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Background: Climate change significantly impacts health in low-and middle-
income countries (LMICs), exacerbating vulnerabilities. Comprehensive data 
for evidence-based research and decision-making is crucial but scarce. Health 
and Demographic Surveillance Sites (HDSSs) in Africa and Asia provide a robust 
infrastructure with longitudinal population cohort data, yet they lack climate-
health specific data. Acquiring this information is essential for understanding the 
burden of climate-sensitive diseases on populations and guiding targeted policies 
and interventions in LMICs to enhance mitigation and adaptation capacities.

Objective: The objective of this research is to develop and implement the Change 
and Health Evaluation and Response System (CHEERS) as a methodological 
framework, designed to facilitate the generation and ongoing monitoring of 
climate change and health-related data within existing Health and Demographic 
Surveillance Sites (HDSSs) and comparable research infrastructures.

Methods: CHEERS uses a multi-tiered approach to assess health and environmental 
exposures at the individual, household, and community levels, utilizing digital 
tools such as wearable devices, indoor temperature and humidity measurements, 
remotely sensed satellite data, and 3D-printed weather stations. The CHEERS 
framework utilizes a graph database to efficiently manage and analyze diverse 
data types, leveraging graph algorithms to understand the complex interplay 
between health and environmental exposures.

Results: The Nouna CHEERS site, established in 2022, has yielded significant 
preliminary findings. By using remotely-sensed data, the site has been able to 
predict crop yield at a household level in Nouna and explore the relationships 
between yield, socioeconomic factors, and health outcomes. The feasibility and 
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acceptability of wearable technology have been confirmed in rural Burkina Faso 
for obtaining individual-level data, despite the presence of technical challenges. 
The use of wearables to study the impact of extreme weather on health has 
shown significant effects of heat exposure on sleep and daily activity, highlighting 
the urgent need for interventions to mitigate adverse health consequences.

Conclusion: Implementing the CHEERS in research infrastructures can advance 
climate change and health research, as large and longitudinal datasets have been 
scarce for LMICs. This data can inform health priorities, guide resource allocation 
to address climate change and health exposures, and protect vulnerable 
communities in LMICs from these exposures.

KEYWORDS

health impacts, public health surveillance, climate change, digital health, low and 
middle-income country, climate change and health, response system

1. Introduction

1.1. The present landscape of health and 
demographic surveillance systems (HDSSs) 
– standardized, longitudinal mortality data 
across 56 sites spanning 60 years

In many countries across sub-Sahara Africa, South and South-
East Asia, reliable data on vital events and cause of deaths remains 
scarce (1–3). Often, this information is generated through routine 
reporting systems within the public health sector, which possess 
inherent biases. Users of modern health services do not accurately 
represent the population, as access is constrained by factors such as 
financial affordability, geographical accessibility, cultural acceptability, 
and other limitations. Furthermore, data from the widely utilized 
private healthcare sector is not included in these systems, leading to 
unrecorded vital events, such as births, deaths, and migrations, and 
biased estimates of the population’s disease burden. For example, a 
significant number of deaths occur in homes, complicating the reliable 
attribution of a cause of death. Although the Demographic and Health 
Survey (DHS) provides high-quality data, cross-sectional surveys offer 
only a snapshot of a country or population’s health profile (4, 5). While 
nationally and often sub-nationally representative, the lengthy 
intervals between DHSs, typically 5 years, cause the collected 
information to become outdated rapidly. The cross-sectional survey 
format also limits its analytical scope, hindering the evaluation of 
intervention effects and medium-to long-term health trends. National 
census data share similar constraints.

Health and demographic surveillance systems (HDSSs) address 
the limitations of cross-sectional surveys in several ways:

 (i) HDSSs encompass long-term, dynamic, whole-population 
cohorts with up to 62 years of continuous data, covering an 
average of 75,000 people residing in a defined geographic 
region (1) (refer to Supplementary Appendix 1 for an overview 
of HDSS sites, including population, villages, site size (km2), 
and start year).

 (ii) Within these populations, HDSSs collect both denominator 
and numerator data, enabling the use of relative precision 
through person-time measurements.

 (iii) Demographic events, including deaths, births, and migrations, 
are recorded.

 (iv) A verbal autopsy adhering to the latest World Health 
Organization (WHO) Verbal Autopsy specification is 
conducted using a set of validated questions to determine the 
cause of death occurring outside of healthcare facilities (which 
are often limited) or physical autopsies (which are frequently 
culturally inappropriate and infeasible).

HDSSs are established in 56 low-and middle-income countries 
(LMICs) across Africa, Asia, and Oceania (see Figure  1). These 
systems address the scarcity of population-health data and serve as 
invaluable resources for local and national decision-makers (1, 6, 7). 
The cohorts account for more than 45 million person-years of 
observation, spanning up to 60 years, and rely on standardized, 
quality-controlled research protocols (6–8). The foundation of each 
health and demographic surveillance system (HDSS) database is 
established through a baseline census of the respective population. 
These databases consist of longitudinal records for individuals and 
social units within designated surveillance areas, which are generated 
from regular cohort monitoring, typically conducted on an annual 
basis, and subsequent data collection rounds.

Most HDSSs predominantly gather data on cause-specific 
mortality outcomes. In contrast, morbidity and social measures are 
generally addressed only in cross-sectional studies sampled from the 
entire population (6). Despite the limitation of mortality as the 
primary endpoint, the longitudinal nature of HDSSs provides an ideal 
platform for evaluating interventions.

Moreover, HDSSs serve as comprehensive sampling frames for 
specific populations, which facilitates the collection of samples for 
targeted surveys and qualitative research. This approach enables a 
more in-depth understanding of the health and demographic 
dynamics within the populations under surveillance, ultimately 
informing more effective public health policies and interventions.

In 1998, HDSSs and other population-based research institutions 
in Africa and Asia formed the INDEPTH (International Network for 
the Demographic Evaluation of Populations and Their Health) 
network to enhance lives, inform health policy, and standardize 
methods (1, 6, 9, 10). INDEPTH facilitated collaboration among 56 
HDSS sites by providing resources, training, and a framework for 
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exchanges, highlighting the benefits of standardization. Each HDSS 
sustains its funding through various sources, such as national, donor-
provided, institutional, and self-acquired funds. Though INDEPTH 
was active from 1998 to 2015, the network’s cessation has not deterred 
HDSS sites from operating independently. They continue to form 
regional networks like the HDSS Asia network (11) and adhere to 
standardized data collection methods outlined by the 
INDEPTH website.

The HDSS denominator, which represents the number of persons 
within the target population, serves as a sampling frame for various 
epidemiological studies, including cross-sectional surveys, panel 
surveys, nested cohorts, and randomized-controlled trials (RCTs). 
With a focus on policy-relevant topics, HDSSs hold considerable 
potential to inform and influence national and global policies, 
particularly in relation to the Millennium Development Goals 
(MDGs) and Sustainable Development Goals (SDGs) (12).

HDSSs have contributed significantly to understanding various 
health issues, ranging from HIV/AIDS and malaria to adult health, 
aging, and non-communicable diseases (NCDs) in Africa, South and 
South-East Asia. These systems also build capacity and strengthen 
efforts from knowledge generation to improved health policy and 
practice (13–17). HDSS data repositories house the most 
comprehensive dataset on cause-specific mortality in LMICs to date. 
As populations in HDSSs are well-established, they enable observation 
of changes in population risk factors over time and provide a 

foundation for determining the effectiveness of community-based 
interventions (6, 7, 9, 18–20).

