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Introduction: Wastewater surveillance has proven to be  a valuable approach to 
monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 
2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool 
to support public health in tracking SARS-CoV-2 and other respiratory pathogens, 
numerous wastewater virus sampling and concentration methods have been tested 
for appropriate applications as well as their significance for actionability by public 
health practices.

Methods: Here, we  present a 34-week long wastewater surveillance study that 
covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. 
Three primary concentration methods were compared with respect to recovery of 
SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene 
glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral 
concentrations were normalized using various parameters (flow rate, population, 
total suspended solids) to account for variations in flow. Three analytical approaches 
were implemented to compare wastewater viral concentrations across the three 
primary concentration methods to COVID-19 clinical data for both normalized and 
non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping 
(DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony.

Results: It was found that VIRADEL, which captures free and suspended virus 
from supernatant wastewater, was a leading indicator of COVID-19 cases within 
the region, whereas PEG and PES filtration, which target particle-associated 
virus, each lagged behind the early alert potential of VIRADEL. PEG and PES 
methods may potentially capture previously shed and accumulated SARS-CoV-2 
resuspended from sediments in the interceptors.

Discussion: These results indicate that the VIRADEL method can be  used to 
enhance the early-warning potential of wastewater surveillance applications 
although drawbacks include the need to process large volumes of wastewater to 
concentrate sufficiently free and suspended virus for detection. While lagging the 
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VIRADEL method for early-alert potential, both PEG and PES filtration can be used 
for routine COVID-19 wastewater monitoring since they allow a large number of 
samples to be processed concurrently while being more cost-effective and with 
rapid turn-around yielding results same day as collection.

KEYWORDS

wastewater surveillance, SARS-CoV-2, COVID-19, virus adsorption-elution, 
polyethylene glycol precipitation, filtration, lead/lag time, dynamic time warping

1. Introduction

Wastewater surveillance has been widely adopted by researchers and 
health agencies as an effective tool for tracking Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater amid the 
Coronavirus Disease 2019 (COVID-19) pandemic (1–13). SARS-CoV-2 
was first identified in Wuhan, Hubei, China, and was designated a Public 
Health Emergency of International Concern on January 30th, 2020, by 
the World Health Organization (WHO). COVID-19 was later declared 
a pandemic on March 11th, 2020 (who.int). Numerous studies have 
demonstrated that SARS-CoV-2 can be shed from the gastrointestinal 
tract of infected individuals and its viral RNA can persist and be detected 
in wastewater (14–18). To increase the sensitivity of the assay used to 
detect viral RNA in wastewater, samples are routinely concentrated prior 
to quantification (19–21).

Methods used in published studies to recover and concentrate 
SARS-CoV-2 viral RNA from wastewater encompass a wide range of 
techniques including Virus Adsorption-Elution (VIRADEL), 
polyethylene glycol precipitation (PEG), ultrafiltration, 
ultracentrifugation, concentrating pipette, filtration and so forth. Some 
of the methods, such as VIRADEL, exclude large solids and focus on free 
and suspended viral particles in supernatant wastewater. Other methods, 
such as PEG precipitation and filtration, target particulate matter and the 
associated viruses that are sorbed onto solids. Notably, this fraction may 
preferentially settle within the sewer when flow is reduced and likewise 
is susceptible to resuspension when flows are elevated (3, 22).

The recovery efficiencies of concentration methods are variable, 
differing between method, virus type and conditioning of the 
wastewater sample. Notably, VIRADEL was found to be effective for 
concentrating viruses from water samples with recovery efficiencies 
of more than 90% for poliovirus (23, 24), 54.4% for murine norovirus 
(MNV) (25), 51% for echovirus (26), 35% for enteric virus (27), and 
4.7% for adenovirus (28). Likewise, PEG was found to be effective for 
concentrating viruses in water samples, with recovery efficiencies of 
89.5% for echovirus (29), 86% for hepatitis A virus (30), 68% for 
poliovirus (30), and 56.7% (31) and 26.4% (32) for SARS-CoV-2. 
Filtration was reported to recover virus from wastewater samples with 
recovery efficiencies ranging from 26.7 to 65.7% for murine hepatitis 
virus (33), and 90% for human betacoronavirus OC43 (34).

Applying different concentration methods can achieve different 
goals. For instance, use of VIRADEL to concentrate SARS-CoV-2 can 
provide early warnings of impending COVID-19 cases (1, 3, 13). PEG 
precipitation is an economical and widely adopted method that allows 
a large number of samples to be processed concurrently and it is suitable 
for routine COVID-19 wastewater monitoring (22, 35). Likewise, 
filtration presents a cost-effective and simple approach commonly 
applied to recover cells and viral particles from environmental samples 

for nucleic acid extraction (36), which has also been applied to recovery 
of SARS-CoV-2 from wastewater (12, 35, 37, 38).

Here we  present a comparison of three primary concentration 
methods (VIRADEL, PEG and filtration) to detect SARS-CoV-2 viral 
RNA in wastewater, in relation to COVID-19 cases amid the transition 
from Delta to Omicron Variants of Concerns (VOCs) circulating in the 
Detroit, MI metropolitan area. Similarities and correlations were 
examined among the three concentration methods with both normalized 
and non-normalized data. The lead/lag time of each method in relation 
to the total COVID-19 cases was also assessed. The results presented in 
this study will assist researchers and public health practitioners to select 
appropriate primary concentration methods for the recovery of SARS-
CoV-2 from wastewater for different wastewater surveillance practices.

2. Materials and methods

Untreated wastewater samples were collected weekly from the Water 
Resource Recovery Facility (WRRF) of the Great Lakes Water Authority 
(GLWA) located in Detroit, MI, United States, between October 1, 2021, 
and May 31, 2022. The WRRF serves the needs of Detroit and 76 area 
communities with a service area of more than 2,450 square kilometers 
serving nearly 4 million people. WRRF collects and treats stormwater, as 
well as residential, industrial, and commercial waste, depending on 
service areas, with its semi-combined sewershed system. WRRF receives 
wastewater via three main interceptors including the Detroit River 
Interceptor (DRI), the North Interceptor-East Arm (NIEA), and the 
Oakwood-Northwest-Wayne County Interceptor (ONWI) (Figure 1), 
serving the City of Detroit as well as the three largest Michigan counties 
by population: Wayne, Oakland, and Macomb. Composite samples 
collected over 24-h were used to compare the polyethylene glycol (PEG) 
precipitation and filtration methods, however, the larger volumes required 
by the virus adsorption-elution (VIRADEL) method necessitated a 
targeted approach with samples collected between 15:30 to 18:00 each 
afternoon. The samples were collected from the three interceptors at the 
point of discharge into the WRRF and maintained chilled on ice during 
transport to the lab for primary concentration and sample analysis.

