA can be detected in untreated wastewater (9) following collection 
at wastewater treatment facilities (10, 11). Correlations have been 
found between the amount of SARS-CoV-2 viral material in 
wastewater and the prevalence of disease within the community 
served, (12) with many instances demonstrating that wastewater 
surveillance may provide early warning of increases in clinical cases 
(12–17).

Testing the footprint of disease within an entire community can 
help to inform public health decision making (18). However, testing 
wastewater “upstream” of treatment facilities arguably produces more 
immediately actionable data that may be used to mitigate disease 
transmission (19–21). During the COVID-19 pandemic, wastewater 
surveillance of congregate living settings has been adopted by many 
universities to assess disease prevalence on campus (22–27). In this 
setting, it has been shown to be a cost-effective means of detecting 
cases among individuals in high density housing, especially in 
comparison with clinical testing protocols (28). Wastewater 
surveillance can also warn of outbreaks in other congregate living 
settings. This type of “upstream” monitoring has been implemented 
in homeless shelters (29) and in long-term care facilities (30) where 
early detection and mitigation of transmission is especially important 
as the monitored populations are more susceptible to mortality 
associated with COVID-19 infection (31).

Upstream sampling modalities can rely on the same 
methodologies employed to monitor wastewater at centralized 
wastewater treatment facilities where composite samples are collected 
by autosampler. This type of sampling does not always lend itself to 
upstream locations where practical considerations such as autosampler 
deployment and variable flows can preclude sampling. Passive 
samplers offer an alternative, especially in logistically challenging 
settings where they can detect a single case per 10,000 individuals 
(32). Moore Swabs are a class of passive sampling device composed of 
absorptive material placed in a flowing medium to continuously filter 
particulate material for analysis (33). Moore Swabs have been used in 
wastewater surveillance at broad and fine spatial resolutions (i.e., 
monitoring upstream and at the community level) and have been 
shown to be equivalent to or outperform grab and composite sampling 
(34–36).

In February 2021, the University of Windsor implemented a 
program to monitor wastewater in a single residence hall on campus. 
During spring 2021, wastewater surveillance likely averted a 

COVID-19 outbreak by detecting an infection using passive samplers 
and analysis by RT-qPCR. The detection led to a public health 
response which included a testing campaign at the residence and the 
eventual quarantine of an infected individual and their close contacts 
(20). The campus monitoring program was expanded at the beginning 
of the 2021 fall semester to include three residence halls. This report 
focuses on a second occurrence in which wastewater surveillance may 
have prevented an outbreak. In addition to resulting in an actionable 
public health response, data generated provided taxonomic resolution 
of the variant of SARS-CoV-2 responsible and estimation of fecal 
shedding rates for the variant.

2. Methods

2.1. Sample collection

Passive samplers were deployed once weekly at three campus 
residence halls beginning in summer 2021 to establish a baseline prior 
to students moving to campus. Beginning in fall 2021, sampling 
frequency was increased to twice weekly. Swabs passively interacted 
with wastewater for approximately 24 h before they were collected. 
Once collected, swabs were placed in sealable plastic bags and 
transported to the laboratory on ice for immediate processing. 
Samplers consisted of a feminine hygiene product (Tampax Cardboard 
Tampons, Regular Absorbency, Procter & Gamble, Cincinnati, OH, 
United States) clipped to a carabiner which was attached to the interior 
of the rim of a sewer cover via fishing line and a magnet. Duplicate 
tampons were placed within each monitored sewer lateral to increase 
the volume of liquid absorbed.

2.2. Sample processing

At the laboratory, liquids and solids were expelled manually by 
massaging the tampons while still in the sealed plastic bag. A mean 
volume of 35 mL (SD ± 10) was eluted from each swab. The liquid and 
suspended solids were decanted into a sterile 50 mL conical 
polypropylene tube and centrifuged at 4820 × g for 40 min at 4°C. The 
supernatant was collected and passed through a 0.22 μm Sterivex 
cartridge filter (MilliporeSigma, Burlington, MA, United  States). 
Filters were flash frozen in liquid nitrogen and were stored in liquid 
nitrogen at −196°C until extraction. RNA was extracted from the 
filters using the AllPrep PowerViral DNA/RNA kit (Qiagen, 
Germantown, MD, United States) modified by addition of 5% (v/v) 
2-mercaptoethanol to the lysis buffer. RNA was eluted in 50 μL of 
RNAse-free water.