1.2. Climate change and its impact on 
health outcomes in Africa and Asia

Climate change significantly impacts global health, imposing a 
triple burden of disease on vulnerable populations (21, 22). Altered 
rainfall patterns cause droughts and floods with detrimental health 
effects (23, 24), while driving spatial and temporal shifts in 
infectious diseases, child malnutrition, and crop failure, particularly 
in the Global South (25, 26). Although HDSSs show potential for 
climate change and health-focused population surveillance, the 
current literature is sparse, necessitating further investigation. 
Some previous studies conducted in the Nouna HDSS in 
Burkina Faso, explored weather changes and child health, focusing 
on malnutrition (26–30). For example, Diboulo et al. (28) found 
significant associations between temperature, rainfall, and mortality 
rates in the Nouna HDSS. Several factors captured in HDSS data 
collection are directly associated with health impacts related to 
climate change. These factors include age (31), socioeconomic 
status (32, 33), occupation (34, 35), and access to resources and 
infrastructure (36), all of which contribute to a broader 
understanding of health outcomes linked to climate change. 

FIGURE 1

This map depicts the global distribution of 56 Health and Demographic Surveillance Systems (HDSSs) across Asia and Africa. The color-coding scheme 
used in the map indicates the number of HDSSs in each country, with darker shades of blue representing a higher concentration of HDSSs in that 
region.
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However, limitations exist in current approaches. Many studies rely 
on satellite or weather station data, which lack granularity for 
accurate exposure and correlation assessments with health 
outcomes airports (37). Additionally, the focus on mortality 
outcomes overlooks climate change’s impact on existing health 
conditions, highlighting the need for more robust research methods. 
The existing literature using HDSS data in this context is sparse, 
highlighting the need for further investigation and insights in this 
area. A significant portion of climate change and health research 
relies on weather and climate data obtained from satellites or 
proximate weather stations, often located at airports (37). Such 
methods lack the granularity required to accurately capture spatial 
and temporal variations in weather exposures, which is essential for 
determining exposure and correlation relationships with 
population-health outcomes. Furthermore, many studies 
predominantly focus on mortality outcomes, neglecting the 
substantial influence of climate change on the progression and 
severity of existing health conditions, such as cardiovascular disease 
or asthma.

1.3. Importance of collecting morbidity 
data routinely in HDSS

Life lived with diseases constitutes a critical component of a 
population’s overall disease burden. The disability-adjusted life years 
(DALYs) metric is commonly employed to quantify this burden, as it 
combines years of life lost (YLL) due to premature mortality with 
years lived with disability (YLD). This information equips 
policymakers, researchers, and health organizations with the 
necessary insights to allocate resources, interventions, and research 
efforts based on the relative impact of different diseases and 
risk factors.

The ongoing epidemiological transition is marked by a growing 
prevalence of non-communicable diseases, which frequently lead to 
diminished quality of life due to chronic, recurring symptoms, rather 
than causing premature death. Meanwhile, communicable diseases 
continue to pose a substantial burden in low-resource countries and 
present the risk of pandemics. Concurrently, the influence of climate-
sensitive diseases is escalating globally.

Given these worldwide trends, it is crucial that health and 
demographic surveillance systems (HDSSs) consistently capture data 
on morbidity alongside mortality, which is currently an infrequent 
practice (38). Solely relying on mortality to assess the effectiveness of 
health interventions and policies is inadequate, as it fails to account 
for the full scope of disease impacts.

By systematically collecting data on YLD, YLL, and climate-
sensitive variables, it becomes possible to calculate climate DALYs 
(cDALYs) that estimate the health impacts of climate change. 
Additionally, it is important to recognize that seasonal patterns play a 
role in the occurrence of various diseases (39), including climate-
sensitive ones, as well as in fluctuations of household income, 
expenses, and assets (40). Incorporating these metrics into HDSS data 
collection fosters a more comprehensive understanding of a 
population’s disease burden. This holistic approach ultimately 
facilitates better-informed decision-making concerning resource 
allocation, intervention strategies, and research priorities in 
public health.

1.4. Climate and health surveillance and 
response system (CHEERS)

The CHEERS system incorporates components, such as individual 
exposure sensors, indoor/outdoor temperature and humidity 
measurements, remote sensing for land use/cover data, population-
based disease assessments, and innovative data storage, that seamlessly 
integrate with existing research infrastructures like HDSS. This 
cohesive framework enables a rigorous examination of climate change 
and health interrelations, providing crucial insights for researchers 
and policymakers.

2. Methods

2.1. Context of CHEERS within the Nouna 
HDSS, Burkina Faso

The CHEERS system, integrated with the Nouna HDSS in 
northwestern Burkina Faso (7), collects climate change and health 
data. Managed by the Centre de Recherche en Santé de Nouna 
(CRSN),1 the Nouna HDSS has over 31 years of health and population 
data, surveilling 125,000 individuals by the end of 2019, resulting in 
over 2.5 million person-years of observation (7).

The Nouna HDSS covers a subset of the Nouna Health District, 
encompassing approximately 1,755 km2. Comprehensive population 
censuses were conducted in 1992, 2005, 2009, and 2019. In 2007, 
the town of Nouna represented about 30% of the HDSS population 
with roughly 33,844 inhabitants. Initiated in 1992, the Nouna HDSS 
initially incorporated 39 villages within three CSPS (Centre de 
Santé et de Promotion Sociale; primary health care facilities in 
francophone West Africa), totaling 26,626 people. The HDSS 
expanded to include Nouna town and two villages in 2000, followed 
by an additional 17 villages in 2004, resulting in a total of 58 villages 
(59 including Nouna). By 2009, the area had one hospital and 13 out 
of 29 CSPS for the entire district. However, the majority of deaths 
are still reported at home, with only about 30% of deaths occurring 
in health facilities (see text footnote 1). The HDSS represents 
roughly a quarter of the Nouna Health District in terms of area and 
1/3 in terms of population. Although the Nouna HDSS population 
is not randomly selected, key variables are consistent with national-
level observations, allowing for cautious generalization of results 
from the Nouna area.

The monitoring area of the Nouna HDSS features a tropical 
climate with a single rainy season extending from June to October, 
accompanied by an annual average rainfall of 800 mm (ranging from 
approximately 480 – 1,085 mm) and consistently high temperatures 
throughout the year. The region experiences a high prevalence of 
malnutrition and malaria (24). The consequences of climate change 
on public health are anticipated to disproportionately affect 
subsistence farmers and economically disadvantaged individuals due 
to their limited resources for implementing adaptive and 
mitigative measures.

1 https://www.crsn-nouna.bf/
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2.2. Climate change and health-related 
variables

In 2020, five weather stations were installed across the Nouna 
CHEERS site to represent various agro-ecological zones. A sensor-
based sub-cohort, stratified by age and gender, collected data on daily 
activity, sleep, heart rate, indoor temperature, and humidity [refer to 
(41, 42)]. Remote sensing approaches, including agricultural yield 
models, were employed to estimate crop productivity (43, 44). The 
morbidity component, covering 10% of the Nouna HDSS population, 
began in May 2022, initiating comprehensive health data collection.

