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Introduction: Wastewater-based surveillance emerged during the COVID-19

pandemic as an e�cient way to quickly screen large populations, monitor

infectious disease transmission over time, and identify whether more virulent

strains are becoming more prevalent in the region without burdening the health

care system with individualized testing. Ohio was one of the first states to

implement wastewater monitoring through its Ohio Coronavirus Wastewater

Monitoring Network (OCWMN), originally tracking the prevalence of COVID-19

by quantitative qPCR from over 67 sites across the state. The OCWMN evolved

along with the pandemic to include sequencing the SARS-CoV-2 genome to

assess variants of concern circulating within the population. As the pandemic

wanes, networks such as OCWMN can be expanded to monitor other infectious

diseases and outbreaks of interest to the health department to reduce the burden

of communicable diseases. However, most surveillance still utilizes qPCR based

diagnostic tests for individual pathogens, which is hard to scale for surveillance of

multiple pathogens.

Methods: Here we have tested several genomic methods, both targeted and

untargeted, for wastewater-based biosurveillance to find the most e�cient

procedure to detect and track trends in reportable infectious diseases and

outbreaks of known pathogens as well as potentially novel pathogens or variants

on the rise in our communities. RNA extracts from the OCWMN were provided

weekly from 10 sites for 6 weeks. Total RNA was sequenced from the samples

on the Illumina NextSeq and on the MinION to identify pathogens present. The

MinION long read platform was also used to sequence SARS-CoV-2 with the

goal of reducing the complexity of variant calling in mixed populations as occurs

with short Illumina reads. Finally, a targeted hybridization approach was tested for

compatibility with wastewater RNA samples.

Results and discussion: The data analyzed here provides a baseline assessment

that demonstrates that wastewater is a rich resource for infectious disease

epidemiology and identifies technology gaps and potential solutions to enable this

resource to be used by public health laboratories tomonitor the infectious disease

landscape of the regions they serve.
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1. Introduction

Wastewater-based epidemiology (WBE) is a technique that

extracts, analyses, and interprets targets excreted from feces or

urine in wastewater to provide comprehensive community health

information (1). Since wastewater is a population based sample,

the whole community can be analyzed using one sample instead

of necessitating individual sample collections, saving valuable

time and resources. WBE was originally utilized for analysis

of drug use in communities; the first reported application was

the quantification of cocaine use in wastewater samples (2),

and has been used world-wide since for illicit drug monitoring.

Utilization of WBE for infectious disease surveillance began prior

to the COVID-19 pandemic, however, the pandemic dramatically

increased this use case. WBE has been utilized for pathogens

such as enterovirus, arboviruses, polio, norovirus, Salmonella,

enterohemorrhagic Escherichia coli, and giardia in wastewater and

demonstrated the efficacy of WBE to identify outbreaks of these

important communicable diseases (3–14). During the COVID-

19 pandemic, WBE was implemented around the world to track

viral spread throughout communities, demonstrating the power of

testing community derived samples to follow disease transmission

over time. As of March 11, 2021, the COVIDPoops19 global

dashboard for wastewater monitoring of SARS-CoV-2 included

235 universities, 59 dashboards, and 1,488 sites in 55 countries,

demonstrating the wide uptake of this method for tracking

the COVID-19 pandemic (15). However, this implementation,

like the utilization of WBE in other communicable disease

surveillance efforts, is specific to surveillance of one pathogen at

a time, detecting and quantifying the SARS-CoV-2 virus through

quantitative polymerase chain reaction (qPCR) or digital droplet

PCR (ddPCR). Identifying pathogens one at a time is reactionary

and too slow to enable prevention of another pandemic. The

COVID-19 pandemic has demonstrated the need for an active

surveillance system to detect and identify infectious diseases before

they spread across the world.

High throughput sequencing of pathogens within wastewater

is one potential method that could enable surveillance of multiple

pathogens simultaneously. However, most studies sequencing

wastewater were again focused on the COVID-19 pandemic,

utilizing targeted sequencing methods to identify sequence

variants of the causative virus, SARS-CoV-2 (16–20). Furthermore,

untargeted analyses tend to utilize DNA based metagenomics or

16S sequencing, removing any possibility of detection of RNA viral

pathogens (21–23). In Ohio, wastewater tracking was established

early on in the pandemic by the Ohio Department of Health

in collaboration with several universities, government agencies,

and non-profit research institutions as the Ohio Coronavirus

Wastewater Monitoring Network (OCWMN, https://coronavirus.

ohio.gov/dashboards/other-resources/wastewater). Ohio was one

of the first states to implement wastewater monitoring, originally

tracking prevalence of COVID-19 by quantitative qPCR from over

67 wastewater treatment facilities across the state. The OCWMN

evolved along with the pandemic to include sequencing the SARS-

CoV-2 genome to assess variants of concern circulating within the

population. However, as the pandemic wanes, WBE networks like

the OCWMN could transition its monitoring of SARS-CoV-2 to

other communicable diseases monitored by the health department

to aid infectious disease epidemiology and community health alerts.

To determine the best method for tracking communicable diseases

in wastewater, RNA samples from theOCWMNwere provided over

6 weeks from ten different locations.

To unlock the power of WBE to provide a wholistic

understanding of the communicable disease landscape within

a region, the method to detect pathogens must be high

throughput and multiplexed to detect any human pathogen. It

is imperative to determine how to assess all bacterial, viral, or

fungal human pathogens in wastewater samples simultaneously

to prevent future outbreaks, whether at the city, state, national,

or global scale. Previously, we demonstrated metatranscriptomic

sequencing (analysis of total RNA from wastewater) was able to

detect multiple pathogenic bacteria and viruses simultaneously

(20, 24), however, this method is limited due to the need

for ultradeep sequencing to detect viral pathogens. Therefore,

we undertook this study to determine the most effective

high throughput sequencing method for pathogen tracking

in wastewater, comparing metatranscriptomic sequencing by

Illumina, MinION, and also hybridization-based sequencing

methods. As the pandemic wanes, the wastewater tracking

networks set up worldwide will begin to shut down or will

need to transition to surveillance of other pathogens to increase

utility. Furthermore, sample preparation methods can influence

the ability of sequencing to detect all pathogens, and therefore, we

have included analysis of viral concentration and RNA extraction

effects on sequencing results to help determine the most effective

method for pan-pathogen biosurveillance. We have focused on

RNA sequencing methods, as most WBE networks worldwide have

been focused on SARS-CoV-2, an RNA virus. By utilizing RNA,

methods identified in this work can be readily implemented within

existing infrastructure to survey all human pathogens. Through this

work, we endeavor to enable prevention of future outbreaks and

pandemics through active surveillance in wastewater and identify

gaps in laboratory procedures which need to be addressed for

sequencing-based surveillance to be most effective.