2.3. RT-qPCR

Template was analyzed undiluted and diluted 1:5 with RNAse-free 
water to relieve PCR inhibition. RT-qPCR targeted the conserved N1 
and N2 regions of the nucleocapsid (N) gene of SARS-CoV-2 (37). 
RT-qPCR was also performed to evaluate the levels of Pepper Mild 
Mottled Virus (PMMoV) within the wastewater as an indicator of 
human fecal matter (38–40) using primers and probes described 
previously (41). RT-qPCR reactions for SARS-CoV-2 contained 10 μL 
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of 2× RT-qPCR master mix (Takyon Dry One-Step RT Probe 
MasterMix No Rox; Eurogentec, Liege, Belgium), 5 μL of template and 
the remaining 5 μL consisted of forward primer (final concentration 
of 300 nM), reverse primer (final concentration of 300 nM) and probe 
(final concentration of 150 nM). All samples were run in technical 
triplicates for each target assayed. The thermocycling protocol for each 
of the gene targets was consistent. Reverse transcription was 
performed for 10 min at 48°C, followed by an enzyme activation step 
at 95°C for 3 min and 50 cycles of denaturation and annealing/
extension at 95°C for 10 s and 60°C for 45 s, respectively. This protocol 
was carried out using a MA6000 thermocycler (Sansure Biotech, 
Changsha, China). No template controls were included with each 
RT-qPCR run and a 7-point standard curve for SARS-CoV-2 derived 
from serial dilution of a synthetic RNA standard (Exact Diagnostics, 
Fort Worth, TX, USA) was run with each set of samples. A standard 
curve for the quantification of PMMoV was generated through serial 
dilution of a custom Gblock. All standard curves were made in 
RNAse- free water. No amplification was observed for process controls 
(extraction blanks) or in no template controls. The LOD of the N1 and 
N2 assays is 1 copy·μL−1 of template, corresponding to a greater than 
95% probability of detection. LOD was determined through analysis 
of 20 replicate 7-point standard curves. Standards for each target met 
the minimum requirements from Protocol for Evaluations of 
RT-qPCR Performance Characteristics: Technical Guidance (slope 
from −3.1 to −3.6 and an R2 value of at least 0.98) (42).

Samples were also analyzed by RT-qPCR primer extension assay 
targeting the mutation D63G on the N gene, which is unique to 
sublineages of the Delta (B.1.617.2) variant of concern (43, 44). RNA 
extract was diluted 1:5 with RNase-free water and 5 μL of sample was 
mixed with 10 μL of 2 × RT-qPCR master mix (Eurogentec), 500 nM 
primers and 125 nM probe in a final reaction volume of 20 μL. Reverse 
transcription was performed for 10 min at 48°C, this was followed by 
an enzyme activation step at 95°C for 3 min, 45 cycles of denaturation 
and annealing/extension at 95°C for 10 s and 55°C for 45 s, 
respectively. Primer and probe sequences were previously described 
(45). To quantify the SARS-CoV-2 viral load, a standard curve was 
generated using a synthesized gblock DNA fragment serially diluted 
in RNAse-free water (Supplementary Table S1).

2.4. Fecal shedding calculation

Estimation of fecal shedding rates followed an approach previously 
described (46) adopting modifications made describing a previous 
outbreak on the University of Windsor campus (20). The formula used 
to estimate fecal shedding rate was:

 
FS =

VC ×Q× h
G × I

( )
( )

where VC is the estimated concentration of N1 gene found in the 
wastewater in gene copies·L−1. Q is the approximate flow rate of water 
leaving the residence hall in L·min−1 and h is a constant that allows the 
conversion of units. In the denominator, G is the median per capita 
wet weight mass of feces from high income countries (47) and I is the 
number of infected individuals contributing to shedding SARS-CoV-2 
viral material into the sewer. As in previous work regarding fecal 

shedding, the absolute gene copies·L−1 of N1 was calculated using the 
median PMMoV (2.32 × 106 gene copies·L−1) from 17 grab samples 
collected in February and March, 2021 (20). This was necessary since 
it is challenging to produce accurate estimates of SARS-CoV-2 gene 
concentration in the sampled water itself using passive samplers. 
However, an accurate back estimation may be made using the ratio 
between SARS-CoV-2 and PMMoV gene concentrations found in the 
material collected by the passive samplers. This assumes that the 
passive sampling device captures PMMoV and SARS-CoV-2 with 
equal efficiency. Sample calculations can be  found in the 
Supplementary Material.