Device selection was informed by literature reviews (37, 45) and 
feasibility assessments (41, 42, 44). Table 1 summarizes the collected 
data, while Figure  2 illustrates the CHEERS structure, including 
routine HDSS data, climate-related data, reported and measured 
health status, and an optimized sample size distribution. A graph 
database manages the data, providing flexible storage and 
management. Figure  3 outlines the CHEERS process from data 
generation to visualization.

Data is collected at community, household, and individual levels, 
with weather stations and satellite-based remote sensing providing 
community-level data. Routine HDSS data is collected via tablet-
based systems, household-level data includes indoor temperature and 
humidity measurements, and individual-level data involves vital signs 
measured with wearable devices and self-reported morbidity. Field 
workers transmit collected data to a server, where raw data is 
processed and loaded into a graph database, enabling direct access 
through dashboards. Researchers access data via internal cloud 
services like Seafile.

2.2.1. Climate-related variables
The climate-related data collected as part of CHEERS (see 

Figure 2, denoted by number 1) includes continuous measurements 
from weather stations, providing information on precipitation, 
temperature, wind (speed and direction), relative humidity and solar 
radiation. Additionally, indoor devices containing a thermo-and a 
hygrometer measure temperature and humidity, while remote sensing 
approaches, such as the use of Sentinel-2 imagery, contribute insights 
into land use and waterbody characteristics.

2.2.1.1. Indoor temperature of houses
Indoor air temperature and relative humidity are systematically 

monitored using a single datalogger per household, installed in the 
primary living room or bedroom areas (see Figure  4). These 
dataloggers are mounted 1.5–2 meters above the ground on interior 
walls, above adult head height, to minimize contact. They are 
strategically positioned away from direct sunlight and heat sources 
(e.g., cooking areas) while maintaining exposure to the main body of 
the room’s air (avoiding concealment behind curtains or placement in 
isolated corners).

Weather parameters are recorded every 15 min to capture the 
majority of daily fluctuations. At the Nouna CHEERS site, indoor 
temperature measurements are collected for n = 500 households, 
where sampled household members also wear consumer-grade 
wearable devices. Data synchronization occurs every 4 weeks using a 
portable laptop and USB adapter for iButton devices, and tablet and 
Bluetooth for the Switchbot Meter. iButton devices were chosen for 
temperature and humidity logging due to their established and 
validated performance in scientific literature, resilience in dusty and 

TABLE 1 Overview of components and climate change-related health variables collected in as part of CHEERS within the Nouna HDSS, Burkina Faso.

Type of data Measured variables Employed devices

Climate-related data

Indoor (in every sampled household, n = 500): temperature and 

relative humidity measurements (every 15 min)

iButton data logger; Switchbot

Outdoor (5 weathers stations spatially covering the Nouna HDSS 

catchment area in 10 km diameter): temperature, precipitation, wind 

speed, wind direction, solar radiation (every 15 min)

Validated weather stations

Remote sensing-based land use and land cover classifications, surface 

water occurrence maps (quantification and identification of water 

bodies and wetlands)

Sentinel-1 and Sentinel-2 satellite

Reported and measured health status

Consumer-grade wearable devices (daily activity measured in steps, 

sleep with regards to sleep length and sleep quality, heart rate; in a 

sampled population of n = 500)

Garmin vivosmart 5 (former: Withings Pulse HR)

Anthropometric measurements (in 10% sub-sample of HDSS 

population)

Recumbent length: Seca 417 (measuring range 10–

100 cm); used for children unable to stand or shorter than 

85 cm Height: Seca 213 (measuring range 20–205 cm); 

used for children able to stand and taller than 85 cm 

Weight: Seca 878 (measuring range up to 200 kg, 

uncalibrated) (WHO Child Growth Standards, 2006; 

World Health Organization (WHO), 2008)

Morbidity-relevant questions incorporated into the standard HDSS 

data collection, focusing on self-reported health status (in 10% sub-

sample of the HDSS population)

Android-based tablets to run Survey Solutions software
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extreme environments, and long battery life of at least 1 year. 
Additionally, we are currently testing SwitchBot meters, which are 
more cost-effective and feature a display for temperature and humidity 
measurements, potentially providing study participants with a better 
understanding of their exposures.

2.2.1.2. Remotely-sensed data
Remote sensing techniques utilize satellite-derived geospatial data 

to analyze the effects of climate change on various health and 
environmental factors. For instance, these methods can examine the 
impact of climate change on childhood macro-and micronutrient 
deficiencies, as well as its influence on crop yields and food production 
(29, 30, 44). By constructing spatio-temporal models, remote sensing 
can also assess the association between climate change and malaria 
prevalence. Moreover, these techniques allow for the refinement of 
local climate variables and the quantification of uncertainties within 
the climate-malaria modeling framework. Data is freely accessible 
through the Copernicus Open Access Hub and the Copernicus Data 
Space Ecosystem2.

For the satellite-based annual yield models at the household field 
level, we collected field data for five primary food crops (maize, millet, 
sorghum, beans, and sesame) over 3 years (2018, 2020, and 2021) (43). 
Seven agricultural surveyors were trained to use GPS devices for field 
boundary sampling (n = 1,027) and to install, monitor, and harvest 
yield squares (n = 411). Each field was assigned a unique identifier to 
link it to individual households. The selection of fields aimed to 

2 https://dataspace.copernicus.eu/index.html#data-access

maximize variation to represent the full range of variability in the 
study area.

Sentinel-2 Level-1C images, featuring 10 m resolution and a 5-day 
revisiting cycle, were employed for the crop growing seasons of 2018, 
2020, and 2021. These images underwent preprocessing, including 
atmospheric correction using Sen2Cor version 2.10. Subsequently, 
monthly maximum NDVI (normalized difference vegetation index; 
assessing vegetation greenness or photosynthetic activity) composites 
were generated to minimize cloud influence by applying the NDVI 
formula [NDVI = (NIR – Red) / (NIR + Red)], where NIR denotes the 
near-infrared band and Red denotes the red band. Monthly NDVI 
composites were created by selecting the maximum NDVI value from 
all available NDVI images within a month for each pixel location.

For each composite, three vegetation indices—NDVI, NDRE 
(normalized difference red edge; evaluating plant health and stress, 
especially in crops), and NDWI (normalized difference water index; 
measuring vegetation water content and detecting land surface water 
feature changes)—were calculated. These indices effectively monitored 
vegetation and estimated yields. In total, 10 monthly composites were 
computed for each vegetation index from March to December for each 
year, with each monthly composite acting as a predictor for the linear 
regression model. Pixel values at the 5 × 5 m sampled harvest squares 
were extracted for each agricultural field.

Daily CHIRPS 2.0 global dataset provided rainfall data for the 
model, summarized weekly from March to October (46). Monthly 
composites and weekly rainfall datasets served as model predictors 
using LASSO regression (43).

2.2.2. Automated weather stations
The Nouna CHEERS site has strategically deployed five 

automated weather stations to maximize spatial coverage of 

FIGURE 2

Overview of the CHEERS site data structure, which includes the routine HDSS data collection and the novel CHEERS components of climate-related 
data (1), reported and measured health status (2), as well as a novel sample size distribution over time and space (3) to optimize resources needed for 
data collection. The collected data of the CHEERS is managed with a graph-database which provides a flexible data storage and management system.
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different agro-ecological zones. These stations continuously 
transmit data through General Packet Radio Service (GPRS), 
enabling real-time access to weather information on a locally 

hosted web platform (see Figure 5). Weather stations can run 
autonomously (solar-powered) and synchronize data 
automatically every 15 min via mobile data. The weather stations 
collect six meteorological variables: air temperature, precipitation, 
solar radiation, relative humidity, wind speed, and wind 
direction. Site selection was contingent upon negotiations with 
landowners for land usage permissions. Additionally, community 
engagement and sensitization activities were conducted to 
educate the local population about the purpose and importance 
of weather stations, as well as their role in generating valuable 
data for climate change and health research.

