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Introduction: Large-scale diagnostic testing has been proven insufficient 
to promptly monitor the spread of the Coronavirus disease 2019. Electronic 
resources may provide better insight into the early detection of epidemics. 
We aimed to retrospectively explore whether the Google search volume has been 
useful in detecting Severe Acute Respiratory Syndrome Coronavirus outbreaks 
early compared to the swab-based surveillance system.

Methods: The Google Trends website was used by applying the research to three 
Italian regions (Lombardy, Marche, and Sicily), covering 16 million Italian citizens. An 
autoregressive-moving-average model was fitted, and residual charts were plotted 
to detect outliers in weekly searches of five keywords. Signals that occurred during 
periods labelled as free from epidemics were used to measure Positive Predictive 
Values and False Negative Rates in anticipating the epidemic wave occurrence.

Results: Signals from “fever,” “cough,” and “sore throat” showed better 
performance than those from “loss of smell” and “loss of taste.” More than 80% of 
true epidemic waves were detected early by the occurrence of at least an outlier 
signal in Lombardy, although this implies a 20% false alarm signals. Performance 
was poorer for Sicily and Marche.

Conclusion: Monitoring the volume of Google searches can be a valuable tool 
for early detection of respiratory infectious disease outbreaks, particularly in 
areas with high access to home internet. The inclusion of web-based syndromic 
keywords is promising as it could facilitate the containment of COVID-19 and 
perhaps other unknown infectious diseases in the future.
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1. Introduction

Monitoring and accurate real-time surveillance of disease 
spread are essential to create situational awareness and initiate 
timely responses (1). During the current Coronavirus Disease 2019 
(COVID-19) pandemic, population-level surveillance has relied 
primarily on aggregated results from individual laboratory testing 
(2). Most laboratories worldwide have reported considerable 
shortages in test kits, reagents, and qualified personnel required to 
perform the diagnostic testing for SARS-CoV-2 infection, leading 
to underestimations of the true epidemiological situation of 
COVID-19 and suggesting the need for alternative surveillance 
methods to anticipate outbreaks and the dynamics of the 
pandemic (3, 4).

Syndromic surveillance is an emerging approach in this field, 
defined as the ongoing systematic collection, analysis, and 
interpretation of “syndrome” specific data for early detection of public 
health threats (5). Syndromic surveillance systems seek to use existing 
data in real-time to provide immediate analysis and feedback to 
policymakers (6–8). Technologies using social media, search queries, 
and other internet resources are novel and inexpensive approaches for 
detecting and tracking emerging diseases. Such approaches, which 
constitute the new field of Infodemiology and Infoveillance (9), have 
been successfully used in the cases of SARS (10, 11), influenza (12–
19), Ebola (20–22), and measles (23, 24), among others. During the 
COVID-19 pandemic, several studies have been conducted using 
web-based platforms where users self-report or search for their health-
related issues. Search engines, particularly Google (1, 25–41), have 
been considered for COVID-19 surveillance purposes, highlighting 
their potential as complementary sources of information for 
population-level surveillance of pandemic spread. Previous studies 
using these data have yielded valuable lessons in their appropriate use, 
including avoiding non-specific search terms and ensuring suitable 
analyses (42).

It should be emphasised that infodemiology metrics are promising 
tools, especially in countries where most people actively use the 
Internet daily. Italy, Romania, and Slovenia are among the few 
European countries where less than half of the citizens use the Internet 
daily (43). In addition, the Italian Institute of Statistics (ISTAT) reports 
disparities in home Internet access during the pandemic period even 
within the Italian territory, between northern and southern regions 
(44, 45). Thus, since substantial differences in internet access are 
reported between Italian regions and the COVID-19 pandemic stroke 
Italy with varying intensities and periods, the study of the performance 
of tracking pandemics with infodemiologic metrics across Italy could 
be considered a natural experiment aimed to infer the functioning of 
this source in different conditions. Finally, as access to the internet 
changes over time, suitable models that can identify unexpected 
anomalous use of certain keywords while correcting for the natural 
variability of the process should be used (46). However, to the best of 
our knowledge, analytical tools, such as Autoregressive Moving 
Average (ARMA) models (47) and control charts (48), have never 
been used to model web-based data aimed at detecting early signals 
of COVID-19 outbreaks.