Flow rates were determined by examination of the water usage 
within the residence as recorded by a utilities meter within the 
building. This method of determining the flow was necessitated by the 
challenges associated with mounting a flow meter within the sewer 
and the inconsistent flow, which was often too low to be detected by a 
flow meter. Since monitoring was conducted at each of the laterals 
associated with the building but SARS-CoV-2 was only detected in 
one of the two laterals, flow per resident was calculated and adjusted 
to reflect the number of residents housed in the north portion of the 
building (corresponding to the lateral that tested positive for 
SARS-CoV-2).

2.5. Ethics review

The information on the cases described are considered exempt 
from ethics review under the Canadian Tri-Council Policy Statement: 
Ethical Conduct for Research Involving Humans – TCPS 2 (2018) 
Articles 2.4 and 2.5.

3. Results and discussion

3.1. Campus wastewater surveillance

During summer 2021, student residence halls at the University 
were minimally occupied with ~30 students residing in one building. 
The occupied building was monitored once weekly over the summer 
semester with no detections of SARS-CoV-2. The University opened 
3 residence halls (hereafter referred to as Residence A, Residence B 
and Residence C) in late August 2021. In preparation for the 
resumption of occupancy for these 3 buildings, frequency of 
wastewater monitoring was increased to twice weekly the week before 
students resumed occupancy. A total of 526 students inhabited the 3 
residence halls at the beginning of the fall semester. As part of the 
University’s Return to Campus initiative, students living in residence 
halls were required to have at least 1 dose of a vaccine approved by 
Health Canada.

Wastewater testing yielded no detections of SARS-CoV-2 at 
residence halls through the beginning of the semester (Figure 1). This 
trajectory mirrored the low incidence of COVID-19 in the Windsor-
Essex region at this time (Supplementary Figure S1). It was likewise 
consistent with low concentration of SARS-CoV-2 detected in 
municipal wastewater following an August–September 2021 
resurgence due to the Delta variant of concern (VOC) 
(Supplementary Figure S1). Also contributing to the apparent absence 
of disease on campus was a relatively low student population housed 

https://doi.org/10.3389/fpubh.2023.1139423
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Corchis-Scott et al. 10.3389/fpubh.2023.1139423

Frontiers in Public Health 04 frontiersin.org

in residence halls combined with suspension of most in person classes 
during fall semester. Additionally, the University’s vaccination policy 
for on-campus students likely helped to reduce the chance of an 
outbreak prior to the November–December infections detailed in this 
report. Given the regularity in which monitoring was conducted and 
the duration of passive sampler deployment, it is unlikely that 
surveillance efforts during the fall semester failed to capture cases of 
COVID-19 within the residence halls monitored.

Following nearly 3 months of non-detects for SARS-CoV-2, on 
November 26, 2021, a wastewater sample collected at Residence A 
tested positive with triplicate technical replicates for the N1 gene 
region yielding a mean pepper biomarker normalized ratio of 
9.4 × 10−5 (±1.4 × 10−5SD; Figure  1). The detection triggered daily 
sampling of each residence hall and prompted separate sampling of 
sewer laterals serving distinct wings of Residence A allowing spatial 
isolation of SARS-CoV-2 signal. Subsequent samples collected from 
Residence B, Residence C and Residence A South sewer lateral showed 
no SARS-CoV-2 signal (Figure 1). The initial detect of SARS-CoV-2 
was followed by a weak signal from a sample collected the following 
day where only a single technical replicate amplified for the SARS-
CoV-2 N1 gene target. The reasons for this weak signal are unknown 
but the concentration of fecal biomarker from this sample was also 
low suggesting that the sample was dilute or that inhibition was 
present within the wastewater matrix. Alternatively, the initial infected 
individual(s) may not have contributed to the wastewater sampled 
either due to irregular defecation patterns (48) and the weak signal 
caused by residual SARS-CoV-2 material within the sewer lateral. 
Sample placement, timing and duration are important considerations 
for accurate monitoring (49). Whatever the reason for the weak detect, 
this signal invited the possibility that the initial detect was caused by 
a transient visitor rather than an occupant. Therefore, public health 