2.3. Health-related variables

The CHEERS system enables the collection of various health-
related variables at the individual level, including sensor-based data 
such as daily activity, sleep quality and duration, and heart rate, as well 
as anthropometric measurements like height, weight, waist, and hip 
circumference (see Figure 2). Additionally, the study incorporates 
both reported and measured morbidity data. Reported morbidity is 
obtained through supplemental questions posed to the HDSS study 
population, eliciting further details about symptoms and severity of 

FIGURE 3

CHEERS data collection system comprising data collected at the individual level (wearable devices; routinely collected morbidity data), the household 
level (indoor temperature of houses), the community level (automated weather stations; satellite-based remote sensing including land use 
classification (LUC), land cover classification (LCC), surface water and wetlands) and the routine HDSS data collection (vital events registration).

FIGURE 4

Installed sensor that measures indoor temperature and humidity, 
which is part of the household-level data collection in CHEERS.
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acute and chronic illnesses (see Supplementary Appendix 2 for 
CHEERS questionnaire).

2.3.1. Continuous individual vital sign collection: 
consumer-grade wearable devices

In the Nouna CHEERS site, we have employed consumer-grade 
wearables to generate high-resolution individual-level data (41), 
enabling ecological momentary assessments (47) of health parameters 
within real-life environments. The feasibility and acceptability of these 
wearable devices have been assessed in the Nouna HDSS (41), 
providing valuable insights into individual activity profiles, sleep 
patterns, and vital signs such as heart rate (42). These variables, such 
as activity profiles, sleep patterns, and vital signs like heart rate, are 
typically measurable by commercial wearable devices, and offer 
valuable individual health insights. At the Nouna CHEERS site, study 
participants wear a consumer-grade wearable device, currently a 
Garmin vivosmart 5 (refer to Table 2 for details), that continuously 
records data 24 h a day. The device is worn on the wrist and can store 
up to 14 days of data with a 7-day battery life. We previously used the 
Withings Pulse HR, but it was not found to be  well-suited for 
collecting population-health data in rural Burkina Faso (42). The data 
from the wearable device is synchronized with a field worker’s tablet 
via Bluetooth, and the field worker visits the participant’s home every 
5–7 days. To accommodate remote areas without access to an electrical 
grid, participants are supplied with battery packs and foldable solar 
panels for charging wearable devices.

2.3.2. Self-reported morbidity
The updated HDSS questionnaire (refer to Supplementary  

Appendix 2 for full CHESS questionnaire) incorporates a 
comprehensive morbidity component consisting of 57 questions that 
covers both acute and chronic illnesses, as well as symptoms, which 
were validated against a well-established list. This component is 
routinely administered to a 10% sample of households within the 
CHEERS site, totaling at least 1,500 households. The questionnaire 
captures the date of illness onset (day, month, year), associated 
disability, and illness severity. To complement the self-reported data, 
anthropometric measurements are taken such as weight, height, waist 
circumference, and hip circumference.

2.4. Sampling

In 2019, the latest HDSS census was conducted, registering a total 
of 124,957 individuals residing in 15,014 households across 58 villages 
and the town of Nouna, comprising of seven sectors.

2.4.1. Climate-related variables

2.4.1.1. Indoor temperature
At present, the indoor temperature surveillance in the CHEERS 

system is limited to a sample of 500 households due to funding and 
data collection constraints. However, with additional funding, it is 

FIGURE 5

Map of Nouna CHEERS area in Burkina Faso indicating the distribution of five weather stations installed in March 2020. The weather stations provide 
comprehensive meteorological data for the region, measuring precipitation, temperature, solar radiation, wind speed and direction, and relative 
humidity (station locations encircled).
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envisaged that a larger sample of at least 1,500 households (10% of the 
total CHEERS population) can be achieved. To facilitate participant 
recruitment, CRSN field workers collaborated with community 
leaders and household heads to inform them about the data collection 
procedures and the importance of the study.

2.4.1.2. Remotely-sensed data
Sentinel-2 images, featuring a 10-meter spatial resolution, are 

supplied by the European Space Agency (ESA) every 5 days and can 
be freely accessed via the Copernicus Open Access Hub. To develop 
satellite-based multi-annual yield models for major food crops, a 
minimum sample size of n ≥ 25 yield squares per year is targeted for 
each crop type, ensuring the model’s robustness and reliability (refer 
to (43) for more information).

2.4.1.3. Weather stations
The optimal number of weather stations required to accurately 

cover a specific area is dependent on various factors, such as spatial 
variability in climate, topography, and land use. To determine the 
number of stations required, we installed five weather stations in the 
Nouna CHESS site to assess spatial variability in climate parameters 
and refine our sample size estimation. Statistical methods such as 
geostatistical interpolation techniques (e.g., kriging) (48, 49) and the 
variogram method (50) are used to estimate the optimal number of 

weather stations needed based on the level of accuracy desired and the 
results from the initial set of weather stations. We  also consider 
practical constraints such as accessibility, maintenance requirements, 
and costs when selecting weather station locations to balance 
comprehensive coverage of the study area with resource management 
(see Figure 5).

2.4.2. Health-related variables

2.4.2.1. Wearables
The sample sizes in our study are stratified by age and gender. 

Participants under the age of 18 years have been excluded from the 
sensor-based cohorts as wearable devices were deemed unsuitable for 
them. This is because commercial wearables are generally designed for 
adults and may not accurately capture data for younger individuals 
due to differences in physiology and activity patterns. However, 
we may consider including younger participants in future studies if 
appropriate wearable devices become available. At present, the 
monitored sub-population consists of 500 study participants, 
primarily due to financial constraints related to the cost of wearable 
devices and data collection expenses. It is envisaged that a larger 
sample of at least 1,500 households (10% of the total CHEERS 
population) can be achieved in the future.

TABLE 2 Overview of consumer-grade wearable devices employed in the Nouna CHEERS, Burkina Faso, and in the Siaya HDSS, Kenya.

Garmin vivosmart 5

Features

Steps measurements
 ▪ Measured continuously, steps identified based on amplitude and periodic pattern

 ▪ Technology: accelerometer

Heart rate measurements
 ▪ Routinely measured every 10 min

▪ Measurement frequency every 1 s (continuous heart rate mode) only in workout session or after 2 min of running

▪ Technology: photoplethysmography

Sleep measurements
 ▪ Four variables calculated: total hours of sleep, sleep stages, sleep movement, and sleep score

Pulse oximeter measurements
 ▪ Measures blood oxygen level (SpO2) by shining light into the skin and checking how much light is absorbed.