2.1. Virus adsorption-elution method

The United  States Environmental Protection Agency virus 
adsorption-elution (VIRADEL) method employing electropositive or 
electronegative filters was reported to recover and concentrate viruses 
from wastewater samples previously (1–4, 13, 20, 35). Electronegative 
filters require preconditioning such as adjusting the pH, prior to 
downstream concentration processes. Electropositive filters do not 
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require any preconditioning (20, 35). In this study, depending on the 
quantity of suspended solids in the wastewater, 10 to 50 L of untreated 
wastewater (grab sample) was passed through NanoCeram 
electropositive cartridge filters (Argonide, Sanford, FL, United States) at 
a rate less than 11 L/min using a previously described method (1–4). 
Flow meter readings were tracked at the beginning and end of each 
sampling event to measure the total volume of wastewater passing 
through the filters. Following sampling, the NanoCeram filters were 
transported on ice to the lab for sample analysis within 24 h. The elution 
process releases viral particles captured by the filters (20). Viruses were 
eluted using 1.5% beef extract containing 0.05 M glycine, based on a 

previously described method (1–4). Subsequently, the eluates containing 
viruses were flocculated by adjusting the pH, following multiple 
centrifugations and resuspension of particles in sodium phosphate. 
Afterwards, supernatants containing viruses were separated by adjusting 
the pH and centrifugation. Finally, the supernatants containing viruses 
were passed through 0.45 μm and 0.22 μm Millipore filters 
(MilliporeSigma, Burlington, MA, United States), which were followed 
by aliquoting and storage of the final aliquots at -80°C for downstream 
molecular analysis (1–4, 20). Bacteriophage Phi6 was applied as a proxy 
virus to estimate the recovery efficiency during virus concentration (3, 
29, 39). Figure 2 demonstrates the workflow of the VIRADEL method.

FIGURE 1

GLWA interceptor tributary map.
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2.2. Polyethylene glycol precipitation 
method

From a 24-h composite sample of untreated wastewater collected 
in a 1 L Nalgene bottle, 100 mL samples were mixed with 0.2 M sodium 
chloride and 8% polyethylene glycol (w/v). Samples were mixed gently 
on a magnetic stirrer at 4°C for 2 h, followed by centrifugation at 
4700 × g for 45 min at 4°C. The supernatant was removed, and the 
pellet was resuspended in the remaining liquid (approximately 
2-3 mL). The final concentrate volumes were between 1 to 6 mL. All 
sample concentrates were then subjected to downstream analysis 
including RNA extraction and RT-ddPCR (Figure 3).

2.3. Filtration method

Composite samples of raw wastewater collected as for the PEG 
method were concentrated by filtering 50-120 mL through 0.22 μm 
Sterivex PES cartridge filters (MilliporeSigma, Burlington, MA, 
United  States) using a 50 mL syringe fitted into a caulking gun. 
Immediately following filtration, the filters were sealed and flash-
frozen through immersion in liquid nitrogen as described previously 
(38). Subsequently, filters were subjected to downstream processes 
including RNA extraction and RT-qPCR (Figure 4).

2.4. RNA extraction, RT-ddPCR, RT-qPCR

Following VIRADEL and PEG methods, viral RNA was extracted 
using the QIAamp Viral RNA kit (Qiagen, Germantown, MD, 
United States), following the manufacturer’s protocol modified by use 

of 140 μL elution buffer to extract the viral RNA (1–4). RT-ddPCR was 
performed on a QX200 AutoDG Droplet Digital PCR system (Bio-
Rad, Hercules, CA, United States), using the One-step RT-ddPCR 
Advanced Kit for Probes (Bio-Rad, Hercules, CA, United States) as 
described previously (2, 3). United States Centers for Disease Control 
and Prevention (US CDC) primers and probes that target the N1 and 
N2 genes of SARS-CoV-2 were used (2, 3, 13). N1 N2 gene Duplex 
Assay Reaction Mixture was reported previously (2, 3, 13). Following 
the preparation of the Duplex Mixture and oil droplets generation, 
samples were run on a C1000 Touch Thermal Cycler (Bio-Rad, 
Hercules, CA, United  States) using the thermocycling conditions 
which were reported previously (2, 3, 13). Subsequently, the 
measurement of fluorescence was performed on a QX200 Droplet 
Reader (Bio-Rad, Hercules, CA, United States). For each RT-ddPCR 
run, positive controls (PTCs), negative controls (NTCs), and process 
negative controls were included, which were described previously (3). 
All samples were run in triplicate. The Limit of Detection (LOD) and 
Limit of Blank (LOB) for RT-ddPCR were described and determined 
previously (2, 3, 13).

Following the filtration method, filters were thawed, and RNA was 
extracted from the filters using the AllPrep PowerViral DNA/RNA kit 
(Qiagen, Germantown, MD, United States) modified by addition of 
5% 2-mercaptoethanol (v/v). RNA was eluted in 50 μL of RNAse free 
water. Samples were not treated with DNase upon extraction. Assays 
for SARS-CoV-2 targeted regions of the nucleocapsid (N) gene using 
US CDC primers and probes for the N1 and N2 regions (40). Reagents 
were supplied by Integrated DNA Technologies (Coralville, IA, 
United States). Reactions contained 5 μL of RNA template mixed with 
10 μL of 2 × RT-qPCR master mix (Takyon TM Dry One-Step RT 
Probe MasterMix No Rox, Eurogentec, Liège, Belgium) and primers 
and probes in a final reaction volume of 20 μL. Reaction inhibition was 

FIGURE 2

Illustrative flowchart of the VIRADEL concentration method and downstream analysis.
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assessed using VetMAX XENO Internal Positive Control RNA 
(Applied Biosystems Corp., Waltham, MA, United States). Due to 
repeated incidence of inhibition with wastewater samples processed 
by filtration, template was diluted 1:5  in all reactions. Technical 
triplicates were run for detection of gene targets. Thermal cycling was 
performed using a MA6000 qPCR thermocycler (Sansure Biotech, 

Changsha, China). RT was performed at 48°C for 10 min, followed by 
polymerase activation at 95°C for 3 min, and 50 cycles of denaturation, 
annealing/extension at 95°C for 10 s, then 60°C for 45 s, respectively. 
The EDX SARS-CoV-2 synthetic RNA standard (Exact Diagnostics, 
Fort Worth, TX, United States) was used to create a 7-point standard 
curve to quantify N1 and N2 gene targets. No template controls 

FIGURE 3

Illustrative flowchart of the PEG concentration method and downstream analysis.

FIGURE 4

Illustrative flowchart of the filtration concentration method and downstream analysis.
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yielded no amplification, and we report a limit of detection of 5 gene 
copies of N1 and N2 per reaction containing 5 μL of template RNA for 
RT-qPCR.