Autoregressive tools were applied to data from the most popular 
web-based platform (Google Trends) to verify whether unexpected 
anomalous use of certain keywords might detect SARS-CoV-2 
infection outbreaks early with respect to surveillance systems based 

on nasopharyngeal swabs. Data from three regions located in the 
North (Lombardy), Centre (Marche), and South (Sicily) of Italy, where 
Internet access differs strongly, were used for the current application. 
A set of sensitivity analyses was performed to account for sources of 
systematic uncertainty in this study.

2. Methods

2.1. Catchment areas

This study used data from three Italian regions, including 
Lombardy (Northwest), Marche (Central), and Sicily (Southern Italy). 
The data covered more than 16 million citizens, nearly 28% of the 
Italian population.

2.2. Data sources

SARS-CoV-2 infections were ascertained according to real-time 
reverse transcription-polymerase chain reaction (RT-PCR) assay of 
nasopharyngeal swabs processed from a laboratory accredited by 
Regional Health Authorities. The date of confirmed diagnosis was the 
day swab processing was completed, and the patient tested positive. 
The weekly number of confirmed SARS-CoV-2 infections was used as 
a reference for evaluating and comparing syndromic data from 
web-based data sources.

Google Trends (49) was used to search for the weekly intensity 
using a set of non-specific COVID-19-related terms (i.e., syndromic 
respiratory concepts, which we will call “keywords” hereafter). The 
related five keywords, the Italian translations of “cough,” “fever,” “sore 
throat,” “loss of smell,” and “loss of taste,” were chosen according to 
those used by selected previous publications on this topic (1, 42, 50, 
51). Google Trends does not provide absolute search numbers but 
instead provides a measure entitled interest over time that ranges from 
0–100, with 0, 50, and 100 indicating that there is insufficient data for 
the term, “the term is half as popular,” and the term is at its peak 
popularity, respectively (29). For consistency, the values of the weekly 
searches were transformed to range from 0 to 100.

2.3. Statistical modelling

2.3.1. Statistical Process Control (SPC) remarks
Google searches always occur over time, irrespective of the 

pandemic or its exacerbation. Nevertheless, searches are expected 
to increase whenever, and ideally before, an epidemic wave is 
reported from the swab-based surveillance system. Therefore, the 
amount of Google searches may be considered time series processes 
in which observations exhibit “natural” statistical variability (46). 
As a result of persistent random variability of the process and 
variations due to systematic and predictable reasons (e.g., Google 
search is expected to increase yearly, as well as to show a certain 
seasonal variability), the monitored process should be flagged as 
out-of-control whenever the observed value significantly exceeds 
that expected (7). The expected value is obtained taking into 
account the “natural” variability of the process (7). Alterations in 
the process characteristics result in variations in the observed 
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values, resulting in more observations exceeding the control limits 
and the process being flagged as out-of-control. Distinct steps are 
required for developing the SPC procedure.

2.3.2. Autoregressive Moving Average (ARMA)
The “natural” variability of the in-control data was captured and 

used to establish the in-control distribution. In our application, 
because the time process of interest forms a time series with seasonal 
variations, we used a regression model with ARMA (1,1) error terms 
(52) to fit the data during the control period preceding the onset of the 
pandemic in our geographic setting (i.e., from 2015 until 2019). The 
response variable, yt, denotes the amount or count in weeks t. Thus 
the general form of the regression model is y tt y tt

= + = ¼m e 1 2, ,  
where yt  is the mean response which is expected to be affected by a 
set of time-related predictors (e.g., season, month, year), and et  is an 
error term that follows an ARMA (1,1) process  
t t t t= + -- -f e b q b1 1 1 1 where f1 and q1 are the AR (AutoRegressive) 
and MA (Moving Average) coefficients, respectively.

Predictors’ effects were estimated for the dummy variables 
month-of-the-year, with M1 to M11 representing January to 
December (skipping July, which was used as the reference) (7). The 
sine and cosine functions are used for considering seasonal 
effects. In addition, the yearly-trend variable t was 
included. Therefore, the mean response was modelled 
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Residuals are the differences between observed and model-based 
expected values. Since residuals are depurated from seasonality and 
trends, they can be used to construct a control chart to monitor 
abnormal increases in the amount of Google searches.