2. Materials and methods

2.1. Samples

RNA extracts were sent to Battelle each week for 6 weeks from

the OCWMN members who had conducted the quantitative PCR

for SARS-CoV-2 viral load. The 10 sampling sites were chosen to

span the five RNA extraction methods used as well as population

sizes covered in the network. Table 1 lists the facility, site ID, RNA

extraction method, and population served at each site assessed

by Battelle.

2.2. RNA quality checks

Each collection week, RNA quantity and quality were measured

using ThermoScientific NanoDrop 2000 Spectrophotometer (Cat#

ND-2000) and Agilent 2100 Bioanalyzer (Cat# G2939BA) with
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TABLE 1 RNA extraction methods and populations (2012 census) for

sample sites in the study.

Site RNA extraction method Approximate
population
served (#
people)

A 1. membrane recombined with separated

solids, TRIzol and RNA purification kit

365,000

B 54,000

C 2. centrifugation and membrane

filtration, no additions, Qiagen

PowerWater kit or Qiagen AllPrep kit

323,000

D 3. Qiagen QIAamp buffers with Epoch

columns

11,000

E 4. 5% Tween-20 amendment,

concentrating pipette ultrafiltration,

Qiagen PowerMicrobiome kit or Qiagen

AllPrep PowerViral DNA/RNA

25,000

F 650, 000

G 45,000

H 655,000

I 5. Membrane filtration with no

amendment, TRIzol, garnet bead beating,

alcohol precipitation

46,000

J 65,000

an RNA 6000 Nano kit (Life Tech Cat# 5067-4627) following

manufacturer’s instructions. Samples exceeding 50 ng/µL on the

NanoDrop were diluted before being analyzed on the Bioanalyzer

to generate RNA integrity numbers (RIN, Table 2).

2.3. Subtractive hybridization and DNase
treatment

Some samples provided by the OCWMN contained a mixture

of RNA and DNA, enabling the reduction of unwanted, high

abundance nucleic acids through subtractive hybridization. This

method utilizes hybridization between highly abundant RNAs

and their DNA counterpart in the same sample, followed by

RNaseH treatment to degrade the abundant RNAs and a DNase

step to remove the DNA prior to sequencing. The objective of

utilizing subtractive hybridization in this case was to remove

human RNAs and highly abundant non-pathogenic bacterial RNAs

to enrich for pathogens such as viruses that are less abundant

in the samples. Briefly, samples from weeks 1 and 2 were RNase

treated by combining 5 µL of sample with a mixture of 0.5

µL of RNase H and 5 µL of RNaseH Buffer and incubated at

37◦C for 20min. A Zymo RNA clean and concentrate kit (Cat#

R1013) was used to increase RNA yield. For weeks 3–6, which

did not have subtractive hybridization performed, an optional

DNase step was included in the Zymo RNA clean and concentrate

procedure following the manufacturer’s instructions. Following

this procedure, a second nanodrop was performed to assess

and compare RNA quantities from receipt. The concentration

of nucleic acid before and after concentration and the RIN

score upon receipt is shown in Table 2 for all samples used in

the study.

2.4. Untargeted RNA sequencing on
Illumina NextSeq

RNA was treated using the Swift Rapid RNA Library Kit

(Cat# R2096) according to the manufacturer’s instructions with the

following modifications. After the indexing amplification, libraries

were quality checked for size distribution using the Agilent 2100

Bioanalyzer and an Agilent High Sensitivity DNA Kit (Agilent

Cat#5067-4626). For many samples, a sharp adapted primer peak

of ∼130 bp was observed, at a much higher concentration than the

actual library molecules. Sequencing of libraries without removal

of this peak caused the sequencing run to fail. Therefore, size

selection methods were utilized to remove the peak prior to

sequencing when the ∼130 bp peak was >150–200 FU. Two size

selection methods were used. For weeks 1 and 2, size selection

was conducted by two SPRISelect bead cleanups at 0.8X bead to

library volume. This method was very time consuming and not

precise enough to remove all the adapted primer peak. Therefore,

starting on week 3, samples were processed using the Blue Pippin

(Sage Science Cat# BLU0001) to perform size selection. This

method was automated and more precise than the bead clean

up, therefore was used for all samples moving forward. Using

2% gel cassette kits (Sage Science Cat# BEF2010), samples were

automatically size selected to between 200 and 600 BP. Removal

of the unwanted adapted primer peak was confirmed by the

Agilent High Sensitivity DNA kit prior to library quantification

by KAPA Library Quant Kit (Illumina) Universal qPCR Mix (Cat#

KK4824) following the manufacturer’s instructions. Libraries were

normalized to 4 nM and pooled for sequencing on the Illumina

NextSeq 500/550 on High Output Kits v2.5 (300 Cycles, 150 ×

150 bp).

Data was analyzed using two bioinformatic approaches to

identify pathogens present: a k-mer based approach and a contig

based approach. In the k-mer based approach, demultiplexed

paired FASTQ files pertaining to each sample were processed using

a custom short-read classification pipeline. Briefly, raw reads were

adapter trimmed and quality filtered using Trimmomatic (v0.39)

(25). The K-mer based classification tool Kraken2 (v2.1.2) (26)

was used to assign taxonomy to the remaining host-filtered reads,

using a reference database containing NCBI’s RefSeq genomes

covering bacterial, archaeal, viral, fungal, human and protist

taxonomy (Kraken2 database obtained from https://benlangmead.

github.io/aws-indexes/k2, version “Plus PF” created 05/17/21).

Downstream data analysis and visualizations were performed

using the statistical software R. Two methods were used to

minimize false positives arising due to use of short reads and a

broad database:

1. Kraken2 confidence score cutoff of 0.25 was used to set the

threshold for number of k-mers mapping to LCA value in the

clade rooted at that label.

2. A 0.1% relative abundance cutoff was used to discard ultra-low

abundance species matches likely arising due to limitations of

short read based taxonomic classification.
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TABLE 2 RNA quantity and quality metrics upon receipt and after DNA removal.