Wear location
 ▪ Wrist

Data synchronization
 ▪ Up to 1 month activity tracking, up to 3 weeks activity tracking plus extensive fitness activity use

Battery life
 ▪ Up to 7 days

In-built sensor
 ▪ High precision MEMS 3-axis accelerometer

 ▪ Photoplethysmography sensor

Connectivity
 ▪ Bluetooth low energy
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2.4.2.2. Vital event registration (VER) and self-reported 
morbidity

The VER and reported morbidity data collection is grounded in 
the latest 2019 census data, which documented 124,957 individuals 
distributed across 15,014 households in 58 villages and the town of 
Nouna. The questionnaire (refer to Supplementary Appendix 2) is 
administered to all 15,014 households, with 10% of these households 
(or at least 1,500) being selected for morbidity monitoring. Employing 
stratified random sampling proportional to each stratum’s size, the 
Nouna CHEERS is organized into 52 clusters, with each cluster 
comprising approximately 289 households (52 × 289 ≈ 15,014 
households). In every cluster, around 29 households are monitored for 
morbidity (52 × 29 ≈ 1,500).

Over a 52-week period, Nouna CHEERS collects morbidity data 
from about 29 households in each of the 52 clusters. This translates to 
field workers visiting approximately 29 households per week for 
morbidity monitoring in addition to vital event registration. For the 
vital event registration, data is collected from roughly 289 households 
per week, spanning across the 52 clusters. To minimize seasonal bias, 
the 52 clusters are allocated one cluster per week.

2.4.3. Data collection

2.4.3.1. Climate-related variables

2.4.3.1.1. Indoor temperature
Each month, field workers synchronize both wearable data 

and indoor temperature measurements with laptops or tablets 
using Bluetooth technology at the Nouna CHEERS site. The 
indoor temperature devices used in the study include the iButton, 
which can log data for up to 1 year, and the Switchbot meter, 
which can log data for up to 36 days. These durations are long 
enough to allow for monthly synchronization. After 
synchronization, the data is transferred to the CRSN server for 
further processing and analysis.

2.4.3.1.2. Remotely-sensed data
The Copernicus Open Access Hub offers free access to Sentinel-2 

images with a 10-meter spatial resolution, available at Level-1C every 
5 days. These images can be further processed, including atmospheric 
correction using Sen2Cor version 2.10. Remote sensing data also 
allows for more in-depth analysis of land cover and water bodies, 
utilizing Sentinel-1 radar data for the latter. In the development of 
satellite-based multi-annual yield models for major food crops, a 
target sample size of n ≥ 25 yield squares per year was set for each 
crop type.

2.4.3.1.3. Weather stations
The meteorological variables collected by the weather station are 

automatically recorded in the remote terminal unit (RTU), which is 
installed on the station. The weather station runs autonomously, 
powered by a small solar panel and battery, ensuring self-sufficiency. 
Field workers who have received training in weather station 
management perform routine checks on the weather stations on a 
monthly basis. These checks include activities such as mowing grass, 
inspecting the station for insect nests and damage, and ensuring that 
the station is functioning properly. In addition, the web platform is 

equipped with automatic notification triggers that alert the weather 
station managers in the event of any interruptions, such as issues with 
mobile data transmission or electricity supply from the solar panel.

2.4.3.2. Health-related variables

2.4.3.2.1. Wearables
Weekly, field workers visit households of study participants to 

collect data from the wearable devices they wear. In rural areas, offline 
synchronization features are used to synchronize the data with tablets 
carried by the field workers. The collected data is then transmitted to 
the CRSN server once the field workers return to the headquarters and 
have mobile data connection. This data collection process is separate 
from the routine CHEERS data collection, as it involves a different 
data collection frequency compared to the collection of VER and 
morbidity data.

2.4.3.2.2. Vital event registration and reported morbidity
Data collection at the Nouna CHEERS site utilizes electronic 

devices like tablets and smartphones, with field interviewers 
transmitting data to the CRSN server via the internet. The process 
involves field staff training, field deployment, data monitoring, and 
multi-level validation. Field staff receive training on electronic data 
collection devices and safety guidelines. Quality assurance is 
maintained through a hierarchy of supervisors and central controllers 
who review, correct, and approve data.

CHEERS data collection combines vital event registration (see 
Figure 6), morbidity assessment, and verbal autopsy (where applicable) 
in a single visit, adopting a proxy+ approach to gather information 
about household members. This one-stop data collection reduces 
budgetary burden associated with staffing, fuel, and other 
consumables. Nouna CHEERS currently employs 20 permanent field 
workers, each responsible for one stratum.

2.5. Flexible data storage and management 
systems: Graph database

Relational databases, which organize data into tables and establish 
connections between them, have been the standard method for 
managing large datasets. However, they can be  inflexible when 
integrating new data sources, particularly those with varying 
granularities and structures, such as remotely sensed satellite images, 
individual-level wearable data, or meteorological data from weather 
stations. To address this issue, we explored the use of a graph database 
to store and manage data in the Nouna CHEERS system. In a proof-
of-concept study, we migrated the 2019 census data from the Nouna 
HDSS into a graph database and subsequently combined the entire 
HDSS database from 1992 to 2019. Unlike relational databases, which 
use tables, the graph database is a mathematical graph consisting of 
nodes and edges that connect some of the nodes. This structure allows 
for the representation of networks within the population, such as 
compounds, households, individuals, and assets, which can 
be connected by various relationships. The graph database can also 
store all relevant health and demographic data points, including 
geospatial properties, dates, household data, individual data, and 
compound data (see Figure 7).
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CHEERS graph database comprises:

 - Nodes: Object types stored in nodes are described by labels. 
Many different labels can be assigned to a single node. Certain 
aspects of a node can be encoded using so-called properties, 
which are key-value pairs.

 - Relationships: Relationships have unique labels that indicate the 
type of relationship they represent; relationships can also have 
features, such as a quantity, date, etc., that further define 
the relationship.

 - Properties: Nodes and relationships may also have properties. 
They store the values of certain interview-gathered variables or 
values derived from those variables.

The CHEERS system synchronizes data automatically to the 
cloud or manually by field workers, allowing for the development 
of dashboards that offer visual representations of climate change 
and health impacts in vulnerable populations. Pilot dashboards 
have been designed to directly feed data from wearables and 
weather stations, with the aim of providing information to guide 
decision-making. Usability evaluations and user knowledge and 
emotional impact assessments are currently ongoing. The dashboard 
aims to make data easily accessible, provide knowledge on climate 
change’s impact on vulnerable populations’ health, and deliver key 
information to decision-makers, policymakers, and the public. 
Future additions will include remote sensing, morbidity, and 
weather station data.

2.6. Ethical considerations

Ethical approval for this research has been granted by the 
Heidelberg University Hospital Ethics Committee, the Comité 
d’éthique pour la Recherche en Santé of the Ministère de la Santé 
Burkina Faso, and the Kenya Medical Research Institute (KEMRI) 
Scientific and Ethics Review Unit (SERU). Informed consent 
procedures are managed by the respective institutions leading the 
Health and Demographic Surveillance System (HDSS). Informed 
consent templates are available on the INDEPTH website,3 which also 
provides further information on privacy and confidentiality measures.

To ensure data security and integrity, stringent regulations are in 
place to control access to various data types and the timing of access. 
Continuous data entry necessitates daily backups across multiple 
media, with a redundant hard drive configuration recommended to 
maintain data backups. In accordance with INDEPTH guidelines, 
regular database backups are performed, and offsite storage is utilized 
for these backups, separate from the main office.

