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Melioidosis is a bacterial infection caused by Burkholderia pseudomallei (B. 
pseudomallei), posing a significant threat to public health. Rapid and accurate 
detection of B. pseudomallei is crucial for preventing and controlling melioidosis. 
However, identifying B. pseudomallei is challenging due to its high similarity to 
other species in the same genus. To address this issue, this study proposed a 
dual-target method that can specifically identify B. pseudomallei in less than 
40 min. We  analyzed 1722 B. pseudomallei genomes to construct large-scale 
pan-genomes and selected specific sequence tags in their core genomes 
that effectively distinguish B. pseudomallei from its closely related species. 
Specifically, we selected two specific tags, LC1 and LC2, which we combined with 
the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR 
associated proteins (Cas12a) system and recombinase polymerase amplification 
(RPA) pre-amplification. Our analysis showed that the dual-target RPA-CRISPR/
Cas12a assay has a sensitivity of approximately 0.2 copies/reaction and 10 fg 
genomic DNA for LC1, and 2 copies/reaction and 20 fg genomic DNA for LC2. 
Additionally, our method can accurately and rapidly detect B. pseudomallei in 
human blood and moist soil samples using the specific sequence tags mentioned 
above. In conclusion, the dual-target RPA-CRISPR/Cas12a method is a valuable 
tool for the rapid and accurate identification of B. pseudomallei in clinical and 
environmental samples, aiding in the prevention and control of melioidosis.
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1. Introduction

Melioidosis is a tropical disease caused by the aerobic, Gram-negative motile bacillus which 
is classified as a category B biological agent by the Centers for Disease Control and Prevention 
(CDC) of America (1, 2). It is a highly pathogenic endemic zoonotic disease in many tropical 
countries, particularly in Southeast Asia and Northern Australia. In China, the southern regions 
of Hainan, Guangdong, Guangxi, and Fujian are the endemic areas for the disease. Hainan 
carries the most significant burden compared to other provinces, and residing in or traveling to 
this tropical island is an important risk factor for infection (3). Hainan also experienced a 
geographical melioidosis outbreak in Hainan following the 2021 typhoon (4). Epidemiological 
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studies have indicated that melioidosis often affects individuals with 
one or more pre-existing conditions associated with an altered 
immune response, such as diabetes, compromised liver or decreased 
renal function appears to have an increased risk of infection (5). The 
most severe clinical symptom is sepsis, a life-threatening, dysregulated, 
systemic inflammatory and immune response that can cause organ 
dysfunction with a case fatality rate of up to 40%. The number of cases 
worldwide is estimated to be 165,000 per year, of which 89,000 are 
fatal (6).

The B. pseudomallei strain K96243 has two chromosomes with 
significant functional partitioning of genes. The large chromosome 
has 4.07 Mbp and carries many core functions related to central 
metabolism and cell growth. The small chromosome, with 3.17 Mbp, 
encodes accessory functions associated with adaptation and survival 
in different niches. The genome has 7,232 protein coding sequences 
(CDS), 60 transfer RNA (tRNA) genes, and 12 ribosomal RNA 
(rRNA) genes. Approximately 6% of the genome consists of putative 
genomic islands that are likely obtained by horizontal gene transfer 
(7). There are over 40 species of Burkholderia in the genus, among 
which B. pseudomallei and Burkholderia mallei (B. mallei), are the 
most pathogenic. However, they are very similar in genetic and 
immunological features. Previously, randomly amplified polymorphic 
DNA (RAPD) (8),16S rRNA gene sequencing (9), multilocus sequence 
typing (MLST) (10), polymerase chain reaction-restriction fragment 
length polymorphism (PCR–RFLP) (11), probe-based real-time PCR 
and loop-mediated isothermal amplification targeting Burkholderia 
type III secretion system genes (12, 13), multiplex PCR assays (14–16), 
single-nucleotide polymorphism (SNP) typing (17), DNA microarrays 
(18) and proteome profiling (19) have been developed to detect and 
differentiate B. pseudomallei. Unfortunately, the specificity and 
coverage of the above primers and probes for B. pseudomallei were 
found to be insufficient after NCBI BLAST website verification. To 
address these shortcomings, this study aimed to identify unique tags 
based on genome differences between different species and genera of 
pathogens, as well as their intraspecific polymorphisms.