A Receipt (ng/µL) RIN Post clean (ng/µL) G Receipt (ng/µL) RIN Post clean (ng/µL)

12/5/2021 1,278.9 9.0 516.7 12/5/2021 6.8 0.0 3.6

12/12/2021 1,050.6 9.6 94.5 12/12/2021 18.6 0.0 ND

12/19/2021 972.8 7.5 231.8 12/19/2021 ND 2.1 1.7

12/26/2021 729.4 8.7 375.1 12/26/2021 4.1 1.0 4.7

1/2/2022 608.8 8.8 409.5 1/2/2022 16.6 1.5 13.0

1/9/2022 743.1 8.6 493.0 1/9/2022 6.5 1.0 5.3

Mean 897.3 8.7 353.4 Mean 10.5 0.9 5.7

st dev 249.0 0.7 162.2 st dev 6.6 0.8 4.3

E Receipt (ng/µL) RIN Post clean (ng/µL) H Receipt (ng/µL) RIN Post clean (ng/µL)

12/5/2021 4.8 0.0 3.5 12/5/2021 5.3 1.0 4.8

12/12/2021 12.3 0.0 ND 12/12/2021 6.8 0.0 ND

12/19/2021 ND 1.0 2.5 12/19/2021 ND 0.0 1.9

12/26/2021 2.6 0.0 2.0 12/26/2021 2.4 0.0 2.2

1/2/2022 3.5 0.0 1.3 1/2/2022 3.4 0.0 5.1

1/9/2022 5.4 0.0 2.5 1/9/2022 5.1 0.0 3.6

Mean 5.7 0.2 2.4 Mean 4.6 0.2 3.5

st dev 3.8 0.4 0.8 st dev 1.7 0.4 1.5

I Receipt (ng/µL) RIN Post clean (ng/µL) J Receipt (ng/µL) RIN Post clean (ng/µL)

12/5/2021 4,667.3 0.0 423.1 12/5/2021 3,872.5 0.0 107.9

12/12/2021 1,819.4 N/A 269.4 12/12/2021 2,812.0 N/A 246.5

12/19/2021 2,150.2 6.2 390.6 12/19/2021 2,097.2 6.0 324.3

12/26/2021 2,477.5 N/A 1,628.8 12/26/2021 1,602.3 N/A 457.4

1/2/2022 1,009.9 7.4 428.0 1/2/2022 1,302.0 2.9 690.3

1/9/2022 2,010.0 0.0 889.5 1/9/2022 1,120.1 6.0 426.9

Mean 2,355.7 3.4 671.6 mean 2,134.4 3.7 375.6

st dev 1,234.4 4.0 514.9 st dev 1,047.5 2.9 199.7

F Receipt (ng/µL) RIN Post clean (ng/µL) B Receipt (ng/µL) RIN Post clean (ng/µL)

12/5/2021 4.3 0.0 3.5 12/5/2021 1,174.1 8.0 217.1

12/12/2021 12.5 1.0 ND 12/12/2021 425.9 8.9 63.4

12/19/2021 ND 1.2 2.4 12/19/2021 1,159.2 8.4 454.0

12/26/2021 2.4 0.0 10.4 12/26/2021 465.6 8.1 420.6

1/2/2022 2.9 0.0 6.5 1/2/2022 89.9 7.9 34.8

1/9/2022 6.8 0.0 7.2 1/9/2022 878.3 8.1 738.6

mean 5.8 0.4 6.0 mean 698.8 8.2 321.4

st dev 4.1 0.6 3.2 st dev 440.4 0.4 268.7

D Receipt (ng/µL) RIN Post clean (ng/µL) C Receipt (ng/µL) RIN Post clean (ng/µL)

12/5/2021 57.7 0.0 16.2 12/5/2021 513.8 3.4 222.9

12/12/2021 96.6 2.3 44.4 12/12/2021 79.2 2.8 25.5

12/19/2021 84.8 2.8 118.9 12/19/2021 93.2 5.8 33.2

1/9/2022 88.5 4.7 53.8 1/2/2022 155.6 2.5 102.3

Mean 81.9 2.5 58.3 1/9/2022 353.6 3.3 274.0

st dev 16.9 1.9 43.4 Mean 239.1 3.6 131.6

st dev 188.7 1.3 112.3

ND, not detected; N/A, not available data.
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FIGURE 1

Extraction and viral concentration method significantly e�ects RNA

concentration. While all five methods are capable of detecting

SARS-CoV-2 by qPCR, as demonstrated by the data reported by the

OCWMN, only methods 2 and 3 produced similar RNA

concentrations. Therefore, metatranscriptome results could be

highly variable between sites due to di�erences in extraction

method.

In the contig based approach to analyze themetatranscriptomic

data, the RNA-Seq files were demultiplexed, quality checked, and

trimmed. Sequences were assembled using SPAdes (27) into contigs

and then compared to known reference sequences in the refseq

database using BlastN or DIAMOND BlastX (28) to identify

pathogens in the wastewater samples. Similar to the K-mer based

approach, a 0.1% relative abundance cutoff was used to discard

ultra-low abundance species hits before determining the organism

present in the dataset.

2.5. Untargeted RNA sequencing on
MinION using direct RNA sequencing Kit

Six samples were prepared for Direct RNA Sequencing on

the Oxford Nanopore Technologies MinION portable sequencer

following the manufacturer’s instructions. Two samples A 1/09/22

and H 12/26/21 were sequenced on the MinION and data analyzed

in real time using the ONTWhat’s inMy Pot? Application (WIMP).

Three WIMP options were used to analyze both samples: Fastq

WIMP, Fastq Antimicrobial Resistance WIMP, and Fastq WIMP

(Human + Viral). The minimum abundance output for the NCBI

Taxonomy Tree was set at 1% for all analyses.

2.6. Midnight RT PCR expansion pack for
MinION sequencing of SARS-CoV-2

The whole genome of SARS-CoV-2 was sequenced from all 55

samples using the Midnight RT PCR Expansion Pack for MinION.

This kit was chosen, as the amplicons are longer than those in the

amplicon sequencing kits for Illumina, to see if longer amplicon

sequences would enable better resolution of variants within the

wastewater samples. Data was analyzed in real time using the

MinION application MinKNOW and EPI2ME.

2.7. Illumina respiratory pathogen and AMR
targeted sequencing panel

Twenty-eight samples and a SARS-CoV-2 positive control

sample were prepared and sequenced following the manufacturer’s

instructions using the Illumina Respiratory Pathogen and AMR

targeted hybridization sequencing kit. Data was demultiplexed and

then transferred to BaseSpace where it was analyzed using the

IDbyDNA Explify application.

2.8. Statistical analysis

Statistical analyses such as Student’s T-tests were conducted in

Excel to determine the significance of effects by population size and

extraction methods on RNA quality and concentration.