action was paused while a third sample was collected. Passive samplers 
placed on November 27 were collected the following day. Residence 
B, Residence C and Residence A South showed no signs of COVID-19 
infections. However, the sample collected from Residence A North 
yielded a robust SARS-CoV-2 signal with a mean pepper-normalized 
SARS-CoV-2 ratio of 9.2 × 10−4 (±3.6 × 10−5 SD), one order of 
magnitude higher than the initial detect (Figure 1). The lower Ct 
values associated with this sample as well as the persistence of the 
signal over 3 days led to the conclusion that an individual within the 
building was likely infected with COVID-19. This information was 
communicated to the University leadership and daily sampling was 
continued to achieve high temporal resolution monitoring of the 
sewage leaving the residence hall. A sample collected on November 30 
showed a continued upward trend in SARS-CoV-2 signal intensity at 
Residence A North (N1:PMMoV mean 1.8 × 10−3 ± 5.9 × 10−4) with the 
biomarker-normalized SARS-CoV-2 ratio having increased by two 
orders of magnitude over the initial detection (Figure 1). Viral signal 
was absent at all other monitored sites. Daily testing of the wastewater 
at all residence halls on campus continued for the next 3 days. The 
signal at Residence A North waned rapidly to levels that were 
undetectable by December 3. SARS-CoV-2 was not detected in 
campus wastewater for the remainder of the semester.

Wastewater monitoring at upstream sites may act as mirrors of 
trends within the community (Supplementary Figure S2) (50, 51). 
Additionally, variant-specific assays as well as sequencing of variants 
within upstream sites can provide insight about variants of SARS-
CoV-2 within the larger population. It is easier to resolve variants in 
upstream sewage than sewage from community level wastewater 
treatment plants since fewer individuals contribute to the signal. 
During the outbreak on campus, the Delta VOC was dominant within 
the southwest region of Ontario as confirmed by variant-specific 

FIGURE 1

SARS-CoV-2 in campus residence hall wastewater plotted as the ratio of gene copies (gc) of SARS-CoV-2:PMMoV against COVID-19 cases in the 
Windsor-Essex region by reported date. Sampling the wastewater at 3 residence halls with Moore swabs twice weekly over a 12-week period showed 
no detectable SARS-CoV-2 following which detection related to the outbreak described here commenced with a sample collected on November 25, 
2021. SARS-CoV-2 remained detectable through December 2 albeit yielding a weak signal on that date (blue star) and RT-qPCR amplification of only 
two technical replicates, both yielding Ct values outside the range of the standard curve. Thereafter, SARS-CoV-2 was not detected in campus 
residence sewer laterals through the remainder of the fall semester.
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RT-qPCR (Supplementary Figure S1), as well as wastewater 
sequencing and sequencing of a subset of clinically confirmed cases 
(52). The Delta VOC was characterized by increased transmissibility, 
higher replication efficiency and viral loads, shorter incubation times 
and vaccine evasion (53–55). RT-qPCR analysis conducted on RNA 
extracted from the wastewater sample collected at Residence A North 
on November 30 showed evidence of the presence of the D63G 
mutation in the N gene which is diagnostic of the Delta VOC (43, 44). 
Next-Generation sequencing of this sample confirmed that the strain 
responsible for the outbreak was likely the Delta sublineage AY.103 
(Supplementary Data). Province-wide, this sublineage represented 
~20% of reported cases based on sequencing of clinical samples 
between epi weeks 45–48 (November 7 to December 4, 2021) only 
trailing sublineage AY.25 as the dominant circulating strain in the 
province (56). However, within the Windsor-Essex region, sublineage 
AY.103 was dominant, accounting for 47.9% of the 885 cases reported 
by the health unit over this same period (56).