In addressing the use and protection of personally identifiable 
data (PID), we employ a stringent anonymization process in which 
respondent names are replaced with unique identification numbers 
throughout data analysis and presentation. This approach ensures that 

3 http://www.indepth-network.org/Resource%20Kit/INDEPTH%20DSS%20

Resource%20Kit/Informed_consent.htm

FIGURE 6

The CHEERS framework creates an integrated routine data collection system that encompasses several key modules: vital event registration (collected 
for all households within the CHEERS site), verbal autopsy (conducted in households reporting a death, with interviews carried out by a proxy 
household member), and reported morbidity data (including information on chronic and acute diseases, collected for 10% of households, up to a 
maximum of 1,500 households). Climate-related data is currently obtained from 500 households (indoor temperature) and 500 individuals (wearable 
devices measuring daily activity, sleep, and heart rate) in the Nouna CHEERS site. Presently, five weather stations are deployed in the Nouna CHEERS 
site, with ongoing evaluation to determine their sufficiency in covering the area.
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the collected data cannot be  associated with specific individuals, 
thereby preserving participant anonymity.

Access to the data is rigorously controlled, with only authorized 
researchers who have completed relevant training in data security and 
privacy protection granted permission. The sharing of data with 
external parties is contingent upon a thorough review and approval 
process, which ensures adherence to the same rigorous privacy and 
confidentiality standards across all parties involved.

Each HDSS, and subsequently the CHEERS framework, 
determines the type and amount of compensation provided to 
participants. For further details on this matter, please refer to the 
HDSS profiles (7). By implementing these measures, we aim to protect 
the privacy of the participants and maintain the highest ethical 
standards in our research.

3. Results

The Nouna CHEERS project was initiated in 2022, and data 
collection is currently ongoing, as described in the methodology 
sections. All components of the CHEERS system outlined in the 
methodology section have been implemented. Our study results will 
be  disseminated through future publications. Additionally, initial 
components of the CHEERS system have been implemented in the 
Siaya HDSS in Kenya [for further details, see (41)] and the SEACO 

HDSS in Malaysia (51). While findings from all components are still 
pending publication, some aspects of the CHEERS system have 
already been reported in published studies, which are 
summarized below.

3.1. Climate-related data

3.1.1. Remotely-sensed data
In a pilot study (44) and a subsequent case study in the Nouna 

HDSS (43), we developed a model for predicting yield at the field level 
(individual fields of households of study participants in the Nouna 
CHEERS site). Using time series of Sentinel-2 satellite images (10 m 
spatial resolution), we  calculated monthly vegetation indices, 
including NDVI, NDRE, and NDWI, to monitor crop growth and 
estimate yield. Yield models were developed for each crop type and a 
multi-annual yield model was established, incorporating a total of 65 
variables. These variables included 30 for vegetation indices – 10 for 
each index – and 35 for precipitation, representing 35 weeks of 
accumulated rainfall. LASSO regression with 5-fold cross-validation 
was utilized for model development. The models capture a portion of 
the inter-year variability in yields, enabling prediction of yield 
estimates at the household level without new in situ measurements. 
This linkage facilitates the assessment of the relationship between 
household-level yields, socioeconomic indicators, nutritional status of 

FIGURE 7

Visual representation of health and demographic data in a graph database for the Nouna HDSS, showcasing the village of Moinsi, its compounds, 
households, and current household members.
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children, and the health status of household members. See (43, 44) for 
more information.

3.2. Self-reported and measured health 
status

3.2.1. Continuous individual vital sign collection: 
consumer-grade wearable devices

We conducted an observational study from January 2021 to 
March 2021 to investigate the feasibility and acceptability of 
using wearables to generate individual-level data in rural 
Burkina Faso (42). The study involved 148 participants wearing 
a wearable (Withings Pulse HR wristband tracker) and a 
thermometer patch (Tucky axillary thermometer patch) for 
3 weeks. We  found that wearables can generate large and 
longitudinal datasets on activity, sleep, and heart rate, which can 
complement existing population health routine measurements 
such as in the HDSSs (42). The study highlights the potential of 
wearables to generate objective insights into individual activity 
and vital patterns in low-resource settings. Accelerometry data 
were generated most reliably, while photoplethysmography and 
thermometer measurements proved more difficult with higher 
data missingness. However, the acceptability did not appear to 
affect the data quantity and quality. The study underscores the 
importance of open communication and regular follow-ups of 
study participants to avoid distress and improper use of the 
wearables. The study findings indicate that the use of wearable 
technology can be  a valuable tool in population health 
surveillance in low-and middle-income countries (LMICs). 
However, it is important to acknowledge and address the 
technical challenges and barriers associated with the 
implementation of such data collection modules (42).

We carried out an observational study spanning from August 
2021 to June 2022, collecting data for 11 months, to investigate the 
effect of extreme weather on the health of the rural population in 
Burkina Faso using wearable devices (52). Linear mixed effects models 
were used to estimate the relation between heat and precipitation with 
daily activity, sleep duration and heart rate. The study found that sleep 
duration decreased significantly with higher heat exposure, while daily 
activity was highest during rainy season when WBGT was highest, but 
decreased when daily maximum WBGT reached 30°C, which is 
considered dangerous heat exposure. HR data had insufficient data 
completeness during daytime and nighttime HR showed no 
statistically significant correlation with heat exposure. Heavy rains did 
not impair health parameters measured in this study. The study 
concludes that heat especially impaired sleep and daily activity of the 
participants, highlighting the need for research on appropriate 
interventions and adaptations to reduce the adverse impact of weather 
exposure on their health (52).

4. Discussion

The CHEERS (Climate, Health, and Equity: Evidence-based 
Responses for Sustainability) framework is a novel and modular 
system designed to broaden the scope of existing health and 
demographic surveillance systems (HDSSs) and similar research 

infrastructures to include research on the topic of climate change and 
its impact on health. By integrating digital innovations at the 
individual, household, and community levels with the routine 
collection of vital event data, CHEERS has the potential to generate a 
wealth of data that can be used to identify the most pressing climate 
change and health-related priorities, particularly for vulnerable 
populations. The framework enables the long-term monitoring of 
population health status and the health effects of environmental 
exposures, providing evidence-based data to support the allocation of 
resources toward mitigating and adapting to these priorities. The use 
of digital technologies in data collection also allows for real-time 
monitoring of population health status and the health effects of 
exposures, which can be  translated into accessible dashboards for 
policymakers, stakeholders, and the general public for data-driven 
decision making. Evaluation of individual CHEERS components, such 
as wearables (42, 52), and remote sensing (43, 44), and, has shown 
promising results, with ongoing efforts to integrate CHEERS and 
health district data for a comprehensive population health monitoring 
system. Ultimately, CHEERS has the potential to transform HDSSs 
and similar research infrastructures into climate-and health-ready 
research infrastructures, allowing for the generation of data that can 
inform public health policy and practice.

4.1. Self-reported and measured health 
status

4.1.1. Wearable devices
Wearable devices are increasingly employed in population health 

research due to their ability to collect large, objective datasets on 
various health-related parameters, such as activity, sleep, and heart 
rate. These insights into individual health status are particularly 
valuable in low-resource contexts where data is often limited or 
nonexistent. By serving as a crucial tool in population health research, 
wearables help researchers better understand and address health needs 
in vulnerable populations.

Correlating wearable data with weather exposure data enables 
researchers to gain deeper insights into the impact of climate change 
on human health. Koch et al. (37) demonstrated the effectiveness of 
wearables in measuring the effects of heat on sleep, physical activity, 
heart rate, and other physiological responses during wildfires. 
Combining wearable data with environmental factors allows for 
prediction tasks, such as disease prediction and estimating working 
capacity under climate change-induced weather exposures.