Recombinase polymerase amplification (RPA) is a thermostatic 
amplification technology that can expand target DNA to detectable 
levels in 10 min in an isothermal reaction condition (20). Clustered 
regularly interspaced short palindromic repeats (CRISPR)—CRISPR 
associated proteins 12a (Cas12a), a powerful diagnostic tool, has been 
widely used for the detection of pathogenic bacteria in recent years 
(21, 22). When the CRISPR-Cas12a system is used to establish a 
sensing platform for the detection of pathogenic bacteria, Cas12a-
crRNA can recognize target DNA and activate the trans-cleavage of 
Cas12a which will cleave the non-target single-stranded DNA 
(electrochemistry, fluorescence probe, etc.) (23, 24). Therefore, we can 
use this feature to develop detection methods in vitro.

In this study, we constructed the pan-genome and evaluated gene 
presence/absence from the genomic sequences of 1722 B. pseudomallei 
strains and 92 B. mallei strains using Roary software. Subsequently, 44 
specific sequence tags for quick identification of B. pseudomallei were 
found from the core genome sequences (Figure 1A). The specific tags, 
containing protospacer adjacent motif (PAM) sequences, of 
B. pseudomallei were selected. Finally, two of the newly developed 
B. pseudomallei-specific tags, Cas12a as a biosensor coupled with RPA 
pre-amplification and fluorescent signal output, were used to construct 
the dual-target RPA-CRISPR/Cas12a assay for rapid, sensitive, and 
specific detection of B. pseudomallei (Figure 1B).

2. Materials and methods

2.1. Bacterial strains

A total of 1,722 B. pseudomallei genomes (13 newly sequenced 
and 1709 public) and 92 B. mallei genomes (9 newly sequenced and 
83 public) were used in this work. All newly sequenced strains were 
derived from Beijing Institute of Microbiology and Epidemiology. The 
genomes of the newly sequenced strains had been uploaded to NCBI 
(The Bioproject number is PRJNA930628).1 The publicly available 
genomes were downloaded from NCBI (B. pseudomallei2; B. mallei).3

The genomic DNA of Brucella melitensis, Brucella abortus, 
Brucella suis, Brucella canis, Francisella tularensis, Bacillus anthracis, 
Yersinia pestis, Burkholderia cepacian, Vibrio cholerae, Staphylococcus 
aureus, Vibrio vulnificus, Vibrio parahaemolyticus, and Salmonella 
typhi provided by Beijing Institute of Microbiology and Epidemiology 
were used for the specificity tests.

2.2. Treatment of strains

Burkholderia pseudomallei, B. mallei, B. melitensis, B. abortus, 
B. suis, B. canis, F. tularensis, B. anthracis, and Y. pestis were cultured 
in biosafety level 3 (BSL-3) and subsequently heat inactivated. For 
safety, the inactivated bacteria were recoated, and no bacterial growth 
was found. Then, the inactivated bacteria were taken out of BSL-3. 
Vibrio cholerae, Staphylococcus aureus, Vibrio vulnificus, Vibrio 
parahaemolyticus, and Salmonella typhi were cultured in biosafety 
level 2 (BSL-2). Subsequently, the QIAampTM DNA Mini Kit (Qiagen, 
Germany) was used to extract genomic DNA from all the bacteria. 
Extracted DNA was stored at 4°C for a short time or at −40°C for 
longer periods.

2.3. Sequencing and assembly

Whole genome de novo sequencing was performed using Illumina 
MiSeq (Illumina, San Diego, CA, United  States) to generate 
multiplexed paired-end libraries with an average insert size of 300 bp. 
Next, the raw short-read sequences of each strain were filtered for 
low-quality data using the FASTQ Quality Filter module in the 
FASTX-Toolkit software4 (25). Then, the filtered reads were assembled 
using the SPAdes 3.0-based software Shovill version 1.0.45 (26) with 
default settings. The average genome size and GC content of all 
sequenced strains were 7.11 Mbp and 68.22%, respectively. The 
detailed description of assembly results was provided in 
Supplementary Table S1.