3. Results

3.1. Extraction method influence on nucleic
acid concentration and RNA quality

Several nucleic acid extraction methods were utilized by the

network due to supply chain issues during the pandemic. To enable

comparison of data over time, themethods utilized at the beginning

of the pandemic by each sewershed were continued throughout the

monitoring period. Therefore, comparisons between sewersheds

must be conducted with the understanding of the extraction

methods utilized. Of the 10 locations analyzed on this study,

five different extraction methods were used (Table 1): 1. Filtered

membrane recombined with separated solids followed by TRIzol

RNA purification 2. Wastewater was centrifuged to remove solids,

membrane filtered, and the Qiagen PowerWater kit or Qiagen

AllPrep kit used on the filtrate 3. Qiagen QIAamp buffers

with Epoch columns were used on wastewater 4. 5% Tween-

20 amendment, concentrating pipette ultrafiltration followed by

Qiagen PowerMicrobiome kit or Qiagen AllPrep PowerViral

DNA/RNA 5. membrane filtration with no amendment, TRIzol

with garnet bead beating for RNA extraction, followed by alcohol

precipitation to concentrate RNA. The extraction method utilized

has a significant effect on the nucleic acid concentration as shown in

Figure 1 and Table 3, with only methods 2 and 3 producing similar

concentrations. Method 4 produces significantly less material than

the other methods as shown in Table 3, due to the concentration of

viral particles by the concentrating pipette ultrafiltration. Similarly,

extraction method also influences the quality of the RNA extracted

when comparing RIN scores as shown in Figure 2 and Table 3.

RNA integrity was significantly different for all comparisons except

between methods 2, 3, and 5. Therefore, extraction method may

significantly impact the outcome of RNA sequencing.
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TABLE 3 Extraction method influences RNA integrity number (RIN) score.

Extraction
method
comparison

Nucleic acid concentration RIN score

Test statistic Confidence
interval

Adjusted P-value Test statistic Confidence
interval

Adjusted P-value

1 vs. 2 3.7 1.4, 9.7 0.0023 2.5 1.6, 3.7 <0.0001∗

1 vs. 3 8.4 3.0, 23.9 <0.0001∗ 2.7 1.6, 4.5 <0.0001∗

1 vs. 4 123.2 63.6, 238.8 <0.0001∗ 7.2 5.0, 10.2 <0.0001∗

1 vs. 5 0.3 0.2, 0.7 0.0007∗ 1.6 1.0, 2.3 0.0294∗

2 vs. 3 2.3 0.7, 7.7 0.5132 1.1 0.6, 1.9 1.0

2 vs. 4 33.4 13.5, 82.7 <0.0001∗ 2.9 1.9, 4.5 <0.0001∗

2 vs. 5 0.1 0.0, 0.2 <0.0001∗ 0.6 0.4, 1.0 0.0655

3 vs. 4 14.6 5.4, 39.5 <0.0001∗ 2.6 1.6, 4.4 <0.0001∗

3 vs. 5 0.0 0.0, 0.1 <0.0001∗ 0.6 0.3, 1.0 0.0537

4 vs. 5 0.0 0.0, 0.0 <0.0001∗ 0.2 0.1, 0.3 <0.0001∗

Adjusted P-values (log by method). ∗Indicates statistically significant values below 0.001.

FIGURE 2

Extraction method significantly e�ects RNA integrity. RNA integrity

was significantly di�erent for all comparisons except between

methods 2, 3, and 5. Therefore, extraction method may significantly

impact the outcome of RNA sequencing.

3.2. Population size influence on nucleic
acid concentration

RNA extraction methods 1 and 4 had data from both large

populations and small populations which enabled analysis of

the influence of population size on nucleic acid concentration

within extraction method (Table 1). Method 1 was used on A

(population 363,897, average RNA concentration 897.3 ± 249.0

ng/µL) and B (population 54,037, average RNA concentration

698.8 ± 440.4 ng/µL). Method 4 was used in four facilities

covering two large populations: F (population 645,940) and H

(population 654,817) with an average RNA concentration of 5.2

± 3.0 ng/µL, and two small populations: E (population 24,536)

and G (population 45,000) with an average RNA concentration of

8.1 ± 5.7 ng/µL. Within each method, the population size had no

statistically significant effect on the RNA concentration (method

1: T-statistic 0.96, P = 0.36 and method 4: T-statistic −1.44, P

= 0.17). This analysis suggests that population size covered by

the sewershed samples does not influence the amount of nucleic

acid concentration.

3.3. Midnight RT PCR expansion pack for
MinION sequencing of SARS-CoV-2

One issue with genome sequencing of SARS-CoV-2 for variant

of concern tracking in wastewater is the small amplicon size

(∼180 bp) of the Illumina based methods can confound viral

variant calling, as the population sample can contain multiple viral

variants simultaneously. Linkages between the defining mutations

needed to differentiate between closely related viral variants may

not be contained within the short amplicons. To determine if

longer read sequencing on the MinION could help alleviate this

issue, the genome of SARS-CoV-2 was sequenced from all samples

using the Midnight RT-PCR Expansion Pack to enable longer

read sequences (∼1,200 bp) to be produced. Prior to sequencing

samples, the amplicon product was quality checked on the Agilent

Bioanalyzer. Samples which had a good amplification peak at

1,200 bp, were able to produce SARS-CoV-2 variant calls in

real time on the MinION (Table 4). However, samples which did

not have a visible 1,200 bp peak were unable to provide SARS-

CoV-2 variant calls. Since this method relies on long, intact

sequences, the RNA extraction method utilized impacts the ability

to produce the long-read sequencing data. The four sites which

consistently produced the 1,200 bp peak and SARS-CoV-2 variant

calls on the MinION were all extracted by the same method

(method 4): 5% Tween-20 amendment, concentrating pipette
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TABLE 4 MinION SARS-CoV variant calls by date and site.

Site Consistent 1,200 bp
peak (Y/N)

12/5/2021 12/12/2021 12/19/2021 12/26/2021 1/2/2022 1/9/2022

A N NC 19A NC Delta (21J) NC NC

B N NC NC NC NC 20B NC

C N NC NC NC NC NC NC

D N NC NC NC NC NC Omicron (21M)

E Y Delta (21J) Delta (21J) Delta (21J) 20A Omicron (21K) Omicron (21K)

F Y Delta (21J) Delta (21J) Omicron (21M) Omicron (21K) Omicron (21K) Omicron (21K)

G Y Delta (21J) Delta (21J) Delta (21J) Omicron (21K) Omicron (21K) Omicron (21K)

H Y Delta (21J) Delta (21J) Delta (21J) Omicron (21K) Omicron (21K) Omicron (21K)

I N NC Delta (21J) NC NC NC NC

J N Delta (21J) Delta (21J) NC NC NC NC

Positive Y 19A 19A 19A

Negative N NC NC NC

NC, no call. Blue color highlights samples that consistently generated viral variant calls.

ultrafiltration, Qiagen PowerMicrobiome kit or Qiagen AllPrep

PowerViral DNA/RNA kit and had the lowest concentrations of

RNA compared to the other extraction methods. This suggests

that these RNA extracts may have been more intact and enriched

for viral sequences than those from other sites. Further work will

need to be conducted using the different extraction methods on

the same sample to determine the optimal extraction for long

read sequencing.