2.3.3. Exponentially Weighted Moving Average 
(EWMA) control chart

The actual monitoring starts by comparing the incoming data 
with the in-control distribution to determine whether and when the 
process goes out of control. The monitoring is commonly visualised 
using a control chart, where process scores are plotted against time. 
The EWMA procedure, introduced by Roberts (53) to detect mean 
changes across time, was used in this application. The procedure 
combines past and current information and tracks a weighted sum of 
the original observations, where more recent observations receive 
higher weights (54). At each measurement occasion of the actual 
monitoring period (i.e., for each week starting from 1 January 2020 to 
31 December 2021, with i = 1,…,104), the exponentially weighted 
moving average zi is calculated as Z x zt t t= + -( ) -l l1 1 , where xt 
denotes the observation at each measurement occasion t. The starting 
value z0 is equal to the first step average mÙ1 . The parameter 0 < λ ≤ 1 
provides a weight applied to the current observation; lower values 
permit the detection of smaller mean changes. A λ value of 0.05 was 
used in the current application according to SPC literature 
recommending values between 0.05 and 0.25 (55). The control limits 
and central line of the EWMA chart are given by 
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, where μ0 is the centreline (56). The 

EWMA chart was generated in this way to identify possible outlier 
signals, defined here as any weekly observation falling outside the 
control limits of the EWMA control chart. The algorithm was applied 
using the dedicated functions of the ‘surveillance’ package in R (57).

2.4. Model performance

The weekly incidence rate of SARS-CoV-2 infections detected by 
the conventional surveillance system during the entire observation 
period (i.e., from January 2020 until December 2021) was plotted and 
compared with residuals of the weekly trends in Google searches 
during the same period. That is, syndromic proxies are expected to 
detect epidemic waves sooner. The timeliness of detection was 
assessed qualitatively by visual inspection of plots.

More analytically, the occurrence of modelled outliers (i.e., 
observed values exceeding the upper limit of the 95% confidence band 
of expected ones) was compared against the weekly swab-based 
alarms. We identified the “weeks consecutively affected by an epidemic 
wave” and, for exclusion, those “free from epidemics” from the first 
week of 2020 until the last week of 2021. The weeks consecutively 
affected by an epidemic wave started when, for the first time, the 
number of positive swabs in a given week increased by 10% that of the 
previous week, with the corresponding week denoting the “onset of an 
epidemic wave.” The wave ended when the weekly incidence rate of 
positive swabs returned to values lower than the average weekly rate 
of the considered semester. In addition, among the 104 weeks of 
interest, we  denoted an “outlier week” as those affected by an 
outlier signal.

To investigate whether the occurrence of an outlier correctly 
predicts the onset of an epidemic wave, we computed the proportion 
of weeks labelled as “outlier weeks” that fell in a “free from epidemics” 
subperiod, which were followed within a given “time-lag” by the 
“onset of an epidemic wave.” This measure was denoted as the positive 
predictive value (PPV) of a significant outlier occurrence.

In addition, to assess whether the absence of an outlier falsely 
predicts the onset of an epidemic wave, we computed the proportion 
of weeks free from an outlier signal that fell in a “free from epidemics” 
subperiod, which were followed within a given “time-lag” by the 
“onset of an epidemic wave.” This measure was denoted as the false 
negative rate (FNR), defined as one minus the negative predictive 
value (NPV) of the absence of a significant outlier occurrence.

The discriminant performance represents the ability of an outlier 
to generate true signals (that is, early detection of the start of an 
epidemic wave while excluding false signals). The discriminant 
performance was assessed graphically by plotting the PPV against 
FNR for time lags ranging from 1–8 weeks.

Model performance was assessed separately for each of the five 
considered keywords (please see the section “Data Sources”) and for 
all the keywords together (i.e., a week was considered to be affected by 
an outlier signal if at least one keyword generated a positive signal). In 
addition, web-based surveillance performance was assessed separately 
for the three investigated regions because behaviours in online 
searches are expected to vary with the intensity of the epidemic and 
social patterns (58).