1 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA930628

2 https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/476/

3 https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/477/

4 http://hannonlab.cshl.edu/fastx_toolkit/

5 https://github.com/tseemann/shovill
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2.4. Phylogenetic analysis

The SNPs were identified through pairwise comparisons of 11 
previously published Burkholderia genomes (Burkholderia cenocepacia 
J2315, Burkholderia cenocepacia HI2424, Burkholderia ambifaria 
AMMD, Burkholderia dolosa AUO158, Burkholderia ubonensis 
MSMB22, Burkholderia ubonensis Bu, Burkholderia pseudomallei 
K96243-1, Burkholderia pseudomallei K96243-2, Burkholderia mallei 
ATCC 23344, Burkholderia mallei SAVP1, and Burkholderia 
thailandensis E264) using MUMmer 3.06 (27). Then, SNPs in repeated 
regions with low-quality scores (<20) or supported by few reads (<10 
paired-end reads) were eliminated. The maximum likelihood tree 
(MLTree) was built using RaxML7 (28) based on the concatenated SNPs.

2.5. Screening for Burkholderia 
pseudomallei-core genome sequences

We annotated 1722 genomes of B. pseudomallei and 92 genomes 
of B. mallei using Prokka8 (29). The GFF3 files of B. pseudomallei and 
B. mallei generated by Prokka were then used in Roary9 (30) 
(parameter settings: -cd 100 -i 90 -e -mafft -p 4 -r -t 11) to identify the 
pan-genome and gene presence/absence. The unique core genome of 
B. pseudomallei, core base pairs/genes found in all strains of 
B. pseudomallei but not present in the pan-genome of B. mallei, were 
screened for subsequent analysis using an in-house Perl script 
(Supplementary Table S2).

6 http://mummer.sourceforge.net/

7 https://cme.h-its.org/exelixis//web/software/raxml/

8 https://github.com/tseemann/prokka

9 https://sanger-pathogens.github.io/Roary/

2.6. Constructing specific sequence tags 
for Burkholderia pseudomallei based on 
the core genome sequences

To verify the specificity of the sequence tags, the core genome 
sequences of B. pseudomallei were further aligned using a local version 
of the NCBI BLASTN software and NCBI BLAST website.10 The 
identified sequence tags were only aligned to the genome sequences 
of B. pseudomallei, with 100% coverage and identity with all 1722 
B. pseudomallei genome sequences. We  then selected one specific 
sequence tag, containing PAM sequences for Cas 12a, on each of the 
two chromosomes of B. pseudomallei. These two specific sequence tags 
were named LC1 and LC2, and corresponding PCR primers were 
designed and synthesized.

2.7. The design and screening of RPA 
primers, RPA probes, and crRNA

The pre-amplification efficiency of RPA is an important for the 
detection sensitivity. RPA primers (LC1-F1 ~ F4/LC1-R1 ~ R4 and 
LC2-F1 ~ F4/LC2-R1 ~ R4) were designed by Primer Premier 6.0 
according to the assay design manual of the TwistAmp™ DNA 
amplification kits. RPA probes LC1-P and LC2-P were designed from 
the amplified sequences of LC1-F/R and LC2-F/R, respectively. These 
candidate primers were screened with the same concentrations of 
positive reference plasmid (pEASY-T1-LC1 and pEASY-T1-LC2) as 
template DNA using the real-time RPA method, performed according 

10 https://blast.ncbi.nlm.nih.gov/Blast.cgi

FIGURE 1

Workflow of this project. (A) Acquisition of B. pseudomallei-specific tags. (B) Schema of assay process for the detection of B. pseudomallei with the 
dual–target RPA–CRISPR/Cas12a assay.
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to the TwistAmp™ exo Kit (Cambridge, United Kingdom) Quick 
Guide at 39°C for 10 min in a Genie-II (OptiGene, United Kingdom).

The crRNA spacer sequences were designed downstream of the 
PAM sequence containing 5′-TTTN-3′ on the RPA amplified 
sequence. The direct repeat sequence was added upstream of the 
crRNA spacer sequences (31). Particularly, LC1-crRNA-1 and 
LC1-crRNA-2 were designed by the amplified sequence of LC1-F/R, 
whereas LC2-crRNA-1 and LC2-crRNA-2 were designed by the 
amplified sequence of LC2-F/R. Subsequently, the fluorescent single-
stranded DNA reporter (Flu-ssDNA) modified with fluorophore 
6-FAM and quencher BHQ1 was trans-cleaved by Cas12a, which 
allowed the identification of the presence or absence of the target 
genes LC1 and LC2. The RPA primers, RPA probes, crRNA, and 
Flu-ssDNA were synthesized by Shanghai Sangon Biotech Co., Ltd. 
(China). Details of the oligonucleotides were listed in Table 1.