2.5. COVID-19 clinical data

Publicly available clinical data were accessed on August 22, 2022, 
for the period between October 1, 2021, and May 31, 2022, for the city 
of Detroit, as well as Wayne, Macomb, and Oakland counties 
(Figure 5A).1 Clinical data with a 7-day moving average (3, 41, 42) was 
used for further statistical analysis (Figure 5B). COVID-19 clinical 
data were only available per city/county for the Detroit metropolitan 

1 michigan.gov/coronavirus/stats

area. Each interceptor received wastewater from portions of each city/
county. Therefore, only the total SARS-CoV-2 concentrations can 
be correlated to the total COVID-19 cases of each city/county (3, 13).

2.6. Data analysis and visualization

Data were tracked and organized using Microsoft Excel version 
16.66.1. R version 4.1.3 was applied to perform data analysis including 
Pearson and Spearman correlations, Dynamic Time Warping (DTW), 
Time Lagged Cross Correlation (TLCC) and peak synchrony, 
depending primarily on ggplot2 package for visualization, and 
packages including dtw, synchrony, dplyr, and ggpubr. Missing data 
from samples were filled using linear interpolation for further analysis 
(3, 13, 43). For VIRADEL samples, 128 genes concentrations were 
measured for both N1 and N2 genes between 10/1/21 and 5/31/22. For 
PEG samples, 88 gene concentrations were measured for both N1 and 

FIGURE 5

(A) COVID-19 cases in the City of Detroit, as well as Wayne, Macomb, and Oakland counties; (B) 7-day moving average of the COVID-19 cases.
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N2 genes between 10/1/21 and 5/31/22. For filtration samples, 66 gene 
concentrations were measured for both N1 and N2 genes between 
10/1/21 and 5/31/22. To perform correlation analysis between weekly 
gene concentrations and daily clinical cases, linear interpolation was 
conducted to generate daily data based on weekly measurements. The 
number of interpolated daily gene concentrations were 179, 199, and 
210 for VIRADEL, PEG, and filtration, respectively.

To account for the changing flow in wastewater, dilution events, 
and variability in the solids portion of the wastewater, four approaches 
(flow rate, flow rate/population, TSS, flow rate×TSS) of normalizing 
the N1 and N2 gene concentrations (gc/L) were implemented using 
Eq. (1), Eq. (2), Eq. (3), and Eq. (4) (3, 44, 45). TSS, or “Total 
Suspended Solids,” is an estimate of the entire solids in wastewater in 
contrast to the liquid fraction or dissolved matter (45). In addition, 
other parameters, including sanitary percentage and Biological 
Oxygen Demand (BOD), proved ineffective for normalizing N1 and 
N2 gene concentrations for the Detroit area and other areas, thus, they 
were not considered in the current study (3, 9). SARS-CoV-2 gene 
concentrations measured in the wastewater following VIRADEL, 
PEG, and filtration methods are reported as gene copies per L (gc/L). 
The units after normalization using flow rate, flow rate/population, 
TSS, and flow rate×TSS, are gene copies per day (gc/day), gene copies 
per day per person (gc/day/person), gene copies per mg TSS (gc/mg 
TSS), and gene copies per L per pounds/day {gc/[L(pounds/day)]}, 
respectively.

 C C V fN or N gene1 1 2( ) = ∗ ∗  (1)
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C 1( ) is the normalized concentration of SARS-CoV-2 in gc/day. 
C 2( ) is the normalized concentration of SARS-CoV-2  in gc/day/
person. C 3( ) is the normalized concentration of SARS-CoV-2 in gc/
mg TSS. C 4( ) is the normalized concentration of SARS-CoV-2 in gc/
[L(pounds/day)]. V  is the volume of wastewater flowing into WWTP 
interceptors during sampling events (MGD). f  is the conversion 
factor between L and MGD. k  is the conversion factor between mg 
and pounds. P is the total population in the Detroit metropolitan area 
served by WRRF’s interceptors including ONWI, NIEA, and DRI. TSS 
represents the total suspended solids (mg/L).

2.6.1. Correlations among N1 and N2 gene 
concentrations by VIRADEL, PEG, and filtration

Multiple studies investigated the applications of both Pearson and 
Spearman correlations on analyzing the relationship between 
wastewater viral concentrations of SARS-CoV-2 and COVID-19 
clinical cases as well as the relationship among wastewater viral 

concentrations by different genes or methods (9, 46, 47). In this study, 
Pearson and Spearman correlations were performed among N1 and 
N2 gene concentrations {gc/L, gc/day, gc/day/person, gc/mg TSS, gc/
(L[pounds/day)]} by VIRADEL, PEG, and filtration methods. The 
Pearson correlation measures how two time series among VIRADEL, 
PEG, and filtration gene concentrations covary during the study 
period, and indicate their linear relationships. The Spearman 
correlation coefficient is a simple and straightforward approach to 
analyze the degree of associations between two time series (48).

2.6.2. Dynamic time warping
One commonly used algorithm for quantifying the similarities/

dissimilarities between time series data is the Euclidean distance 
(ED), but numerous studies demonstrated that ED is insensitive to 
time shifting and patterns between time series since it compares the 
data points of time series in a settled sequence and cannot consider 
time shifting or patterns (49, 50). Dynamic time warping (DTW) is 
a well-established algorithm that circumvents the limitations of ED 
and compares two time series by computing dynamic distances 
between them considering regional distortions, time shifting, and the 
optimal warping that best aligns the time series between each other 
(50, 51). Therefore, similar patterns that occur at different times 
between time series can be  considered as matching, thus, the 
similarity of time series can be  evaluated considering their time 
shifting and shapes by DTW algorithm (50). The DTW algorithm 
was proposed previously (51).

The outcome of DTW analysis indicates two time series with the 
most similar patterns by calculating the minimum overall dissimilarity 
or the DTW minimum distance where data points on one time series 
best align data points on another time series (51). Multiple studies 
investigated the similarities between time series using DTW algorithm 
(50, 52, 53). However, to our knowledge, this is the first study to apply 
DTW algorithm to compare the similarities between wastewater gene 
concentrations data by three concentration methods (VIRADEL, 
PEG, and filtration), as well as comparing the similarities between 
wastewater gene concentrations data and COVID-19 clinical data. In 
this study, package dtw and related packages in R (version 4.1.3) were 
implemented to calculate DTW for the normalized {gc/day, gc/day/
person, gc/mg TSS, and gc/[L(pounds/day)]} and non-normalized 
(gc/L) data to analyze the similarities/dissimilarities between 
VIRADEL, PEG, and filtration methods.

One limitation is that the minimum DTW distance can be affected 
by the scaling factor of time series data. For instance, the minimum 
DTW distance between PEG (gc/day/person) and COVID-19 cases 
can be smaller than the distance between VIRADEL (gc/day/person) 
and cases, indicating that PEG presents higher similarity to cases than 
VIRADEL. However, this was affected by the population factor which 
is a constant number but is not dynamic time series data. Using flow/
population normalization including a constant factor intentionally 
changed the similarities among time series data. Therefore, the 
minimum DTW distance with flow/population normalized data was 
not considered for further discussions.