2.5. Sensitivity analyses

Sensitivity analyses were performed in addition to the primary 
analyses to assess the robustness of the results. First, we repeated the 
EWMA procedure using a less sensitive value of λ of 0.10 compared 
to 0.05 in the main analysis. Second, because the rule for generating 
an alarm are arbitrary, different and more stringent rules were also 
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considered. These included generating an alarm signal only when the 
five keywords were taken together, and outliers could occur from: (i) 
at least two consecutive signals from at least one keyword, (ii) at least 
three consecutive signals from at least one keyword, and (iii) at least 
two keywords. Third, we verified whether Twitter posts might be used 
instead of Google search in the Italian setting (17). Finally, to verify 
whether the use of “negative keywords” (that is, syndromic proxies 
likely to be  independent of COVID-19) may falsely predict the 
occurrence of a SARS-CoV-2 epidemic wave, negative keywords such 
as “cystitis,” “dizziness,” “fainting,” “tremor,” and “hallucinations” were 
used to recalculate the PPV and NPV. As signals generated from 
Lombardy were expected to be more stable than those from other 
regions, sensitivity analyses were performed using only data 
from Lombardy.

3. Results

From 1 March 2020 to 31 December 2021, 1,254,628, 147,085, and 
358,740 confirmed cases of SARS-CoV-2 were ascertained in 
Lombardy, Marche, and Sicily, respectively, and the corresponding 
incidence rates were 12.1, 9.5, and 7.2 infections per 1,000 
person-weeks.

Results from the ARMA(1,1) model are presented in the  
Supplementary material.

Figure 1 compares the regional trends in SARS-CoV-2 infection 
rates observed from the swab-based surveillance system with weekly 
outliers generated from specific keywords and at least one keyword. 
According to our criteria, four, three, and four epidemic waves were 
ascertained in Lombardy, Marche, and Sicily, respectively. Although 
the corresponding rates had a progressively decreasing gradient from 
Lombardy to Marche to Sicily, the duration of the overall period 
affected by the epidemic excess was reversed. Of the 104 weeks of 
interest, 41 (39%), 48 (46%), and 68 (65%) respectively were affected 
by epidemic waves. Periods affected by outlier signals were 

heterogeneous between keywords and regions. Among keywords that 
were less often interested by outliers, “loss of taste” and “loss of smell” 
in Lombardy and “cough” in Sicily generated 23, 25, and 27 signals, 
respectively. In contrast, among keywords that were more often 
affected by outliers, “loss of smell” and “loss of taste” in Marche and 
“sore throat” in Sicily generated 48, 44, and 45 signals, respectively. 
Finally, the number of weeks affected by a signal generated by at least 
a keyword among the “free from epidemics” subperiods was 28 (44%) 
in Lombardy, 37 (66%) in Marche, and 18 (50%) in Sicily; of which, 
82, 49, and 89% referred to the 8 weeks preceding the beginning of 
the epidemic wave, respectively.

The performance of outlier signals in anticipating the onset of an 
epidemic wave for each region is shown in Figure 2. Performance 
profiles were heterogeneous between keywords and between regions. 
The curves were almost always in the upper left hemi-quadrant for 
“cough,” “fever,” and “sore throat,” while they were almost always 
along the quadrant’s bisector for “loss of smell” and “loss of taste.” 
This suggests that outliers generated from the first three keywords, 
but not those from the last ones, were able to anticipate the onset of 
an epidemic wave. Using all keywords, Lombardy showed a better 
profile than Sicily and even more than Marche. Lombardy had a PPV 
of 80%, indicating that the onset of an epidemic wave may be detected 
7–8 weeks before that from the swab-based surveillance system, with 
an FNR of 20%. In addition, the PPV in Sicily was 80%, with the FNR 
value of about 60%. Finally, the PPV in the Marches did not 
exceed 50%.

Figure  3 shows that model performance did not change 
substantially by: (i) using a λ value of 0.10 for modelling the EWMA 
chart instead of 0.05 as in the main analysis or (ii) requiring more 
than one consecutive outlier to generate an alarm rather than using 
only one outlier as in the main analysis. Conversely, model 
performance was poor when: (i) using Twitter posts instead of 
Google searches as in the main analysis or (ii) requiring more than 
one keyword to generate outliers, rather than only one keyword as in 
the main analysis.