2.8. RPA-CRISPR/Cas12a assay

Template DNAs were amplified for 30 min in a Genie-II at 39°C 
according to the TwistAmp™ Basic Kit (Cambridge, United Kingdom) 
Quick Guide to obtain RPA amplification products. The following 
CRISPR reaction system was composed of 40 μL reaction solution: 
0.3 μL Cas12a (75 nM), 2 μL Flu-ssDNA (500 nM), 0.5 μL RNase 

inhibitor, 3 μL NEBuffer3.1, 10 μL crRNA (500 nM) and 4.2 μL double-
distilled water (ddH2O). LbCas12a protein, NEBuffer 3.1, and RNA 
inhibitor were provided by NEW ENGLAND BioLabs, Inc. (United 
States). DNase/RNase-free distilled, deionized water (ddH2O) was 
provided by Tiangen Biochemical Co., Ltd. Positive reference plasmids 
for B. pseudomallei detection (pEASY-T1-LC1 and pEASY-T1-LC2) 
were constructed by our lab. Finally, we  took 20 μL of the 
RPA-amplified product as a template, and then ran the CRISPR/
Cas12a reaction system for 10 min at 37°C in the Genie-II.

2.9. Evaluation of the sensitivity and 
specificity

After identifying the best RPA primers and crRNAs, the sensitivity 
of the dual-target RPA-CRISPR/Cas12a assay was evaluated. 
Sensitivity was tested by gradually diluting 2 μL (0.1 ~ 100 copies/μL) 
of two positive plasmids (0.2 ~ 200 copies/reaction), and 2 μL 
(1 ~ 100 fg/μL) of B. pseudomallei genomic DNA (2 ~ 200 fg) were used 
as template DNA to test the sensitivity.

The specificity of the dual-target RPA-CRISPR/Cas12a assay for 
B. pseudomallei was investigated with low input B. pseudomallei genomic 
DNA (100 fg) as well as high input B. mallei genomic DNA (100 pg) and 
12 non-B. pseudomallei bacterial genomic DNA (100 pg). DDH2O was 

TABLE 1 The sequences of RPA primers, RPA probes, and crRNA.

Name Sequence (5′–3′)