3.4. Untargeted RNA sequencing on
illumina NextSeq

For each RNA sample, libraries were prepared using the

Swift Rapid RNA Library kit and sequenced on the Illumina

NextSeq in batches of 10 samples per run. It was hypothesized

that subtractive hybridization, where DNA present in the RNA

sample would bind to RNA, enabling RNaseH degradation of

unwanted, highly prevalent nucleic acids, would enable enrichment

of pathogenic viruses by reducing the background. Therefore, the

first 2 weeks of samples were treated by subtractive hybridization

using the DNA present in the RNA samples and analyzed to

determine if human RNA viruses were better detected than in

our previous work. However, no enrichment for viruses was

observed by subtractive hybridization, suggesting that the DNA of

highly prevalent human RNAs or non-pathogenic microbes was

not present at high enough concentrations for effective removal.

Therefore, subtractive hybridization was not used for weeks 3–

6. Two bioinformatic methods were used to assess the data

derived from the 55 samples: a K-mer based approach and a

contig based approach. Both methods identified several pathogens

in the samples, with some concerning hits to Burkholderia

pseudomallei and B. mallei, biothreat agents not endemic to the

Midwest region of the United States. Upon further analysis and

literature review, it was determined that the genus Burkholderia

contains several species that are difficult to differentiate through

random sequence analysis, such as metatranscriptomics used

on this project, and therefore, these hits were likely universal

genomic regions common to other species of Burkholderia

(29, 30).

3.4.1. K-mer based analysis results
The k-mer approach identifies and quantifies species

based on sequence identity to short fragments of nucleic acid

sequences. Several questions were addressed using the k-mer based

approach including:

1. Does RNA extraction method effect the microbial profile?

2. Does the RNA extraction method effect the amount of human

RNA present in the samples?

3. What organisms from the Ohio Department of Health

reportable infectious diseases list are detected in

the samples?

To determine the effect of extraction method on the microbial

profile, non-metric multidimensional ordination and associated

multivariate analysis (PERMANOVA) were conducted (Figure 3).

There were significant differences in microbial profiles, with

the extraction method being identified as a major contributor

(R2 = 0.45) to this variation. Furthermore, when the human

sequences present in each sample were quantified, method

4 was shown to have much higher proportions of the data

being attributed to human (average 6.9 ± 15.8% range: 0.5–

75.2%) compared to the other methods (average 0.5 ± 0.3%,

range: 0.2–1.9%), suggesting that this method does not efficiently

remove human cells prior to RNA extraction compared to the

other methods.

When the microbial fraction of each sample was analyzed,

several etiological agents from the reportable infectious diseases

list provided by ODH were identified and the proportion over
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FIGURE 3

Nucleic acid extraction method had a significant e�ect on the wastewater microbiome profile based on NMDS and multivariate statistics. Non-metric

multidimensional ordination plot showed that there was significant (PERMANOVA p < 0.001) di�erence between the microbiota composition of

samples based on the method used to extract the RNA (shown in di�erent colors). 95% confidence intervals for each method are also shown in the

plot.

time was able to be tracked at each location (Figure 4). To

try to increase confidence in the data calls and reduce the

number of ambiguous sequences such as those that map to

Burkholderia pseudomallei or B. mallei, a cut off of 0.1% relative

abundance was implemented. This reduced the total number of

pathogens identified from each sample, as most pathogens were

a minor fraction of the total sequence set. As seen from the

scatter plots, most of these pathogens were only detected in

ultra-low relative abundances, and only one organism in one

sample was identified at a relative abundance over 1%. This

was identified as Vibrio cholerae in G week 3. As this organism

is generally a pathogen found in more tropical regions near

the ocean, literature was again reviewed to determine if there

was precedence for V. cholerae in Ohio. Indeed, V. cholerae

isolates have been found in freshwater sources in northwest Ohio

(31). While these strains are not from the serogroups (O1 and

O139) that cause epidemic cholera, the isolates characterized

in Daboul et al. contained a variety of virulence genes that

could cause gastroenteritis or other human infections. Therefore,

the V. cholerae hits in our wastewater analyses likely are real

and could be studied to determine if there are trends of

these organisms in regions with gastroenteritis or other enteric

illness outbreaks. Escherichia coli, a microbe that can be found

naturally in human and animal gut microbiomes, was one

of the most commonly detected potential pathogens based on

the k-mer data analysis. While E. coli can cause disease, the

k-mer analysis cannot differentiate if the E. coli detected is

pathogenic or commensal. A targeted approach that captures

unique sequences from pathogens would be necessary to determine

E. coli pathogenicity.
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FIGURE 4

Relative abundance by site per week for etiological agents of Ohio Department of Health reportable diseases using the k-mer approach. A cuto� of

0.1% was used as a threshold for detection.

3.4.2. Contig based analysis results
The second approach used to analyze the untargeted RNA

sequencing data, the contig based analysis, pieces together as much

of each organism’s genome as possible prior to comparison to

the sequence database for identification. Therefore, more sequence

information is used, providing more accurate detection calls.

However, this approach still does not avoid the issues of random

sequence capture observed especially in the case of the genus

Burkholderia, where many of the species contain similar genomic

regions, and therefore endemic, non-pathogenic Burkholderia

may be misidentified as B. mallei and B. pseudomallei in the

wastewater samples.

Using the contig based approach, the proportions of the data

identified as eukaryote, bacteria, archaea, or virus was assessed for

each sample after the removal of human sequences. In all samples,

most data aligned to bacteria. However, the samples from sites E

(average 6.8 ± 2.9%), F (average 9.4 ± 2.1%), G (average 8.1 ±

7.9%), and H (average 8.2 ± 5.3%) (all extracted by method 4)

demonstrated enrichment for viral sequences, reflective of the pre-

processing these samples underwent prior to RNA extraction. Sites

A, B, C, D, I, and J were not enriched for viral sequences (average

0.40 ± 0.42%). This difference was statistically significant by one-

way ANOVA (F-statistic 9.2941, P = 8.46 x 10−8) and Tukey’s

HSD (honestly significant difference) posttest (P < 0.05 for each

pair-wise comparison between sites extracted by method 4 and

all other methods). However, this enrichment was not enough to

enable detection of SARS-CoV-2 or other viral pathogens of public

health concern from the untargeted sequencing data, andmost viral

sequences aligned to bacteriophage.