Wearable devices have numerous potential health applications, 
including monitoring diseases like Alzheimer’s, diabetes mellitus, and 
atrial fibrillation, tracking fertility, and studying associations between 
lifestyle factors, such as coffee consumption, sleep, physical activity, 
and blood pressure (45). As wearable technology continues to 
advance, it holds great promise for generating reliable population 
health data that can inform research, interventions, and policymaking, 
particularly in the context of climate change’s adverse health effects.

Cuffless wristband wearables offer continuous, non-invasive blood 
pressure monitoring in real-world settings, providing crucial insights 
into individual exposures and health outcomes (53). These devices are 
particularly significant for individuals with non-communicable 
diseases, such as hypertension, who may face heightened health risks 
due to environmental factors like heat. A comprehensive 
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meta-analysis by Liu et al. (54) revealed a correlation between a 1°C 
temperature increase and a 2.1% rise in cardiovascular disease-related 
mortality, as well as a 0.5% increase in morbidity.

Another wearable, Kenzen, non-invasively measures core body 
temperature and sweat rates, offering real-time insights into individual 
physiological responses to environmental conditions. Sweat and core 
body temperature are critical indicators of physiological responses to 
heat stress. Monitoring these factors helps assess individual heat 
tolerance, hydration, and risk of heat-related illnesses, informing 
public health interventions and early warning systems to mitigate 
health risks and improve community resilience to climate change.

Utilizing wearable devices in climate change and health research 
offers numerous advantages for understanding population health. 
These devices enable continuous, non-invasive monitoring of 
individuals’ physiological parameters, reflecting their responses to 
environmental stressors. By collecting real-time data at scale, 
researchers can identify patterns, trends, and vulnerabilities among 
different population groups. This granular data helps to uncover 
hidden health risks and provides insights into the varied effects of 
climate change on human health. Furthermore, wearables facilitate the 
study of underrepresented populations in resource-limited settings, 
contributing to a more comprehensive understanding of global health 
challenges. Ultimately, the use of wearable devices in climate change 
and health research can guide evidence-based interventions and 
inform policies aimed at mitigating the health impacts of climate 
change on diverse populations.

4.1.2. Morbidity assessment
In Burkina  Faso, the population faces considerable health 

challenges due to heat and erratic rainfall patterns associated with 
climate change (55, 56). Research suggests that Africa’s surface 
temperature is likely to increase at a faster rate than the global average 
(57), and the altered precipitation patterns are already causing severe 
droughts and floods (23). These extreme heat and unpredictable 
precipitation events result in a heightened risk of heat-related illnesses, 
compromised agricultural productivity leading to food insecurity and 
malnutrition, and the proliferation of vector-borne diseases due to 
altered breeding habitats (58–61). A comprehensive understanding of 
these outcomes is crucial for developing effective, evidence-based 
policies and interventions to mitigate the impacts of climate change 
on the health of the population in Burkina Faso and similar settings 
(62). Nevertheless, there is a scarcity of targeted research, and the 
effective utilization of surveillance data is essential for monitoring the 
health impacts of climate change-induced exposures in Africa and the 
sub-Saharan region (63).

To address this research gap, the CHEERS system incorporates a 
module designed for routine morbidity data collection in a 10% 
sample of all households, providing a feasible and cost-effective 
approach. This module captures information on acute and chronic 
diseases, symptom onset, and the extent of disability caused by these 
conditions. Accurately quantifying health impacts attributable to 
climate change by calculating metrics such as DALYs or quality-
adjusted life years (QALYs) is essential for estimating loss and 
damages (64). The calculation of climate-associated DALYs (cDALYs) 
and QALYs (cQALYs) requires attributing weather events to climate 
change (65) and establishing the link between health outcomes and 
weather exposures, ultimately connecting them to climate change 
(66). Quantitative L&D research has focused mainly on climate risk 

and attribution, with less attention paid to empirical data of L&D 
connected to attributed climate events (67). Significant progress has 
been made in these areas, and further advancements are anticipated 
with efforts in place including the Santiago Network,4 which 
coordinates and facilitates Loss and Damage (L&D) needs assessments, 
and the Warsaw International Mechanism5 on L&D, which addresses 
the impacts of climate change in developing countries. The 
international L&D policy debate revolves around supporting 
vulnerable developing countries in averting, minimizing, and 
addressing climate change impacts (68). Human-caused climate 
change increases the frequency and severity of extreme weather events 
and slow-onset events, leading to L&D. Reducing L&D involves 
enhancing resilience, offering financial or social protection support, 
and incorporating resilience into recovery efforts. Broader policy and 
governance arrangements play a crucial role in decreasing 
vulnerability and exposure to climate change, with sustainable 
development serving as a key component in this process. This 
information is vital for international negotiations and policy 
governance to effectively address the consequences of climate change 
on vulnerable populations.

In the future, data collection efforts within the Nouna 
CHEERS site will be  expanded by incorporating additional 
physical examinations, encompassing body temperature, blood 
pressure, pulse, fasting plasma glucose, glycated hemoglobin 
(HbA1c), hemoglobin levels, and malaria diagnostics. This 
component has not yet been developed and implemented; 
however, its integration can be  facilitated through capacity 
building among healthcare workers, including community health 
workers, by training them to perform the necessary tests. 
Furthermore, the use of point-of-care testing devices can support 
testing in remote and resource-limited settings by offering 
immediate results to inform patient management. These devices 
are advantageous due to their portability, ease of use, and 
minimal dependence on laboratory infrastructure, making them 
a suitable option for expanding data collection efforts in 
challenging environments.

4.2. Climate-related data

4.2.1. Indoor temperature
At present, our knowledge of individual indoor exposures in 

low-resource settings and the corresponding adaptive approaches to 
address heat stress is limited (69). For example, in the Nouna CHEERS 
site, residential structures are frequently constructed using cost-
effective materials, such as corrugated metal sheets, which may lead 
to elevated indoor temperatures for occupants. Consequently, those 
residing in substandard housing are likely to face challenges in 
accessing adaptive measures, such as air conditioning, exacerbating 
their vulnerability to heat stress (70). Elevated indoor temperature 
exposures can result in various physiological responses, including 
alterations in heart rate as a consequence of heat exposure (71). 

4 https://unfccc.int/santiago-network

5 https://unfccc.int/topics/adaptation-and-resilience/workstreams/loss-and-

damage/warsaw-international-mechanism
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Nonetheless, the scarcity of research exploring the associations 
between indoor temperature and the health of at-risk populations 
might contribute to the marginalization of these communities while 
simultaneously obscuring potential health hazards (71–73). Acquiring 
additional data is crucial for quantifying potential risks and 
determining response priorities. Therefore, CHEERS integrates indoor 
measurements utilizing compact sensors (currently employing iButton 
DS1923-F5 and Switchbot Meter) that can be installed in households 
and remain in place for extended periods due to their long battery life 
and unobtrusive design.