LC1- F1 GGGTTTCCAGAAGGGCTGCAAGCACCAAATG

LC1- F2 CGGGTTTCCAGAAGGGCTGCAAGCACCAAAT

LC1- F3 GGTTTCCAGAAGGGCTGCAAGCACCAAATGT

LC1- F4 GTTTCCAGAAGGGCTGCAAGCACCAAATGTG

LC1- R1 GCAATGTCTTACAACAAGCCATGCCGTCATCTTCA

LC1- R2 CAATGTCTTACAACAAGCCATGCCGTCATCTTCAT

LC1- R3 TGCAATGTCTTACAACAAGCCATGCCGTCATCTTC

LC1- R4 ATGCAATGTCTTACAACAAGCCATGCCGTCATCTT

LC2- F1 GAGGCTCGAACAACGTCGGCTTCCCAGGAT

LC2- F2 AGAGGCTCGAACAACGTCGGCTTCCCAGGA

LC2- F3 GAGAGGCTCGAACAACGTCGGCTTCCCAGG

LC2- F4 AGGCTCGAACAACGTCGGCTTCCCAGGATT

LC2- R1 AATGAATTCGTCGGCACGCGCCAGCCAAAT

LC2- R2 ATGAATTCGTCGGCACGCGCCAGCCAAATG

LC2- R3 CAATGAATTCGTCGGCACGCGCCAGCCAAA

LC2- R4 ACAATGAATTCGTCGGCACGCGCCAGCCAA

LC1- P TCGCATCCGCCGACCGATTTGATGTTAATGTCGTTACGAAAGACGAGCA

LC2- P TTCATATCGAACTTAACTGATTCAGAGAAATACTCAATCTCGGAAAATA

LC1-crRNA-1 UAAUUUCUACUAAGUGUAGAUGCAUCCGCCGACCGAUUUGATGUU

LC1-crRNA-2 UAAUUUCUACUAAGUGUAGAUAUGUUAAUGUCGUUACGAAAGACG

LC2-crRNA-1 UAAUUUCUACUAAGUGUAGAUCGCUACACCAUAGCAGUGUUCGCG

LC2-crRNA-2 UAAUUUCUACUAAGUGUAGAUAUAUCGAACUUAACUGAUUCAGAG

Flu-ssDNA 6-FAM-CCCCCCCCCCCC-BHQ1

The unified sequence (UAAUUUCUACUAAGUGUAGAU) is the direct repeat sequence (known as a 5′ handle), and the long underlined sequence is the spacer sequence (guide sequence).

https://doi.org/10.3389/fpubh.2023.1153352
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used as a no-template control (NTC). Twelve non-B. pseudomallei 
bacterial genomic DNA were prepared by mixing the genomic DNA of 
12 other pathogenic bacteria, including B. melitensis, B. abortus, B. suis, 
B. canis, F. tularensis, B. anthracis, Y. pestis, V. cholerae, S. aureus, 
V. vulnificus, V. parahaemolyticus, and S. typhi.

2.10. Simulated blood and moist soil 
samples test by RPA-CRISPR/Cas12a 
assay

As B. pseudomallei bacteria are highly pathogenic and must 
be handled under BSL-3 conditions (Manual of Clinical Microbiology, 
8th ed., American Society for Microbiology, Washington, DC), 
we only use the genomic DNA to prepare test samples.

To verify the feasibility of the dual-target RPA-CRISPR/Cas12a 
assay for B. pseudomallei, a total of 12 blood samples and 12 moist 
soil samples were collected. In a double-blinded test, different 
concentrations of B. pseudomallei genomic DNA (between 200 and 
10 fg/μL), B. mallei genomic DNA (1 × 105  fg/μL), and B. cepacia 
genomic DNA (1 × 105 fg/μL), as well as a blank control (BC) sample 

with ddH2O, were added. DNA was extracted with the QIAamp 
DNA Mini kit, and 2 μL nucleic acid extract was used for real-time 
PCR (RT-PCR) and the dual-target RPA-CRISPR/Cas12a assay for 
B. pseudomallei. The RT-PCR assay for B. pseudomallei was 
performed according to a previously published method (32) in the 
qTOWER3G instrument (Analytikjena, Germany) with the 
following program: pre-denaturation at 95°C for 2 min, followed by 
45 cycles of denaturation at 95°C for 5 s and annealing and extension 
at 56°C for 10 s, 72°C for 10 s, and 40°C for 20 s. The results of the 
RT-PCR and the dual-target RPA-CRISPR/Cas12a assays for 
B. pseudomallei were then analyzed and compared.

2.11. Data and statistical analysis

The 10 min fluorescence signals of each group were collected from 
Genie-II. The experimental data of each group was normalized to 
create an intuitive heat map. At the same template DNA concentration, 
a profound color and a normalized value closer to 1.00 are indicative 
of a greater fluorescence signal. The fold change value (FCV) in the 
fluorescence of each group was calculated as the average fluorescence 

FIGURE 2

Pan-genome analysis of B. pseudomallei and B. mallei. (A) Number of gene families (B. pseudomallei and B. mallei). (B) The trend chart of the size of 
core-pan genes (B. pseudomallei and B. mallei).
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FIGURE 3

The genome annotations of B. pseudomallei K96243. This includes, 
from outer to inner rings, the distribution of the 2 B. pseudomallei-
specific tags (for subsequent CRISPR-Cas12a analysis), the contigs, 
CDS on the forward strand, CDS on the reverse strand, RNA genes, 
CDS with homology to known antimicrobial resistance genes, CDS 
with homology to known virulence factors, GC content, and GC skew.

value of each testing group divided by the average fluorescence signal 
of the no-template control (NTC) group.

3. Results

3.1. Validation of published primers and 
probes for Burkholderia pseudomallei

According to the results of NCBI BLAST website verification, 
we found that the published primers and probes for B. pseudomallei 
were insufficiently specific and covered (Supplementary Table S3).

3.2. Acquisition of Burkholderia  
pseudomallei-core genome sequences

This study analyzed the whole genomes of 1722 of B. pseudomallei 
strains and 92 B. mallei strains isolated between 1996 and 2019, from 
six continents and more than 40 countries.