When the contig based approach was used to identify the

etiological agents of ODH reportable infectious diseases, more calls

were able to be made compared to the k-mer approach as this

approach used more sequence data (Figure 5). Similar to the K-

mer based approach, E. coli was one of the most prevalent species

identified. However, the same issue of misidentified Burkholderia

sequences was observed.

3.5. Untargeted RNA sequencing on
MinION using direct RNA sequencing Kit

The Direct RNA Sequencing Kit from Oxford Nanopore

Technologies was selected for feasibility testing with wastewater-

based epidemiology, as it sequences RNA molecules that have

a polyA tail. The data gathered from the Illumina total RNA

sequencing method demonstrates that even when samples have

been enriched for viral RNA, most of the RNA is from bacteria

in the samples. The bacterial sequences therefore drown out the

viral signal, causing viral pathogens to not be detected. Therefore,

a method that selects for polyA tails should further enrich for

eukaryotic or viral sequences, as most bacterial RNAs do not

contain polyA tails. Two locations were chosen for testing the utility

of the MinION Direct RNA Sequencing method for wastewater

biosurveillance: A and H. These locations were chosen because

they represent two distinctive RNA sample types analyzed by the

OCWN: A never produced a long amplicon peak in the Midnight

RT PCR testing, although the RNA samples consistently had high

RIN scores, while H consistently produced the long amplicon peak
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FIGURE 5

Abundance by site per week for etiological agents of Ohio Department of Health reportable diseases using the Contig-based approach to data

analysis.

in the Midnight RT PCR testing, but never produced a RIN Score.

Since RIN scores are based on the ribosomal RNA, this suggests

that the H samples had been enriched for long viral RNAmolecules

that do not have rRNA, but A samples contained more eukaryotic

RNAs and more fragmented RNA molecules. However, the direct

RNA sequencing data shows very similarmicrobial profiles between

H and A. While this method did reduce the complexity of the

samples, contrary to the hypothesis that more viruses would be

sequenced than bacteria, very few reads were identified as viral,

and most of the classified sequences were determined to be human,

bacteria, or fungi. Three options for What’s In My Pot (WIMP)

were used to analyze both samples (Table 5): Fastq WIMP, Fastq
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TABLE 5 Distribution of read classification by WIMP option (Fastq, Antimicrobial Resistance (AMR), or human-viral) for H 12/26/21 and A 1/9/22 samples

demonstrated that the direct RNA MinION sequencing method did not provide useful information on pathogens prevalence.

H 12/26/21 A 1/9/22

Reads Fastq AMR Human-viral Fastq AMR Human-viral

Analyzed 150,848 150,848 150,848 491,997 501,144 499,997

Classified 1,164 1,164 676 3,712 3,787 2,140

Unclassified 149,684 149,684 150,172 488,285 497,357 497,857

Human 654 654 673 1,991 2,033 2,130

Viral – – 2 – – 7

Microbial 510 510 – 1,721 1,754 –

Antimicrobial Resistance WIMP, and Fastq WIMP (Human +

Viral) with a 1% minimum abundance cutoff. The two viral reads

identified in H were Alphabaculovirus and Chivirus. The seven

viral reads identified in A were Mastadenovirus (2), Pandoravirus

(2), Pahexavirus (1), Cyprinivirus (1), and Simplexvirus (1). Since

the ONT direct RNA sequencing method did not enrich for more

viral sequences, this method was not explored further.

3.6. Illumina respiratory pathogen and AMR
targeted sequencing panel

Based on the ambiguity of the untargeted sequencing data

analysis, it was determined that a targeted approach may provide

better confidence in a pathogen detection. Therefore, the Illumina

Respiratory Pathogen and AMR (Antimicrobial Resistance)

Targeted Sequencing Panel was tested for compatibility with

wastewater samples for epidemiological purposes. This enrichment

panel targets 282 respiratory pathogens, including 42 viruses

(including SARS-CoV-2), 187 bacteria, and 53 fungi, and 1,218

AMR alleles covering resistance to Amoxicillin, Gentamycin,

Amoxicillin-Clavulanate, Levofloxacin, Cefazolin, Meropenem,

Cefepime, Oxacillin, Ceftriaxone, Sulfamethoxazole, Clindamyicn,

Tetracycline, Colistin, Trimethoprim, Erythromycin, and

Vancomycin. Twenty-eight wastewater RNA samples representing

six sites (A, B, C, D, I, and J) were selected, prepared and sequenced

alongside a negative control and a positive COVID RNA control

on a single NextSeq Flow Cell. The RNA input for each sample was

normalized to 100 ng starting material. As expected, SARS-CoV-2

was detected with high confidence, and no other pathogens or

AMR genes were detected in the COVID Positive control, and no

organisms or AMR genes were detected by the Explify software

in the negative control. Of the 282 pathogens targeted by the

panel, 54 pathogens were identified over the six sampling sites over

time. The number of pathogens detected per week tended to be

consistent within the same location: A had 2 ± 1, I had 4 ± 2, D

had 30± 13, C had 22± 5, J had 4± 1, and B had 2± 2 pathogens

detected each week. Interestingly, D (51 pathogens), and C (33

pathogens) had the most variety in pathogens identified (Table 6),

while sites A, B, J, and I were less diverse (Figure 6). Since the D

sewershed was the smallest population and C sewershed was the

second largest population tested by this method, it demonstrates

that the number of pathogens identified is not directly correlated

with the population covered by sewershed sample. Since the

input concentration was normalized, the total amount of RNA

cannot explain difference in number of pathogens detected.

More work with controlled inputs will need to be conducted to

determine if the difference is caused by RNA extraction method,

RNA quality, or methods used to enrich for viral vs. microbial

RNA molecules. The most commonly detected organism in

all sites was Moraxella osloensis, being found in 27 of the 28

samples tested.

Using this panel, the Burkholderia issue observed in untargeted

sequencing was resolved: only Burkholderia cepacia complex

was identified, with a confidence score which removes the

ambiguity. Furthermore, the targeted approach enabled detection

of viral pathogens present in the wastewater, such as SARS-CoV-

2 as detected in some of the samples. However, this data set

demonstrates the need to determine the limit of detection for

each pathogen in the panel to better understand the parameters

necessary to enable wastewater pathogen surveillance with high

confidence in what is and is not detected in each sample.