2.6.3. Time lagged cross correlation and peak 
synchrony

To estimate the leading or lagging relationships between 
wastewater viral concentrations by three concentration methods 
(VIRADEL, PEG, and filtration) and total COVID-19 cases, TLCC 
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and peak synchrony were performed where the total COVID-19 
cases were shifted over time and correlated with wastewater viral 
concentrations for each concentration method. TLCC refers to 
correlations between two time series shifted relatively in time. It 
can identify the direction and relationship between two time series, 
for instance, a leader-follower relationship, where the leader time 
series develop a pattern which is repeated by the follower time 
series (54). TLCC is widely applied in analyzing time series 
especially delay, lead/lag time, and lagged cross correlation and so 
forth (44, 54–56). TLCC is an effective approach to estimate the 
dynamic relationships between two time series and demonstrate 
how they shift over time (44).

In this study, TLCC is measured by gradually shifting total 
COVID-19 cases between -20 days (lagging) and + 20 days (leading), 
and constantly calculating the Pearson’s correlation coefficients 
between two time series for each shifting. Peak synchrony occurs 
when the peak correlation is observed. For instance, if the peak 
correlation is observed at the center where the lag time or offset is 
0 day, this condition indicates that the time series are most 
synchronized at day 0 demonstrating no shifting or lag time. However, 
the peak correlation can be at a different offset if one time series is 
leading or lagging another one. R package “synchrony,” “devtools,” and 
related packages were implemented to calculate the TLCC and peak 
synchrony between gene concentrations (both normalized and 
non-normalized data, by VIRADEL, PEG, and filtration methods) and 
7-day moving average total COVID-19 cases.

3. Results

3.1. SARS-CoV-2 viral RNA concentrations 
in wastewater derived by three 
concentration methods spanning the 
transition between delta and omicron 
VOCs

RT-ddPCR (VIRADEL and PEG samples) and RT-qPCR 
(filtration samples) targeting the N1 and N2 genes was used to 
quantify SARS-CoV-2 RNA concentrations in wastewater samples 
collected at GLWA’s WRRF over 34 weeks. The study period captured 
the third major resurgence of COVID-19 cases in the region 
corresponding to the transition from SARS-CoV-2 Delta (B.1.617.2) 
variant to Omicron (B.1.1.529) variant (3, 44).

Filtered samples yielded N1 and N2 gene concentrations higher 
than those of VIRADEL but lower than those of PEG, for both 
normalized and non-normalized data (Table  1). Filtered samples 
yielded mean N1 and N2 gene concentrations of 3.22E+04 and 
1.50E+04 gc/L, respectively. VIRADEL samples yielded mean N1 and 
N2 gene concentrations of 1.61E+03 and 1.63E+03 gc/L, respectively. 
PEG samples yielded mean N1 and N2 gene concentrations of 
1.61E+05 and 1.50E+05 gc/L, respectively. The overall observed trends 
of the VIRADEL total N1 and N2 gene concentrations increased 
steeply from early December 2021 and reached a peak in late 
December 2021 (Figure  6A), which heralded the major wave of 
COVID-19 cases in late December 2021 and early January 2022. 
Likewise, VIRADEL N1 and N2 gene concentrations increased in 
early April 2022, which preceded a resurgence of COVID-19 cases 
later in mid-April 2022.

Previous reports have demonstrated that the VIRADEL 
method can serve as a leading indicator of COVID-19 cases (1, 3, 
13). By contrast, PEG measured N1 and N2 gene concentrations 
were more variable and increased significantly in January 2022, 
lagging the major wave of COVID-19 infections (Figure 6B). PEG 
N1 and N2 gene concentrations increased simultaneously with the 
surge of COVID-19 cases in mid-April 2022, into May 2022. N1 
and N2 gene concentrations yielded by the filtration approach 
increased in early November 2021 and decreased in early 
December 2021. Thereafter, gene concentrations rapidly increased 
starting in mid-December 2021, peaking in mid-January 2022, 
which later significantly decreased to a low level in February 2022 
(Figure  6C). Notably, the peak in SARS-CoV-2 measured in 
wastewater by this approach was staggered, lagging the major 
wave of COVID-19 cases.

TABLE 1 Total N1 and N2 gene concentrations measured in wastewater 
samples by VIRADEL, PEG, and filtration methods.

Gene Methods

VIRADEL PEG Filtration

N1 (gc/L) Maximum 5.64E+03 7.02E+05 1.12E+05

Minimum 9.01E+02 3.18E+04 5.12E+02

Mean 1.61E+03 1.61E+05 3.22E+04

N2 (gc/L) Maximum 4.95E+03 5.48E+05 7.34E+04

Minimum 9.01E+02 2.97E+04 3.13E+02

Mean 1.63E+03 1.50E+05 1.50E+04

N1 (gc/day) Maximum 5.24E+12 4.07E+14 7.40E+13

Minimum 5.39E+11 2.36E+13 4.12E+11

Mean 1.35E+12 1.18E+14 2.52E+13

N2 (gc/day) Maximum 4.62E+12 3.18E+14 4.77E+13

Minimum 5.84E+11 2.21E+13 2.93E+11

Mean 1.37E+12 1.12E+14 1.14E+13

N1 (gc/day/

person)

Maximum 1.69E+00 1.31E+02 2.38E+01

Minimum 1.74E-01 7.58E+00 1.32E-01

Mean 4.34E-01 3.79E+01 8.11E+00

N2 (gc/day/

person)

Maximum 1.49E+00 1.02E+02 1.54E+01

Minimum 1.88E-01 7.12E+00 9.43E-02

Mean 4.41E-01 3.59E+01 3.65E+00

N1 (gc/mg 

TSS)

Maximum 5.82E+01 5.72E+03 1.19E+03

Minimum 6.85E+00 2.20E+02 2.91E+00

Mean 1.69E+01 1.53E+03 2.97E+02

N2 (gc/mg 

TSS)

Maximum 5.21E+01 4.66E+03 6.60E+02

Minimum 6.71E+00 1.99E+02 3.84E+00

Mean 1.69E+01 1.44E+03 1.41E+02

N1 (gc/

(L(pounds/

day)))

Maximum 2.94E-02 4.96E+00 8.83E-01

Minimum 2.00E-03 6.48E-02 1.77E-03

Mean 9.83E-03 1.01E+00 1.89E-01

N2 (gc/

(L(pounds/

day)))

Maximum 2.70E-02 4.01E+00 4.84E-01

Minimum 1.96E-03 5.90E-02 2.06E-03

Mean 9.84E-03 9.37E-01 9.27E-02
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3.2. Correlations and similarity analysis 
among three concentration methods