Wastewater surveillance also facilitated estimates of fecal shedding 
rates calculated based on the ratio between gene copies of N1 and 
PMMoV for each day of the outbreak. Shedding rates were calculated 
for each sample and with different assumed numbers of infected 
individuals contributing to the SARS-CoV-2 signal (Table 1). Rates of 
shedding increased over the first 5 days of the outbreak, likely 
corresponding to progression in infection and/or new infections. This 
is consistent with literature indicating that viral shedding peaks 
4–6 days following infection, coincident with symptom onset (57–60). 
In this study we report fecal shedding rates ranging from 3.70 log10 
gc ‧ g feces−1 to 5.94 log10 gc ‧ g feces−1. This range is lower than 
expected given reports of higher viral titres for the Delta VOC (53–55) 
but it is similar to what was calculated in a previous outbreak on the 
University campus that was attributed to the Alpha VOC (3.93 log10 
gc ‧ g feces−1 to 5.99 log10 gc ‧ g feces−1) (20). The reported maximum 
of 5.94 log10 gc‧g feces−1 likely represents a maximal or near maximal 
viral load as it was estimated approximately 5 days after the initial 
SARS-CoV-2 detection (54, 55) and was the peak level measured in 
the wastewater stream. Estimates of fecal shedding rates were 
indirectly ascertained based on the ratio of SARS-CoV-2:PMMoV 
(Supplementary Table S3) in wastewater concentrated from a passive 
sampling device and must be  cautiously interpreted. Further 
uncertainty in the estimate may be attributed to the flow rates used in 
the calculation being estimated based on facility water usage. However, 
estimated fecal shedding rates largely fall within the range produced 
by direct measurement of stool samples of COVID-19 patients 

reported in select recent studies, supporting the validity of 
approximation methods (Supplementary Table S4). Finally, multiple 
studies have shown that not all infected individuals shed SARS-CoV-2 
RNA in stool (58, 61).

The vaccination status of the cases in the present outbreak is 
unknown but should not influence the viral concentration as the viral 
loads for vaccinated and unvaccinated individuals infected with the 
Delta VOC are similar (60, 62, 63).Understanding fecal shedding rates 
in a more controlled congregate living setting can allow for better 
interpretation of community level wastewater surveillance data 
especially in estimating the number of cases associated with the 
catchment of a particular wastewater treatment plant. This application 
is especially important as wide-scale clinical testing waned during the 
emergence of the Omicron VOC, and public health has become more 
reliant on wastewater data to track the progression of the pandemic 
(52). Hence, using small scale studies to determine fecal shedding 
rates may aid in more accurate estimation of SARS-CoV-2 caseloads 
in the community (64, 65). Some studies have attempted to quantify 
SARS-CoV-2 shedding rates with a top down approach by using the 
number of reported cases within a population and back calculating 
fecal shedding rates by considering the SARS-CoV-2 gene 
concentrations within the wastewater collected at treatment facilities 
(66). However, these attempts rely on the assumption that case counts 
are accurate and do not properly account for loss in signal within the 
sewershed from adsorption to solids, oxidation and microbial activity 
(67). Thus, outbreaks in upstream monitoring locations offer better 
opportunities to calculate fecal shedding rates.

3.2. Public health response

All campus residence hall occupants were messaged on the 
evening of November 27 notifying them of the positive wastewater 
results at Residence A and reinforcing University COVID-19 
protocols including health self-assessments, physical distancing, 
hand washing and mask wearing. They were also asked to refrain 
from receiving visitors from other residence halls. With continued 
positive wastewater results from Residence A North, residents of 
this hall were again messaged the morning of November 29 
encouraging residents to avail themselves of on-campus COVID-19 
rapid testing and informing them of the temporary closure of 
common areas in the building. The campus testing center received 
35 students on November 30 of which one occupant of Residence 

TABLE 1 Calculation of fecal shedding rates.

Fecal shedding rate (log10 gc ‧ g feces−1)

Persons infected

Date (2021) 1 2 3 4 5 6 7 8 9 10

11–28 5.62 5.32 5.14 5.02 4.92 4.84 4.78 4.72 4.67 4.62

11–29 5.55 5.25 5.07 4.95 4.85 4.77 4.70 4.64 4.59 4.55

11–30 5.94 5.64 5.46 5.34 5.24 5.16 5.09 5.03 4.98 4.94

12–01 4.93 4.63 4.45 4.33 4.23 4.15 4.09 4.03 3.98 3.93

12–02 4.30 4.00 3.83 3.70 3.60 3.52 3.46 3.40 3.35 3.30

A range of rates were calculated taking into consideration the possible number of infected individuals who contributed to the wastewater stream during this outbreak. Given the immediate 
rapid decline of wastewater signal following the removal of the 4 infected individuals identified with rapid tests, it is likely that the number of infected individuals contributing to the signal was 
no larger than 4. In addition, rates were calculated for each day of the outbreak based on the change in SARS-CoV-2 signal intensity.