The information provided by the panel on antimicrobial

resistance markers is also very interesting to public health. Out of

the 22 drug classes covered, antimicrobial resistance markers were

found against 13: Aminoglycosides, Carbapenems, Beta-Lactam +

Beta-Lactamase Inhibitors, Cephalosporins, Diaminopyrimidine,

Fluoroquinolones, Glycopeptides, Lincosamides, Macrolides,

Oxazolidinones, Penicillins, Sulfonamides, and Tetracyclines.

Six different organisms identified had associated antibiotic

resistances identified (Stentrophomonas maltophilia, Klebsiella

pneumoniae, E. coli, Enterobacter cloacae complex, Acinetobacter

baumannii, and Pseudomonas aeruginosa), and several other AMR

genes were detected that were not associated with pathogens

detected by the panel. The relative abundance expressed as Reads

per kilobase of transcript per Million reads mapped (RPKM)

is provided for each AMR gene identified by week at each

site is presented in Supplementary Table 1. Five AMR genes

were consistently found in all samples tested: AAC(6’)-Ib-cr

(aminoglycoside), GES-5 (Carbapenem/Beta-Lactam +/Beta-

Lactamase Inhibitor/Cephalosporin/Penicillin), mphE and msrE

(Macrolides) and sul1 (sulfonamides). In 17 of the 28 wastewater

samples tested by targeted hybridization, either mphE and msrE

were the most abundant AMR gene detected. For the other 11

samples, 10 had aminoglycoside resistance gene marker RRS

(1402C>A) and one sample had GES-5 as the most abundant AMR

gene detected.
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TABLE 6 Pathogens detected by the illumina respiratory pathogen and AMR panel in sites D and C over time.

Pathogens D C COVID
+control

12/5 12/12 12/19 1/9 12/5 12/12 12/19 1/2 1/9

Acinetobacter baumannii 1.28 0.41 1.2

Acinetobacter lwoffii 1.28 1.54 1.54 1.54 1.54 1.54 1.53 1.54 1.54

Acinetobacter pittii 0.14 0.58

Actinomyces graevenitzii 0.44 1.33

Aeromonas caviae 1.99 2.00 2.00 2.00 2.00 2.00 1.99 1.99 2.00

Aeromonas hydrophila 0.51 1.18 0.58 0.39 0.56 1.17 0.94 1.17 0.94

Aeromonas sobria 0.17

Aeromonas veronii 1.30 1.51 1.50 1.51 1.51 1.51 1.18 1.24 1.50

Aspergillus versicolor 0.87

Bacteroides fragilis 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34

Burkholderia cepacia 0.29 0.30 2.51 2.10 2.50 2.51

Citrobacter freundii 2.10 2.02 2.02 2.15

Cronobacter sakazakii 1.91 0.80

Delftia acidovorans 0.79 0.65

Enterobacter cloacae 1.76 1.76 1.76 1.65 1.76 1.76 1.75 1.70 1.76

Enterococcus faecalis 2.33

Enterococcus faecium 2.22 0.53 0.51

Escherichia coli 1.42 1.42 1.42 1.44 1.42 1.42 1.69 1.45 1.42

Finegoldia magna 0.18

Gordonia bronchialis 0.49 1.30 1.30 1.30 0.13

Haemophilus parainfluenzae 0.18

Hafnia alvei 1.05

Klebsiella aerogenes 2.58

Klebsiella oxytoca 0.94 1.57 1.59 1.46 1.56 1.54 1.57 0.97 1.58

Klebsiella pneumoniae 1.58 1.57 1.56 1.58 1.56 1.57 1.57 1.54 1.61

Klebsiella quasipneumoniae 2.04 2.04 1.45 2.05 2.05 1.97 1.55 2.06

Klebsiella variicola 1.97 1.96 1.41 1.96 1.96 1.77 1.95 1.36

Leclercia adecarboxylata 0.05 0.95 0.47

Moraxella osloensis 0.94 0.94 0.94 0.94 0.94 0.94 1.54 0.94 0.94

Morganella morganii 1.94 0.72 0.56

Mycobacterium avium 1.49 2.15 1.22 2.25 0.11

Mycobacterium fortuitum 1.81 1.81 1.82

Mycobacterium gordonae 1.27 0.28

Mycobacterium simiae 2.07 0.88

Mycobacteroides chelonae 0.30 0.21 0.35

Ochrobactrum anthropi 1.58 1.23 0.20

Pantoea agglomerans 0.75

Pediococcus acidilactici 2.14 0.66

Prevotella buccae 0.07

(Continued)

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1145275
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Spurbeck et al. 10.3389/fpubh.2023.1145275

TABLE 6 (Continued)

Pathogens D C COVID
+control

12/5 12/12 12/19 1/9 12/5 12/12 12/19 1/2 1/9

Pseudomonas aeruginosa 1.17

Pseudomonas fluorescens 0.16 0.12

Pseudomonas stutzeri 1.37 0.99 0.40 1.30 1.29 1.33 1.34

Raoultella ornithinolytica 1.81 1.67 1.81 1.81 1.81 1.81 1.81 1.81 1.81

Raoultella planticola 1.19 1.64 1.64 1.02 1.60 1.64 1.61 1.62 1.64

Rothia mucilaginosa 0.27 0.73

SARS-CoV-2 1.15 2.17

Serratia marcescens 0.21 1.50 1.41 1.42 1.22

Shewanella putrefaciens 0.55 1.20 1.49 1.24

Stenotrophomonas

maltophilia

0.10 1.60 1.30 0.61 0.50 1.32 0.59 0.58 0.73

Streptococcus anginosus 1.62

Veillonella parvula 1.23

Yersinia enterocolitica 1.97 1.77 1.18 1.81

red text=Antibiotic Resistance. Gray is undetected, Red=High, Orange=Medium, Yellow= Low detection.

4. Discussion

Wastewater based surveillance of human pathogens would

enable monitoring and early detection of epidemics before

they reach pandemic levels, enabling quick response to

inhibit the spread of deadly bacteria or viruses. However, the

traditional approaches to metagenomic analysis, such as shotgun

metagenomics or 16S amplicon sequencing do not interrogate

the RNA of the sample and thereby miss any RNA viruses such

as SARS-CoV-2 that could be present in the sample because

these pathogens do not have a 16S gene or a DNA based

genome. Methods exist for metatranscriptomic analysis, which

look at untargeted sequencing of all RNA present in a sample.

Metatranscriptomics has another advantage of metagenomic and

16S amplicon sequencing based methods, as RNA is produced from

active or viable microbes, and demonstrates what genes are being

expressed. Therefore, any AMR gene detected from RNA based

methods are actively being expressed in the microbial community.