3.2.1. Correlations of N1 and N2 gene concentrations 
among three concentration methods

Multiple studies have applied Pearson and Spearman 
correlations to analyze the relationships between wastewater 

SARS-CoV-2 gene concentrations and COVID-19 cases (3, 9, 46), 
as well as the relationships among gene concentrations of SARS-
CoV-2 in wastewater (47, 57). In this study, we tested the Pearson 
and Spearman correlations among N1 and N2 gene concentrations 
by VIRADEL, PEG, and filtration with normalized and 
non-normalized data (Table 2). A value of p that is less than 0.05 is 
considered statistically significant. For the non-normalized data 

FIGURE 6

N1 and N2 gene concentrations (gc/L) by three concentration methods: (A) VIRADEL, (B) PEG, (C) Filtration, plotted against total COVID-19 cases.
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(gc/L), the highest correlation was observed between PEG and 
filtration with N2 gene concentration (Pearson’s r = 0.67, Spearman’s 
r = 0.6). The lowest correlation was found between VIRADEL and 
PEG for N2 gene concentration (Pearson’s r = 0.12, Spearman’s 
r = 0.34). For non-normalized data (gc/L), the correlations between 
PEG and filtration were stronger than the correlations between 
VIRADEL and filtration, which in turn was stronger than the 
correlations between VIRADEL and PEG. For normalized data, the 
highest correlation was found between PEG and filtration for N1 
(Pearson’s r = 0.73, Spearman’s r = 0.66) and N2 (Pearson’s r = 0.76, 
Spearman’s r = 0.64) gene concentrations in gc/[L(pounds/day)]. 
Significant correlations (Pearson coefficient > 0.63, Spearman 
coefficient > 0.6) were observed between PEG and filtration in gc/L, 
gc/mg TSS and gc/(L(pounds/day)) (Table  2). VIRADEL has 
stronger correlation to filtration than to PEG for both normalized 
and non-normalized data.

Normalizations using flow rate and flow rate/population 
reduced the correlations of gene concentrations among VIRADEL, 
PEG, and filtration compared to the correlations using the 
non-normalized data (gc/L) (Table 2). For instance, both Pearson 
and Spearman correlation coefficients between PEG and filtration 
were reduced from 0.67 (N2, Pearson, gc/L) and 0.6 (N2, Spearman, 
gc/L) to 0.45 (N2, Pearson, gc/day) and 0.5 (N2, Spearman, gc/
day), respectively (Table 2). Conversely, normalizations using TSS 
and flow rate×TSS enhanced the correlations of gene concentrations 
among the three methods. For instance, higher correlation 
coefficients (Pearson’s r ranged from 0.73 (N1 gene) to 0.76 (N2 
gene), Spearman’s r ranged from 0.64 (N2 gene) to 0.66 (N1 gene), 
all p < 0.05) were observed between PEG and filtration gene 
concentrations after normalization using flow rate×TSS compared 
to the correlation coefficients for non-normalized data (gc/L) 
(Pearson’s r ranged from 0.63 (N1 gene) to 0.67 (N2 gene), 
Spearman’s r = 0.6 (both N1 and N2 gene), all p < 0.05).

3.2.2. Dynamic time warping of N1 and N2 gene 
concentrations among three concentration 
methods

Detecting patterns and comparing similarities of gene 
concentration time series data are critical for comparing the 
concentration methods. Dynamic time warping (DTW) identifies 
the most similar patterns and the optimal warping match between 
two time series by calculating the minimum DTW distance (51, 
53, 58). Shorter DTW distances indicate higher degree of 
similarity in patterns/shapes between two time series (59, 60). 
Table 3 presents the DTW minimum distances among the N1 and 
N2 gene concentrations by VIRADEL, PEG, and filtration 
methods. Smallest DTW distances were observed between 
VIRADEL and filtration for both non-normalized and normalized 
data, which indicated that VIRADEL has a higher degree of 
similarity with filtration than with PEG. Largest DTW distances 
were observed between VIRADEL and PEG for both 
non-normalized and normalized data, indicating that VIRADEL 
and PEG have the least similarity. This finding was consistent with 
the sampling and concentration mechanisms since VIRADEL 
targets free and suspended viral particles in the dissolved phase of 
wastewater, whereas PEG targets particle-associated viruses, some 
of which may represent previously shed and accumulated viruses 
in the sewer stream (3, 22).

Normalization using flow rate decreased the similarity among 
methods. For instance, the DTW distance between VIRADEL and 
filtration increased significantly after normalizing using flow rate 
(gc/day), indicating that the similarity between VIRADEL and 
filtration was reduced after normalization (Table 3). Conversely, 
normalization using TSS and flow rate×TSS strengthened the 
similarity among methods. For instance, the DTW distances 
decreased in gc/mg TSS and gc/(L(pounds/day)) comparing to the 
DTW distance in gc/L among the methods, indicating the 

TABLE 2 Correlation coefficients among gene concentrations by VIRADEL, PEG, and filtration methods.

Methods (Unit) Gene (Correlation)

N1 (Pearson) N1 (Spearman) N2 (Pearson) N2 (Spearman)

V-P (gc/L) 0.17 0.36 0.12 0.34

V-P (gc/day) 0.10 0.17 0.11 0.13

V-P (gc/day/person) 0.10 0.17 0.11 0.13

V-P (gc/mg TSS) 0.29 0.41 0.27 0.46

V-P (gc/(L(pounds/day))) 0.46 0.58 0.43 0.62

V-F (gc/L) 0.41 0.46 0.23 0.40

V-F (gc/day) 0.26 0.13 0.04 0.05

V-F (gc/day/person) 0.26 0.13 0.04 0.05

V-F (gc/mg TSS) 0.49 0.47 0.27 0.39

V-F (gc/(L(pounds/day))) 0.59 0.64 0.41 0.60

P-F (gc/L) 0.63 0.60 0.67 0.60

P-F (gc/day) 0.46 0.51 0.45 0.50

P-F (gc/day/person) 0.46 0.51 0.45 0.50

P-F (gc/mg TSS) 0.67 0.63 0.68 0.60

P-F (gc/(L(pounds/day))) 0.73 0.66 0.76 0.64

V represents VIRADEL, P represents PEG, F represents filtration.
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improvement of similarity among methods after normalization 
(Table 3).