https://doi.org/10.3389/fpubh.2023.1139423
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Corchis-Scott et al. 10.3389/fpubh.2023.1139423

Frontiers in Public Health 06 frontiersin.org

A North tested positive and was moved, along with a close contact, 
to a quarantine floor in a separate building by late afternoon. Two 
additional students reported positive tests on December 1 and were 
relocated to quarantine by noon that day. Testing was moved 
on-site at Residence A on December 1 to attract more students for 
testing but resulted in only 2 additional students submitting to 
rapid testing. Also on December 1, the Office of Health and Safety 
issued an update to the University community alerting all students, 
faculty and staff to the evolving situation. On December 2, an 
additional positive case was reported who along with 3 close 
contacts was relocated to quarantine. On December 4, the 
University released a press statement indicating that a total of 4 
cases had been detected and identified wastewater surveillance as 
the main indicator that triggered the identification of the cases 
(68). Several close contacts voluntarily isolated off campus and 
their infection status is unknown. No additional cases of 
COVID-19 were reported among student residents through to the 
end of fall semester in contrast to the winter 2022 semester 
(Supplementary Figure S2).

Rapid communication of monitoring data is critical in using 
wastewater-based surveillance as a tool to mitigate spread of 
COVID-19. A wastewater monitoring program implemented by 
the University of California San Diego focused on high frequency 
testing and rapid information dissemination to diagnose an 
estimated 85% of COVID-19 cases on campus early in the course 
of the disease (69). The authors stressed the importance of timely 
reporting and coordination between wastewater surveillance 
campaigns and clinical testing efforts, an opinion echoed across 
upstream monitoring programs (20, 70). In the present case, once 
it was confirmed that the SARS-CoV-2 detected within the sewer 
lateral for Residence A was not an anomaly, action was taken by 
the University in consultation with the local public health unit. 
Messaging targeting building occupants encouraged voluntary 
testing and reinforced COVID-19 protections and protocols in 
effect at the University. Only ~10% of the Residence A occupants 
submitted to rapid antigen tests administered on-site. In contrast, 
a similar incident on the University campus the previous spring 
resulted in a much higher uptake of testing (27). The lower uptake 
reported here may be related to pandemic fatigue as adherence to 
transmission mitigation policies is prone to decline over time (71, 
72). Despite the lower test uptake, this study represents the 
successful implementation of wastewater-based surveillance in 
coordination with clinical testing to reduce the impact of an 
outbreak. Without the application of wastewater surveillance, these 
cases may have infected others on campus and within the larger 
community (73). Here we  demonstrate that wastewater-based 
surveillance at fine spatial resolution can produce actionable data.

If the population under surveillance is informed about wastewater 
monitoring and trusts the results, clinical testing may not always 
be necessary to prevent spread. Instead, promoting awareness of the 
likely presence of COVID-19 infections and advising the adoption of 
transmission mitigating practices may be enough to curtail outbreaks. 
In fact, because of monitoring efforts on campus, signs are now posted 
within each of the monitored residence halls to inform students of 
wastewater results. Signs are updated on a weekly basis, are color-
coded for easy interpretation, and are designed to encourage behaviors 
that reduce the likelihood of the transmission of respiratory infections. 
Continued challenges in the use of wastewater surveillance include 

variability in the wastewater matrix leading to quantification issues, 
ensuring continued buy-in from administrators, residents, and public 
health agencies as well as convalescent shedding that can obscure the 
relevancy of signals (especially in larger congregate living settings 
where recovering cases and new infections cohabitate) (74). Despite 
these challenges, wastewater-based surveillance for monitoring 
respiratory and other transmissible infections in congregate living 
settings is a promising direction that can produce highly actionable 
data for public health agencies and other administrations responsible 
for the health of residents. Possible extensions of SARS-CoV-2 
surveillance include use of these methodologies to monitor other 
respiratory pathogens such as Respiratory Syncytial Virus (RSV) and 
Influenza (75, 76).
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