The construction of phylogenetic trees shows genetic distances 
and relationships between individuals within a population and is 
therefore useful for studying population structure and species 
evolution. Phylogenetic analysis demonstrated that B. pseudomallei 
and B. mallei were the most closely related but still clearly 
distinguishable (Supplementary Figure S1).

The numbers of gene families for B. pseudomallei and B. mallei 
were calculated using MUMmer and Roary. From the total of 28,206 
genes in the B. pseudomallei pan-genome, we identified 945 core genes 
(99% ≤ strains≤100%), 3,868 soft core genes (95% ≤ strains<99%), 868 
shell genes (15% ≤ strains<95%) and 22,525 cloud genes 
(0% ≤ strains<15%). Of the 5,973 genes of the B. mallei pan-genome, 
we identified 2,591 core genes, 1,047 soft core genes, 1,197 shell genes, 
and 1,138 cloud genes (Figure 2A). As the number of strains increased, 
the number of core genes gradually decreased, and the number of pan 
genes increased, suggesting that the genetic material of B. pseudomallei 
and B. mallei is still “open” with high genetic diversity (Figure 2B).

We also identified unique core genome sequences of 
B. pseudomallei using an in-house Perl script (Figure 1A).

3.3. Obtaining Burkholderia 
pseudomallei-specific tags

Sequences fragments on the B. pseudomallei core genome with a 
length of >5,000 bp were chosen to boost detection specificity. In total, 
44 B. pseudomallei-specific sequence tags were screened using a local 
version of the NCBI BLASTn and online NCBI BLAST that contain 
all the public genomes up to date (Supplementary Table S4). The 
results showed that all the 44 B. pseudomallei-specific sequence tags 
were identical to the sequences of the B. pseudomallei species with 
query cover and sequence identity being both 100%. Also, The 
B. pseudomallei-specific sequence tags were inconsistent with 
non-B. pseudomallei species and strains and could therefore be used 
to identify B. pseudomallei. We selected two B. pseudomallei-specific 
sequence tags to detect B. pseudomallei and named them LC1 and LC2 
sites (Figure 3).

3.4. Optimal RPA primers and crRNAs

Initially, RPA fluorescent probes LC1-P and LC2-P were used to 
cross-screen the designed RPA primers LC1-F1 ~ F4/LC1-R1 ~ R4 and 
LC2-F1 ~ F4/LC2-R1 ~ R4. The screening results for the LC1-RPA 
primers were shown in Figure 4A. Primers LC1-F2/R3 (0.76) and 
LC1-F2/R4 (1.00) had preferably normalized values. The screening 
results for the LC2-RPA primers were shown in Figure 4B. Primers 

https://doi.org/10.3389/fpubh.2023.1153352
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1153352

Frontiers in Public Health 07 frontiersin.org

LC2-F4/R3 (0.66) and LC2-F4/R4 (1.00) had preferably 
normalized values.

After preliminary screening of RPA primers, crRNA was designed 
to construct the CRISPR/Cas12a system, and RPA was used for 
pre-amplification to establish the RPA-CRISPR/Cas12a method. The 
candidate primers LC1-F2/R3 and LC1-F2/R4 were combined with 
LC1-crRNA-1 and LC1-crRNA-2, respectively. The candidate primers 
LC2-F4/R3 and LC2-F4/R4 were combined with LC2-crRNA-1 and 
LC2-crRNA-2, respectively. Two positive reference plasmids (10 
copies/μL, 2 μL) were used as template DNA and the primer, 
combinations were screened with the RPA-CRISPR reaction. For LC1, 
the primer LC1-F2/R3 combined with LC1-crRNA-1 had the greatest 
normalized value (Figure  4C). For LC2, the primer LC2-F4/R4 
combined with LC2-crRNA-2 had the greatest normalized value and 
was therefore used to establish the LC2 RPA-CRISPR/Cas12a assay for 
B. pseudomallei (Figure 4D).