3.3. Similarity and TLCC analysis between 
three concentration methods and 
COVID-19 cases

3.3.1. Dynamic time warping between three 
concentration methods and COVID-19 cases

Wastewater surveillance data for COVID-19 primarily contain 
temporal data of viral gene concentrations and clinical cases. DTW 
analysis were performed between gene concentrations derived from 
the three concentration methods (VIRADEL, PEG, and filtration) 
and the 7-day moving average of total COVID-19 cases for both 
normalized and non-normalized data. For non-normalized data 
(gc/L), the smallest DTW distance was found between VIRADEL 
and total COVID-19 cases (Table 4). This indicates that VIRADEL 
(gc/L) has the highest similarity to total COVID-19 cases among the 
three concentration methods tested. The largest DTW distance was 
found between PEG (gc/L) and total COVID-19 cases, indicating the 
PEG method for concentration yields the least similarity to clinical 
cases. Normalizing gene concentration data using flow (gc/day) 
demonstrated similar findings. Conversely, normalization using TSS 
and flow×TSS can significantly increase the similarity between PEG 
and total COVID-19 cases but concurrently decrease the similarity 
between VIRADEL and total COVID-19 cases. Specifically, for 
normalized data (gc/mg TSS, gc/L(pounds/day)), the smallest DTW 
distance was identified between PEG and total COVID-19 cases, 
indicating the PEG has the highest similarity to total COVID-19 
cases. The largest DTW distance was identified between VIRADEL 
and COVID-19 cases, indicating that VIRADEL has the lowest 
similarity to total COVID-19 cases.

3.3.2. Time lagged cross correlation and peak 
synchrony between three concentration 
methods and COVID-19 cases

The relative timing of the wastewater gene concentrations {gc/L, 
gc/day, gc/day/person, gc/mg TSS, and gc/[L(pounds/day)]} of 
VIRADEL, PEG and filtration were compared to the total COVID-19 
cases using TLCC and peak synchrony. To evaluate if wastewater viral 
concentrations of the three methods lead or lag COVID-19 cases, the 
total COVID-19 case data were shifted by a period of −20 (lagging) to 
+20 days (leading) and the Pearson’s correlation coefficients were 
calculated between cases and wastewater viral gene concentration for 
each shift. The leading or lagging metric varied for each method, 
which was determined by comparing the strongest Pearson’s 
correlation coefficient.

For the VIRADEL method, both N1 and N2 gene concentrations 
(gc/L) were strongly correlated with COVID-19 cases, covering 
shifting windows between −20 and + 20 days (Figure 7A). The highest 
correlation coefficient was observed when offset is +12 days 
(Figure 7A), indicating that SARS-CoV-2 gene concentrations (gc/L) 
in wastewater by the VIRADEL method lead COVID-19 cases by 
12 days, which concurred with previous findings of a 35-day lead time 
of gene concentrations preceding total COVID-19 cases prior to the 
Omicron surge (3). For both non-normalized and normalized data, 
VIRADEL always led COVID-19 cases with a variety of lead times 
(Table 5).

For the PEG method (gc/L), the strongest correlation coefficients 
were observed with an offset of -12 days, indicating that SARS-CoV-2 
gene concentrations by the PEG method lagged reported COVID-19 
cases by 12 days during the study period (Figure 7B).

For the filtration method (gc/L), the highest correlation 
coefficient was observed with an offset of -7 days for the N1 gene 

TABLE 3 Dynamic time warping (DTW) minimum distances among gene 
concentrations by VIRADEL, PEG, and filtration methods.

Methods (Unit) Gene

N1 N2

V-P (gc/L) 4.37E+07 4.07E+07

V-P (gc/day) 3.23E+16 3.06E+16

V-P (gc/day/person) 1.04E+04 9.83E+03

V-P (gc/mg TSS) 3.93E+05 3.68E+05

V-P (gc/(L(pounds/day))) 2.42E+02 2.23E+02

V-F (gc/L) 7.51E+06 3.14E+06

V-F (gc/day) 5.87E+15 2.35E+15

V-F (gc/day/person) 1.89E+03 7.56E+02

V-F (gc/mg TSS) 6.74E+04 2.84E+04

V-F (gc/(L(pounds/day))) 4.33E+01 1.92E+01

P-F (gc/L) 2.60E+07 2.85E+07

P-F (gc/day) 1.83E+16 2.27E+16

P-F (gc/day/person) 5.89E+03 7.30E+03

P-F (gc/mg TSS) 2.45E+05 2.94E+05

P-F (gc/(L(pounds/day))) 1.46E+02 1.66E+02

V represents VIRADEL, P represents PEG, F represents filtration.

TABLE 4 Dynamic time warping (DTW) minimum distances between gene 
concentrations by VIRADEL, PEG, as well as filtration methods and total 
COVID-19 cases.

Method-cases (Unit) Gene

N1 N2

V-cases (gc/L) 1.04E+05 1.28E+05

V-cases (gc/day) 4.72E+14 4.86E+14

V-cases (gc/day/person) 4.61E+05 4.61E+05

V-cases (gc/mg TSS) 4.55E+05 4.54E+05

V-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05

P-cases (gc/L) 4.39E+07 4.08E+07

P-cases (gc/day) 3.30E+16 3.14E+16

P-cases (gc/day/person) 4.43E+05 4.42E+05

P-cases (gc/mg TSS) 9.87E+04 1.14E+05

P-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05

F-cases (gc/L) 7.35E+06 2.95E+06

F-cases (gc/day) 6.20E+15 2.82E+15

F-cases (gc/day/person) 4.57E+05 4.59E+05

F-cases (gc/mg TSS) 2.87E+05 3.92E+05

F-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05

V represents VIRADEL, P represents PEG, F represents filtration, cases represents total 
7-day-moving-average clinical cases.
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and -11 days for the N2 gene, indicating that SARS-CoV-2 gene 
concentrations in wastewater lagged reported COVID-19 cases for 
7 days (N1) and 11 days (N2), respectively (Figure 7C). Likewise, 
similar observations were found for normalized data where the 
filtration method yielded data that lagged clinical cases (Table 5). 

Table 5 summarized the lead/lag time between VIRADEL, PEG, 
and filtration methods and total COVID-19 cases. The length of 
the leading or lagging time differed with dissimilar normalizations. 
However, the leading or lagging pattern of each method did not 
change, where VIRADEL measurements were always leading 

FIGURE 7

Pearson correlation coefficients for TLCC and peak synchrony between wastewater viral concentrations and COVID-19 cases with offsets between 
−20 (lagging) and  +  20 (leading) days for the three methods, including (A) VIRADEL, (B) PEG, and (C) Filtration.
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COVID-19 cases, whereas PEG and filtration measurements 
routinely lagged COVID-19 cases.

4. Discussion

There is an ongoing effort to optimize methods to recover and 
concentrate SARS-CoV-2 from wastewater in support of 
actionable public health outcomes (33, 61). In this study, three 
concentration methods were evaluated for concentrating SARS-
CoV-2 from wastewater, spanning the transition between Delta 
and Omicron variants circulating in the Detroit, MI metropolitan 
area. The three methods share common characteristics, especially 
downstream where they follow similar procedures of nucleic acid 
extraction and quantification such as RT-ddPCR or 
RT-qPCR. Likewise, their recovery efficiencies are reported as 
comparable (2, 3, 22, 34, 62).