While metatranscriptomics is able to detect eukaryotic, bacterial,

and viral pathogens, several studies have shown that the untargeted

methods available are not adequate to detect unknown pathogens

with small genomes such as viruses on a large scale at a reasonable

cost (20, 24, 32, 33). Surveillance of viruses in wastewater has been

mainly conducted using targeted approaches such as amplicon

sequencing for particular pathogen genomes such as SARS-

CoV-2 or norovirus (4, 5, 17, 20, 24, 34) or through use of viral

concentration methods which remove all bacteria and eukaryotic

cells prior to sequencing, thereby removing information on other

potential pathogens (3, 35). Furthermore, wastewater is comprised

of intact as well as cellular debris, and therefore, filtration and

concentration methods do not enrich enough for viruses to enable

consistent detection by non-targeted sequencing methods (20, 33).

The data presented in this report demonstrates that wastewater

can be used to track several pathogens simultaneously over time

across the state of Ohio using RNA extracts already gathered

through the OCWMN. However, several gaps were identified

in the wastewater sequencing based epidemiology methodology

that need to be addressed prior to implementation on a broad

scale, congruent with other studies (20, 33). To be cost efficient

and enable high throughput wastewater based biosurveillance, a

single method must be developed that can detect both bacterial

and viral pathogens without compromising detection of any

pathogenic group. Here we show that not all sequencing methods

were equally able to detect pathogens of interest, and the

RNA extraction method used influences the data output from

sequencing. Targeted hybridization was able to detect bacterial,

fungal, and viral pathogens in the wastewater, and therefore is

a viable singular method for known pathogen surveillance. Still,

the methods used to conduct total pathogen biosurveillance need

to be optimized and standardized across each network to enable

surveillance of all reportable diseases. First, positive controls for

each pathogen targeted must be developed to enable a baseline

for comparison for each target. Second, a targeted hybridization

panel needs to be identified or expanded to include all reportable

infectious diseases and those of interest to the CDC to ensure

detection of known viral, bacterial, and eukaryotic pathogens.

The panel will then need to be tested on RNA extracts from the

positive control spiked into wastewater from different sources

with different RNA extraction methods to determine the optimal

workflow(s) to detect all pathogens. Finally, the limit of detection

for each pathogen in wastewater will need to be determined prior

to implementation.

Of the three methods for detection of reportable pathogens,

the MinION direct RNA sequencing method performed the

worst, not detecting a single pathogen. While Illumina untargeted

RNA sequencing was able to detect pathogens of interest,
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FIGURE 6

Pathogens identified in sites A, B, I, and J over time using the Illumina Respiratory Pathogen and AMR Targeted Sequencing Panel.

due to the random sequencing of potentially shared genomic

regions between pathogens and non-pathogen near neighbors,

confidence in pathogen/non-pathogen calls was not high

enough to enable implementation on a broad scale. Another

study effectively used the MinION to quantify and assess the

removal of bacterial pathogens and antibiotic resistance genes

(ARGs) in wastewater treatment plants using metagenomic

sequencing (32). However, the method employed in that study

would not detect viruses that have human health consequences

such as SARS-CoV-2 or influenza A. Targeted hybridization,

however, was able to provide direct detection of pathogens

and antimicrobial resistance genes with high confidence in

the calls. Macrolide resistance genes mphE and msrE were

found in all 28 samples tested and were the most abundant

AMR genes detected in 17 samples tested. This finding is

consistent with a recent report which analyzed AMR genes

in a river downstream from a wastewater treatment plant

in Ohio, where mphE and msrE were the most abundant

AMR genes identified in the river water (36). The easy-to-use

Explify bioinformatics tool, also makes it more amenable to

users who may not be trained in the use of command line

bioinformatics tools that are generally used for untargeted

sequencing analysis.

Targeted hybridization was found to be more useful than

untargeted RNA sequencing because the amount of nucleic

acid from non-pathogenic microbes and humans in the sample

obscured the pathogen signal, causing pathogen signal to often

be below the limit of detection. Despite efforts to enrich by

subtractive hybridization or through viral enrichment conducted

by the RNA extraction laboratories, most sequences were
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human, non-pathogenic bacteria or bacteriophage. Furthermore,

relatedness between non-pathogens and pathogens can confound

taxonomic classification in short-read untargeted RNA sequencing,

making it difficult to determine if a pathogen is present or

absent. Untargeted methods align or map sequences 100–150

bp in length to a reference database. Given that an average

bacterial genome is ∼5 million bp, and bacteria within the

same genera can have up to 50% genomic similarity, it is

often extremely difficult to distinguish between species with

this method. Since untargeted metatranscriptomic sequencing

does not capture full genomes, and instead only sequences

random fragments from each genome present, many sequences

align to regions in common between closely related pathogens

and non-pathogens. This causes ambiguity in determination

of pathogen presence or absence as observed in E. coli and

Burkholderia. Targeted methods, on the other hand, can be

designed to target regions specific to the pathogenic strains or

species, enabling detection and the ability to discern between

such closely related species, as demonstrated by the Illumina

Respiratory Pathogen and AMR Targeted Sequencing Panel

sequencing results.

The use of the MinION for long read SARS-CoV-2 genomics

was also assessed in this work. It was found that although consensus

calls could be made on the major variants present in the samples,

that the RNA extraction method drastically affects the ability of

sequencing of long reads. Only four locations tested: E, F, G,

and H consistently produced sequencing results, all of which

were extracted using method 4. Therefore, if MinION sequencing

were to replace Illumina sequencing of SARS-CoV-2, the RNA

extraction method will need to be standardized to method 4 to

enable long read sequencing from all sites. Utilization of the

MinION could enable faster, decentralized analysis of samples

in real time at wastewater treatment facilities. The device is

smaller than a cell phone and runs off a laptop computer.

Therefore, if the RNA extraction method is optimized to produce

consistent data on the MinION for SARS-CoV-2 variant calling,

the time between sampling and answer could be reduced by

3 days, since the library preparation is much faster than that

used for Illumina sequencing, and variant calls are automatically

generated within an hour of initiating sequencing, therefore,

a trained bioinformatician is not needed for analysis, unlike

with Illumina sequence data. One caveat of MinION sequence

analysis is that the variant call will be made from a consensus

of the data and will not identify multiple variants that may

be present in the population-based wastewater data, without

human intervention.

To enable established COVID wastewater tracking networks

to transition into a pathogen surveillance network, we

recommend development of a targeted hybridization panel

to detect all reportable disease pathogens and AMR genes

from RNA extracts. Future work will include development

and validation of a targeted hybridization panel to detect all

reportable disease pathogens of interest, development of control

materials, and optimization of RNA extraction methods to

ensure pathogen detection from different wastewater samples

with known limit of detection, sensitivity, and specificity for

each pathogen.
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