3.5. Evaluation of the sensitivity and 
specificity of the dual-target RPA-CRISPR/
Cas12a assay for Burkholderia pseudomallei

The sensitivity of the dual-target RPA-CRISPR/Cas12a assay was 
evaluated. Obviously, two assays completed the detection of target 
DNA within 40 min, requiring 30 min for RPA and 10 min for CRISPR 
(Figures 5B,D,F,H). The LC1 RPA-CRISPR/Cas12a assay showed a low 
detection limit for Burkholderia pseudomallei at 0.2 copies/reaction 
and 10 fg genomic DNA (Figures 5A–D). LC2 RPA-CRISPR/Cas12a 
assay showed a low detection limit for B. pseudomallei down to 2 
copies/reaction and 20 fg genomic DNA (Figures 5E–H).

The specificity of the dual-target RPA-CRISPR/Cas12a assay 
for B. pseudomallei was investigated with low input 
B. pseudomallei genomic DNA (100 fg) as well as high input 
B. mallei genomic DNA (100 pg) and 12 non-B. pseudomallei 
bacterial genomic DNA (100 pg). DDH2O was used as a 
no-template control (NTC). As shown in Figures  6A,B, the 

dual-target RPA-CRISPR/Cas12a assay was only positive for 
B. pseudomallei. In addition, for testing 8 strains of 
B. pseudomallei (101, 103, 118,120, 121, 122, 127, 171) and 8 
strains of B. mallei (012, 017, 020, 021, 023, 024, 028, 029) 
(Figures  6C,D), the dual-target RPA-CRISPR/Cas12a assay 
distinguishes specific detection of B. pseudomallei.

3.6. Simulated blood and moist soil 
samples teste by RPA-CRISPR/Cas12a assay

After completion of the sensitivity and specificity evaluations, 
we analyzed the clinical adaptation feasibility of the dual-target assay 
using clinical samples, derived from human blood, and environmental 
samples, derived from naturally moist soil.

Concomitantly, RT-PCR was used as an auxiliary reference 
experiment. We analyzed the feasibility of the RT-PCR assay and used 
it to quantify the genomic DNA spiked into the simulated samples. A 
dilution gradient of B. pseudomallei genomic DNA (1 ng, 100, 10, 
1 pg., and 100 fg) in ddH2O for constructing the standard curve of the 
RT-PCR assay, while the ddH2O was set to NTC synchronously 
(Supplementary Figure S2), R2 > 0.99, Y = 3.182*X + 23.56.

The results of the dual-target RPA-CRISPR/Cas12a and 
RT-PCR assays for clinical and 12 environmental samples were 
shown in Figure  7. The LC1/LC2 RPA-CRISPR/Cas12a assay 
detected all positive blood samples. However, the RT-PCR assay, 
only detected No. 2, 4, 8, and 9 positive blood samples and could 
not effectively detect lower concentrations of the positive samples 
(Figure  7A). The test results showed that the LC1/LC2 
RPA-CRISPR/Cas12a assay has significantly lower sensitivity for 
positive moist soil samples (Figure 7B, No. 5, 9, and 10), than for 
blood samples in detecting positive moist soil samples (Figure 7A, 
No. 1, 4, and 10). The RT-PCR assay failed to detect all positive 
environmental samples. This might be  attributed to the low 
extraction efficiency of small quantities of target DNA spiked in 
complex samples. Furthermore, the RT-PCR assay and the 

FIGURE 4

Screening of optimal RPA primers and crRNAs. (A) LC1 RPA primer screening using the same concentration of DNA template. (B) LC2 RPA primer 
screening using the same concentration of DNA template. (C) Identifying the best LC1 RPA primer and crRNA. (D) Identifying the best LC2 RPA primer 
and crRNA.
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FIGURE 5

Sensitivity evaluation of the dual-target RPA-CRISPR/Cas12a assay. (A,B) Positive reference plasmids and (C,D) B. pseudomallei genomic DNA, LC1 
RPA-CRISPR/Cas12a assay. (E,F) Positive reference plasmids and (G,H) B. pseudomallei genomic DNA, LC2 RPA-CRISPR/Cas12a assay. Error bars 
represent mean ± SEM, where n = 5 replicates, matched samples t-test, ****(p < 0.0001); (A) **(1 copies/reaction, p = 0.0015; 0.2 copies/reaction, 
p = 0.0050); (C) **(10 fg, p = 0.0054); ns (non-significant).

dual-target RPA-CRISPR/Cas12a assay did not have cross-
reactions with B. mallei and B. cepacia (Figures  7C,D) in two 
simulated samples. Therefore, whether in blood samples or more 
complex soil samples, the dual-target RPA-CRISPR/Cas12a assay 
showed superior detection results to the RT-PCR assay. More 
importantly, the dual-target RPA-CRISPR/Cas12a assay had the 
advantage of a short detection time, which facilitated on-site 
testing of melioidosis.