FIGURE 1

Comparing time-periods (weeks) affected by an epidemic wave and those affected by an outlier signal (from both specific keywords, and at least one 
keyword) in three Italian regions: Lombardy, Marche, and Sicily, 2020–2021.
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FIGURE 2

Comparing performance of outlier signals (from both specific keywords, and at least one keyword) for early onset of COVID-19 epidemic wave by 
varying the time-lag from outlier onset until the starting the epidemic wave from 1 to 8 weeks. Italian regions of Lombardy, Marche, and Sicily, 2020–
2021.

FIGURE 3

Performance of outlier signals (at least one keyword among those considered) for early detection of a COVID-19 epidemic wave by using (i) ʎ value of 
0.10, instead of ʎ = 0.05 ( top left box), (ii) twitter posts, instead of Google search (top right box), and (iii) more stringent rules for generating an alarm 
from individual outliers (bottom boxes). Italian region of Lombardy, 2020–2021.
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Finally, Figure 4 shows that “negative keywords,” when considered 
individually (except for “dizziness”) or together, did not predict the 
occurrence of a SARS-CoV-2 epidemic wave early.

4. Discussion

We aimed to understand the potential of Google searches as 
early warning systems for the COVID-19 pandemic in Italy. Time-
series of Google search on selected syndromic symptoms were 
compared with SARS-CoV-2 infection incidence rates based on 
nasopharyngeal swabs (official cases). Google-based outliers of the 
five investigated syndromic symptoms mainly occurred during 
epidemic waves. This is not surprising and confirms that flu-like 
syndromic symptoms, such as the investigated keywords, are mainly 
searched during periods of high viral spread. However, we aimed to 
verify whether the occurrence of Google-based outliers can detect 
outbreaks early with respect to the swab-based surveillance system. 
We found that keywords such as “fever” (consistently in the three 
investigated regions), and “cough” and “sore throat” (in Lombardy 
and Marche) showed good early detection ability. In contrast, “loss 
of smell” and “loss of taste” did not show similar abilities. Notably, 
by considering the five keywords, where the alarm is triggered by 
the occurrence of at least one outlier, over 80% of true epidemic 
waves were detected up to 7–8 weeks before their occurrence; 
however, 20% of the signals generated were false alarms. 
Unfortunately, these performances were achieved only in Lombardy, 
where citizens have the highest access to home Internet compared 
to other regions in Italy. Specifically, in 2021, 84.1% of housholds 
residing in Lombardy had Internet access from home, compared 
with 80.6 and 74.7% of housholds residing in Marche and Sicily, 
respectively (44). In addition, performances were not much less 

promising using Twitter posts rather than Google searches, 
suggesting that in Italy, especially Northern Italy, the Twitter spread 
is insufficient for syndromic surveillance. These findings suggest 
that web-based data sources, particularly Google Trends, may be a 
promising source for syndromic surveillance for early detection of 
flu-like epidemic spread compared to other more conventional 
sources. However, this is particularly true when the availability of 
internet access and systematic use of web-based platforms are 
widespread. The system fails in areas or regions with limited 
availability and use of the Internet.

Infodemiology metrics have been widely investigated during 
the current COVID-19 pandemic (3, 59, 60). While some studies 
employed fewer specific symptoms [e.g., fever, dry cough, fatigue, 
nasal congestion, and dyspnoea (39)], strong correlations have 
been reported with the more pathognomonic symptoms (e.g., 
anosmia and dysgeusia) (50). Our results contradicted these 
findings, as smell loss and loss of taste had the lowest predictive 
values for early detection of an epidemic wave compared to all 
non-pathognomonic symptoms. However, as our use of a control 
chart tool allows incorporating time-trend (progressively 
increasing use of the Internet) and seasonality (inherent to flu and 
cold seasons), we suspect that outliers generated by non-specific 
symptoms should be revaluated because they are early tracers of 
the onset of an epidemic wave. Conversely, we  found that 
pathognomonic symptoms were concurrently correlated with 
epidemic waves but did not predict them early. Due to the high 
cultural, social, and behavioural potential related to this field, these 
findings likely reflect the Italian (and perhaps Mediterranean) 
setting that must be considered when designing the syndromic 
surveillance system. In general, surveillance based on Google 
Trends is limited by the influence of mass media communications 
as a possible effect of internet user behaviour (3). Thus, the 

FIGURE 4

Performance of outlier signals from five “negative” keywords (and from at least one keyword among the five negative ones) for early detection of a 
COVID-19 epidemic wave. Italian region of Lombardy, 2020–2021.
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generalizability of its utility in syndromic surveillance in space and 
time is questionable.