4.1. VIRADEL: opportunities and obstacles

Several studies have previously adopted VIRADEL as the 
concentration method for SARS-CoV-2 in wastewater (1–4, 13). 
An attribute of the VIRADEL method is the ability to process large 
volumes (10 – 50 L) of wastewater, thus facilitating capture of free 
and suspended viral particles that are arguably most representative 
of viruses shed by recently infected individuals (3, 35). This 
establishes VIRADEL as a concentration method capable to 
provide early warning that leads case reporting (1, 3), which was 
also verified by TLCC analysis in this study (Table 5). Limiting 
widescale adoption of VIRADEL is labor-intensive preparation of 
sampling units which require extensive washing and disinfection 
prior to use. VIRADEL (63) also requires access to large volumes 
of wastewater which may not be  available to all researchers. 
Further, the required large volumes may necessitate use of grab 
samples which typically yield higher variability than composite 
samples which is the sampling method of choice for many 
wastewater surveillance efforts (64). VIRADEL requires trained 
personnel for comparatively laborious work with limited samples 
(n = 15) processed over a relatively long time (4-6 h). VIRADEL 
also requires multiple large centrifuges as well as expensive and at 
times, supply chain-limited consumables. Therefore, VIRADEL 
may not be an ideal choice for routine wastewater surveillance 
projects in common microbiology laboratories. However, it was 
clear from the comparative analysis conducted that VIRADEL has 

clear potential to be  implemented as a tool to provide early 
warning to inform public health actions (1, 3, 13).

4.2. PEG: opportunities and obstacles

Apart from requiring access to a centrifuge, the consumables 
required are widely available and relatively inexpensive, lending itself 
as one of the most broadly applied concentration methods for routine 
wastewater surveillance (3, 22, 31, 33, 62, 63). On the other hand, PEG 
is restricted to processing smaller volumes of wastewater (usually 0.05 
to 2 L) and only a portion of the sample pellet is used to recover and 
extract RNA, which can be affected by the variation of samples and 
representation of all viruses in wastewater (3, 22, 33, 35).

Unlike VIRADEL, PEG targets particle-associated viruses 
consistent with reports that identify solids as the phase yielding 
highest SARS-CoV-2 concentrations in wastewater (63). While a 
fraction of these particles will represent recently deposited SARS-
CoV-2, the majority may represent previously shed and accumulated 
viruses in the sewer stream and later resuspended during flow 
fluctuations, thus providing a mechanism for the method to yield data 
lagging clinical COVID-19 cases. Though the exact mechanism of 
PEG is not well understood, several studies proposed that it captures 
viruses that are sorbed to larger precipitates and solids, consistent with 
a high quantity of TSS in wastewater (3, 22). In this study, through the 
DTW analysis, PEG yielded data were normalized using TSS and flow 
× TSS, which increased the degree of similarity between PEG and total 
COVID-19 cases (Table 4). This demonstrated that PEG yielded data 
were largely affected by the presence of TSS. VIRADEL, instead, 
captured free and suspended viruses in the supernatant wastewater. 
Thus, normalizing the VIRADEL data using TSS and flow × TSS 
decreased the similarity between VIRADEL and cases (Table 4).

Through the TLCC analysis, this study also demonstrated that 
PEG gene concentrations lagged COVID-19 cases (Table 5), which 
embraced the aforementioned sampling mechanism of PEG (22). PEG 
method did not provide an early warning (leading window) for 
COVID-19 cases which concurred with our previous findings, 
whereas VIRADEL provided early warnings ahead of clinical cases 
while PEG lagged clinical cases for the Detroit area (3).

However, several studies using PEG provided early warnings of 
impending COVID-19 cases (65). Notably, in these studies, PEG was 
applied to different types of samples such as primary sewage sludge, 
which is a different sample matrix from untreated wastewater samples, 
thus needing more investigation on the impact of sample types on 
early warnings (65). Kumar et al. (66) identified early warnings using 

TABLE 5 Lead/lag time between wastewater viral concentrations by VIRADEL, PEG, as well as filtration methods and total COVID-19 cases.

Units Method (Gene)

V (N1) V (N2) P (N1) P (N2) F (N1) F (N2)

gc/L* +12 +12 -12 -12 -7 -11

gc/day +13 +13 -6 -6 -2 -10

gc/day/person +13 +13 -6 -6 -2 -10

gc/mg TSS +11 +11 -9 -9 -7 -12

gc/(L(pounds/day)) +9 +9 -14 -14 -11 -13

V represents VIRADEL, P represents PEG, F represents filtration, * was demonstrated in Figure 7., + indicates lead time, – indicates lag time.
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PEG in the early stage of the pandemic in August 2020 in India (66). 
PEG and other concentration methods [such as ultrafiltration (17, 67) 
and adsorption-precipitation (68)] identified early warnings in the 
early stage of the pandemic when testing capacities were largely 
limited, and societal responses to the pandemic and clinical data 
reporting were significantly delayed (3, 69). In addition, earlier 
prevalent COVID-19 variants including Alpha, Beta and Gamma were 
reported with longer incubation times than Delta and Omicron 
variants, leading to prolonged early warning potentials of wastewater 
surveillance in the early stages of the pandemic (70).

Though PEG was reported to provide early warnings, it may have 
a shorter early warning window than VIRADEL due to the 
fundamental disparity of their targets, that being newly contributed 
free and suspended viral particles versus particle-attached virus, some 
of which may be considered previously shed and accumulated and 
subsequently resuspended from sediment (3). In the current study, 
PEG was shown to lag clinical cases while VIRADEL was leading 
clinical cases for both normalized and non-normalized data (Table 5). 
Overall, the early warning potential of PEG needs further 
investigations in terms of sample types, sampling mechanisms and 
locations, stage of the epidemic, among other factors.

4.3. Filtration: opportunities and obstacles

Filtration is commonly applied to recover and concentrate viral 
RNA in water samples. It achieves generally good recovery efficiencies, 
is relatively inexpensive using commonly available lab equipment and 
simple protocols and provides consistent performance and inclusive 
measurement since it captures viruses from both solids and liquid 
fractions by nature of forcing free viral particles across trapped solids 
(33, 37). However, filtration has several drawbacks. First, the number 
of available filtration units restricts the number of samples that can 
be processed concurrently (33). Meanwhile, clogging of filters can 
occur due to high variations of turbidity in wastewater. While this can 
be offset in part by use of a caulking gun to exert more pressure on the 
sample being filtered, in reality, volumes are limited to 
~0.1 L. Additionally, filtration measurements lagged the COVID-19 
clinical cases in the current study, thus, its ability to provide early 
warnings for impending cases is called into question. The recovery 
efficiencies also differ with different filters (33).

4.4. Future directions

The mechanism and implications of primarily collecting viruses 
attached to solids that may have settled and resuspended before sampling, 
such as by the PEG, needs further investigations. Notably, multiple 
studies have reported that the integrity of SARS-CoV-2 RNA was higher 
when sorbed to suspended solids, organic matter, and large bio-solids 
which provide protection from predation and inactivation. This can 
be  explained by the hydrophobicity of SARS-CoV-2 viral particles, 
leading to their adherence to wastewater solids and longer persistence 
compared to free viruses in the supernatant wastewater (71–73).