4. Discussion

B. pseudomallei is a gram-negative bacterium found in soil and 
water in tropical and subtropical regions of the world (33, 34). 
B. pseudomallei causes melioidosis, as a potential bioterror agent, that 
poses a threat to biosecurity. In addition to being a human pathogen, 
B. pseudomallei can infect and cause disease in cattle, pigs, goats, 
horses, dolphins, koalas, kangaroos, deer, cats, dogs, and gorillas. A 
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report had called for action: time to recognize melioidosis as a 
neglected tropical disease (35).

A more rapid and sensitive detection method is required for 
monitoring B. pseudomallei infection and for the prevention and 

treatment of melioidosis. Various methods (8) have previously been 
attempted to identify B. pseudomallei. However, it is difficult to 
distinguish B. pseudomallei from Burkholderia and other closely 
related species due to their high phenotypic and genetic similarity. To 

FIGURE 6

Specificity evaluation of dual-target RPA-CRISPR/Cas12a assay, Error bars represent mean ± SEM, where n = 4 replicates, matched samples t-test, 
****(p < 0.0001), ns (non-significant), LC1 (A,C) and LC2 (B,D).

FIGURE 7

Blood and moist soil sample tests by the dual-target RPA-CRISPR/Cas12a assay and the RT-PCR assay, concentration of DNA, CDNA. (A) Blood samples 
test. (B) Moist soil samples test. (C) Analyze the potential cross-reacting bacterial DNA in the simulation experiment. (D) The RT-PCR assay.
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remedy these deficiencies, here we had obtained 44 specific sequence 
tags of B. pseudomallei by bioinformatic analysis. Two of these tags on 
chromosome 1 and chromosome 2 of B. pseudomallei were used to 
develop a dual-target detection method. Notably, the selection of dual 
targets on core genomes (genes present in all strains) of two 
chromosomes were more conservative, stable, and less prone to 
horizontal gene transfer because B. pseudomallei is a high-frequency 
recombinant bacterium (36). The other 42 specific sequence tags will 
also provide important clues for the development of molecular 
diagnostic techniques for melioidosis in the future.

The RPA primers and crRNAs we designed were based on the 
selected sequences of B. pseudomallei, respectively. RPA specifically 
amplified the pathogen target, and then the crRNA/Cas12a/
amplification product formed a ternary complex. Studies have shown 
that Cas12a has a single-base recognition ability, which gives the 
technology high specificity (31). Depending on the advantages of 
specificity, rapidity, ultrasensitivity, and covering two chromosomes, 
the dual-target RPA-CRISPR/Cas12a assay developed in this study 
will play an important role in the accurate and rapid diagnosis of 
B. pseudomallei in clinical and field, and will also fill the gap in 
CRISPR-based vitro diagnosis of melioidosis, which serves as a 
valuable reference for subsequent research.

5. Conclusion

We identified 44 specific sequence tags from the core genome 
sequences of chromosomes 1 and 2 of B. pseudomallei by 
bioinformatics methods, and two of them were used to develop a dual-
target RPA-CRISPR/Cas12a detection method for highly specific 
identification of B. pseudomallei. The specific, rapid, and ultrasensitive 
detection, as well as the inclusion of both chromosomes, will allow the 
dual-target assay to play an important role in the accurate and rapid 
diagnosis of B. pseudomallei in clinical and field settings, as well as 
improving CRISPR-based in vitro diagnosis of melioidosis. Our study 
therefore has great potential for B. pseudomallei detection and the 
prevention and treatment of melioidosis. In summary, our study 
enriches the potential of in vitro diagnosis of pathogenic bacteria 
based on CRISPR. In addition, this study can be extended to other 
pathogenic bacteria detection applications, especially when 
phenotypic and genetic similarity makes it difficult to distinguish 
between the same genus and the same species of pathogenic bacteria. 
However, more work needs to be done to apply the technology to 
practical applications, such as nucleic acid-free extraction and the 
development of integrated microfluidic detection.
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