Some additional issues deserve to be addressed first, as several 
preventive public health measures have been taken worldwide, 
including Italy, to limit the spread of SARS-CoV-2, (i.e., hand hygiene 
and the use of masks, travel restrictions, social distance actions such 
as closing schools and workplaces, case and contact tracing, quarantine 
and isolation), the spread of other respiratory viruses, which occurs 
mainly by contact and drip, has also been contained (61–63). Notably, 
in just 1 month of the 2019–2020 winter season, SARS-CoV-2 became 
the most prevalent respiratory virus in northern Italy (64). This allows 
us to speculate that Google searches for infectious-respiratory 
symptoms are more likely to be related to Covid-19 than to other 
respiratory viruses.

Second, cumulative sum (CUSUM) chart models have been 
extensively used for syndromic surveillance systems worldwide 
(65–67). Although our study was not designed for comparing 
chart models, according with our findings EWMA, we observed 
that the EWMA seems to identify earlier and more accurately 
alerts generated by an abnormal increase in the weekly volume of 
Google Trends searches on respiratory syndrome-related 
keywords (Supplementary Figure S1). This is not surprising 
because, with respect to CUSUM, EWMA has been reported to 
be  robust to deviation from normality (68, 69) and showed 
particular skills for detecting small shifts in the mean of a process 
(70). On the other hand, EWMA chart had been found to be more 
prone to false alarm counts with respect to other approaches (71), 
and this potential weakness should be  careful considered in a 
surveillance syndromic system.

Second, we used official data on the positivity of nasopharyngeal 
swabs as a proxy for the gold standard, which is the weekly count of 
SARS-CoV-2 infections. However, it should be considered that the 
proxy systematically underestimates the gold standard and that the 
underestimation changes over time. For example, only a small 
proportion of infected individuals were detected at the beginning of 
the epidemic shock (a period when we were not ready to face the 
emergency). Notably, the syndromic surveillance system we proposed 
works better when tracing based on nasopharyngeal swabs 
is inadequate.

Our findings represent a useful and promising starting point and 
suggest that some improvements are needed before the system can 
be applied systematically as an early warning method. Our best result 
estimates that 80% of the emerging outbreaks could be identified early 
by the system. However, a high number of false signals would also 
be generated (about 20%). Although the number of false positives can 
be  considered acceptable depending on the type of public health 
intervention following the generation of an alarm (e.g., adoption of 
restrictive measures, localised diagnostic testing, and alerting hospitals 
and general practitioners), our findings are insufficient to recommend 
systematic applications. However, the high number of false signals 
could be partially explained by the uncertainty in defining confirmed 
outbreaks. It is possible that some outbreaks that occurred were not 
detected by standard surveillance (or did not match the confirmed 
outbreak definition used) but were detected by monitoring the use of 
health services. This might have generated a conservative estimate of 
the system performance (72).

In conclusion, using Google Trends to identify control 
chart-based outliers for non-pathognomonic symptoms such as 
fever, cough, and sore throat has high predictive power for 
anticipating COVID-19 epidemic waves 7–8 weeks ahead of the 
official reports in Lombardy. If combined with other syndromic 
sources like those of data from healthcare utilisation (8) and 
emergency visits (7), data from Google Trends searches may 
serve as a useful infodemiological tool for anticipating an 
impending outbreak, which can provide valuable buffer time to 
allocate the necessary supplies and personnel to hospitals 
expecting a surge in COVID-19 patients. Upon verification by 
prospective research comparing model performance in  
different regions of Italy, public health organisations are 
encouraged to take advantage of this free forecasting system to 
anticipate and effectively manage COVID-19 outbreaks 
throughout Italy.
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