The implications of seasonal variations in SARS-CoV-2 
persistence in wastewater needs further investigations. Seasonal 
variations of wastewater temperature and pH are reported to affect 
the persistence of viral RNA in wastewater (74). However, 

SARS-CoV-2 RNA was shown to be highly stable at 4°C aqueous 
environment or in a wide pH range at room temperature (75, 76). 
Multiple studies reported the detectability and persistence of SARS-
CoV-2 RNA in untreated wastewater solids samples. For instance, 
researchers found that SARS-CoV-2 RNA was consistently detected 
for 29 days and 64 days at 4°C and -20°C, respectively in wastewater 
solids pelleted by centrifugation (77). Another study indicated that 
only minimal reduction of SARS-CoV-2 RNA was observed for 
wastewater solids samples after 100 days (78). Additionally, 
researchers established models to indicate that viral RNA can 
be detected in wastewater even with long sewer travel time (100 h), 
especially with lower average wastewater temperature in northern 
cities such as Detroit (74). A recent study also indicated that 
biofilms could mediate the fate of SARS-CoV-2  in wastewater, 
especially leading the viral RNA to prolonged presence (79).

The effect of varying sampling volumes needs further investigation. 
Some studies indicated that a larger sampling volume can increase the 
sensitivity of the sampling method, suggesting that it will detect lower 
levels of viral RNA in wastewater samples (80). Similarly, researchers 
suggested that processing of larger sample volumes may help to lower 
the method detection limits (74). But at the same time, keeping the 
required samples sizes low can reduce shipping costs between sampling 
location and the analytical laboratory as well as reduce space for 
storage (74). Other researchers indicated that detection sensitivity can 
be improved by increasing the sample volume from 100 mL to 500 mL 
wastewater for testing SARS-CoV-2 (6).

However, other researchers presented that large-volume sampling 
did not significantly enhance the sensitivity of methods (81). For 
instance, Zheng et  al. (81) found that wastewater concentration 
methods (they used ultracentrifugation) using less volume of 
wastewater was preferable than larger volume of wastewater in terms 
of sensitivity for testing SARS-CoV-2. The study revealed that when 
using the same concentration methods, no significant difference was 
observed in the viral RNA concentrations between experiments 
conducted with a larger volume of wastewater and those conducted 
with a smaller volume (81). Some studies indicated that a larger 
sampling volume may also dilute the wastewater sample, which can 
lead to a lower viral RNA concentration (82).

Overall, the sampling volume for wastewater surveillance of 
SARS-CoV-2 using different concentration methods will depend on 
several factors, including the sensitivity of the method, the 
concentration of viral RNA in the wastewater, and the size of the 
population being monitored. It is critical to consider and address these 
factors when analyzing wastewater surveillance data and more 
in-depth research on how the sampling volume affect statistical results 
are needed.

The time of sampling may potentially affect results in sewershed 
sampling. The effect of sampling time in large interceptors, like the 
ones sampled in this study, is less significant, since the interceptor 
wastewater is mixed at the pumping stations. A few studies have 
reported gene concentration varying on an hourly basis (83, 84) 
although the temporal variability of SARS-CoV-2 concentrations in 
wastewater remains ambiguous (83, 85). It has been suggested that 
composite samples may circumvent the within-day variation of viral 
concentrations (83). Whereas both the PEG and filtration methods 
used composite samples, the large volume required for VIRADEL 
necessitated separate sampling which was conducted over a period of 
several hours to help reduce temporal variability. Further, considering 
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the vast sewersheds and population of nearly 4 million people that 
GLWA’s three interceptors serve, the concentrations of SARS-CoV-2 in 
wastewater may be  highly diluted and within-day variations can 
be negligible. Future studies are called to examine within-day variation 
of SARS-CoV-2.

Admittedly, there are caveats to the current study that should 
be considered and discussed. The study period was limited to the 
transition between Delta and Omicron VOCs that occurred between 
fall 2021 and winter 2022. With each successive resurgence of COVID-
19, differences are reported related to disease trajectory including 
incubation time, shedding dynamics and disease severity (18, 86). For 
instance, the incubation time was shorter during the Omicron surge 
compared to the previous variants, inevitably reducing the early 
warning potentials of wastewater surveillance in the later stage of the 
pandemic (3, 86). Further, the changing viral shedding dynamics, viral 
decay kinetics, and shedding duration of the Omicron variant are not 
well understood and many uncertainties remain (18, 87). As such, the 
lead and lag times reported here cannot be extrapolated to past or 
future SARS-CoV-2 variants. In addition, sampling frequency was 
limited to weekly samples and thus less informative for establishing 
time series or less likely to depict accurately the actual fluctuations of 
wastewater viral concentrations (cdc.gov). Feng et al. (88) proposed a 
minimum of two samples collected weekly to establish the time series 
data of wastewater viral concentrations for continuous trend analysis. 
Some researchers have even suggested daily or very frequent sampling, 
if the laboratory is capable of handling increased numbers of samples, 
considering rapid resurgence of COVID-19 cases (89). Indeed, the 
filtration method has been used to analyze samples 5 days weekly since 
the emergence of the Omicron VOC as part of Ontario’s Wastewater 
Surveillance Initiative in the Windsor-Essex region located across the 
international border with Detroit (Q. Geng, R. Corchis-Scott, 
R.M. McKay, unpublished). While SARS-CoV-2 signal intensity 
derived from this approach does not provide a clear early warning of 
clinical cases, preliminary analysis supports its use as a leading 
indicator of COVID-19-related hospitalizations in the region 
(Q. Geng, R. Corchis-Scott, R.M. McKay, unpublished). This is 
important considering that clinical testing capacity across North 
America was overwhelmed by infections attributed to Omicron and 
is thus no longer a reliable indicator of disease prevalence (90).

5. Conclusion

This study is among the first to implement, evaluate, and compare 
commonly applied wastewater virus concentration methodologies to 
recover and concentrate SARS-CoV-2 from wastewater amid the 
transition between Delta and Omicron VOCs. Analytical approaches, 
including Pearson and Spearman correlations, Dynamic Time 
Warping (DTW), and Time Lagged Cross Correlation (TLCC) and 
peak synchrony, were performed to analyze the relations among three 
methods as well as the relations between methods and COVID-19 
cases. To our knowledge, this is the only study to implement Dynamic 
Time Warping to compare wastewater surveillance time series data 
and successfully identify the similarities/dissimilarities among the 
methods and between methods and clinical data. The analytical 
approach used can be  applied to different sample processing and 
concentration methods under various pandemic scenarios to evaluate 
method efficacy for different public health practices.
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