4.2.2. Remotely-sensed data
Remote sensing may generate valuable insights into various 

environmental factors and their impacts on public health through 
its continuous, global coverage and availability. Applications of 
remote sensing include air quality monitoring, identification of 
heat islands and areas prone to heat stress through land surface 
temperature measurements, tracking of environmental conditions 
associated with vector-borne diseases, assessment of water 
quality and waterborne diseases, and monitoring of agricultural 
productivity and crop yields for food security and malnutrition 
studies (43, 44). Many remote sensing datasets are freely available 
for public use, although the accessibility and resolution of the 
data may vary along with the usability per use case or application. 
Numerous space agencies, research institutions, and other 
organizations provide open access to remote sensing data 
collected by Earth observation satellites, including NASA Earth 
Observing System Data and Information System (EOSDIS),6 
United  States Geological Survey (USGS) EarthExplorer,7 
European Space Agency (ESA),8 and NOAA National Centers for 
Environmental Information (NCEI).9

In our research conducted in the Nouna area, we  developed 
models to predict agricultural field yields based on 3 years of in situ 
data (43). These models successfully captured a portion of the inter-
annual variability in yields, potentially reducing the need for extensive 
measurements in the future. That also reveals one downside of these 
remote sensing-based models, as they need extensive in situ data to 
train and calibrate the models, which ideally also includes long time 
series of field data. Nevertheless, these models facilitated the 
integration of individual household yields with socioeconomic 
variables, child nutrition, and family health, demonstrating the 
potential of high-resolution field yield estimation in public health 
research. Remotely sensed data on the household field level may 
provide important data for research into agricultural, child 
undernutrition, and heat impact on work productivity – particularly, 
farmer work productivity, as the majority of households in Nouna rely 
on rainfed, small-scale subsistence farming. Results could inform 
efficient interventions and policies, such as irrigation systems.

4.2.3. Weather stations
Weather stations play a crucial role in understanding the effects 

of environmental exposures on health; however, their availability is 

6 https://www.earthdata.nasa.gov/

7 https://earthexplorer.usgs.gov/

8 https://earth.esa.int/eogateway

9 https://www.ncei.noaa.gov/

often limited to central locations such as airports, stations outside 
major metropolitan areas, military locations, or derived from satellite-
based precipitation estimates like CHIRPS (Climate Hazards group 
Infrared Precipitation with Stations) (37). The latter can be too distant 
or have too coarse resolution to accurately attribute weather exposures 
to individual health. To accurately evaluate the impact of weather 
exposures on health, especially in the context of climate change, it is 
imperative to establish spatially distributed weather stations with high 
temporal resolution in LMICs. Ideally, these weather stations should 
be  long-lasting, low-cost, and easily maintainable to ensure 
homogeneous longitudinal datasets, adequate spatial coverage of study 
regions, and high on-site maintainability. Although fully automated 
weather stations have been successfully deployed in the Nouna 
CHEERS site and the Siaya HDSS (Kenya) (42), which has 
implemented initial CHEERS components, their high cost 
(approximately 15,000€ per station) and reliance on importation 
present scalability challenges. As an alternative, 3D-printed weather 
stations offer a cost-effective, locally producible option. A pilot project 
in the SEACO HDSS in Malaysia, which is also currently establishing 
first CHEERS components, is currently evaluating the reliability, ease 
of data collection, and maintainability of 3D-printed weather stations 
within the CHEERS framework. Utilizing validated blueprints from 
the 3D-PAWS initiative (74), 3D-printed weather stations can 
be constructed with 3D-printed components and local hardware for 
600–1,000€ per station. This approach reduces import costs and 
increases local capacity and ownership. Integrating weather stations 
with research infrastructures such as HDSSs can significantly advance 
climate change and health research, enabling targeted public health 
interventions in LMICs. We hypothesize that the reduced cost burden, 
simplified maintenance processes, and increased sense of ownership 
associated with 3D-printed weather stations will address key barriers 
to their establishment, enabling more extensive data collection on a 
finer spatial scale. This would generate valuable climate change data 
to better understand and address the priorities of vulnerable 
populations, for which limited data currently exists.

4.3. Graph database for holistic data 
management

Data collection and storage in sub-Saharan environments can 
be  limited, fragmented, and tailored for specific applications (75). 
Accurate, reliable, and interoperable datasets are vital for effective data 
management and analysis. The CHEERS framework addresses this 
need by importing routinely collected data into a graph database, an 
advanced tool for exploring climate change and health challenges in 
vulnerable populations.

Graph databases offer advantages over traditional relational 
databases, including faster analysis, broader data type management, and 
structural flexibility (76, 77). They enable researchers to uncover 
previously unnoticed patterns, trends, and associations, contributing to 
a better understanding of climate change’s impact on at-risk populations.

By making CHEERS datasets publicly available, AI-based research 
in sub-Saharan Africa can advance, overcoming data limitations that 
have hindered progress (75). However, data ownership and sharing 
regulations present challenges. It is essential to establish governance 
processes that protect individual privacy while promoting data access. 
Public health organizations can facilitate data sharing by implementing 
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guidelines and processes, although further research and dialogue are 
needed to determine optimal strategies for data sharing.

Comprehensive graph datasets offer unique value to CHEERS 
sites, enabling integration of additional research and potentially 
attracting funding. Accessible datasets encourage scientific 
investigation and interdisciplinary collaboration, highlighting the 
importance of recognizing their value for fostering 
scientific advancement.

4.4. Dashboards

The timely sharing of research insights, particularly from data 
collected using digital devices such as wearables, weather stations, 
and indoor temperature sensors, can be expedited through the use 
of dashboards. These dashboards provide data visualizations that 
can effectively illustrate the connections between climate change 
and health. By translating complex data into visually appealing and 
user-friendly formats, dashboards enable a wider audience, 
including non-experts, policymakers, and the general public, to 
access and understand the information. Real-time updates, 
interactivity, and the integration of data from multiple sources 
contribute to a comprehensive and dynamic representation of 
research findings.

Dashboards can also facilitate evidence-based decision-
making by offering insights into the relationships between 
climate change, health risks, and other relevant factors. This 
allows policymakers to develop informed strategies for adaptation 
and mitigation. Online dashboards with narratives can increase 
population awareness and potentially promote behavior change, 
as meaningful narratives in health communication may be more 
effective than mere factual statements.

However, data privacy and security are crucial concerns when 
dealing with sensitive information, especially personal biometric data. 
Dashboards must be designed with strict access controls and data 
protection measures to prevent unauthorized access and data 
breaches. Additionally, the accuracy and reliability of the collected 
data depend on the quality of the devices and the data collection 
methods employed.

While aggregated and anonymized data can be  displayed on 
dashboards, careful consideration should be given to the potential 
risks associated with making personal biometric information 
accessible to the general public. Any decision to display individually 
collected real-time biometric data on public platforms should be taken 
with caution.

Currently, we  are implementing CHEERS components in the 
SEACO HDSS in Malaysia and the Siaya HDSS in Kenya. To our 
knowledge, there are no other studies that have adopted a framework 
comparable to CHEERS, although some have integrated individual 
elements such as remote sensing data or weather stations. The novelty 
of the CHEERS framework stems from the synthesis of these data 
sources, facilitating a comprehensive assessment of climate and health 
impacts at the household level. Moreover, although pending 
evaluation, our experience suggests that the system is designed to 
be optimally incorporated into other existing HDSSs, as well as similar 
research infrastructures in any country, regardless of income level – 
low, middle, or high-income – showcasing its versatility and 
adaptability to diverse settings.

4.5. Limitations

While the CHEERS framework presents a promising approach to 
understanding the impact of climate change on health, there are 
several limitations that must be acknowledged.

 - Context-specific adaptation: The CHEERS framework has been 
pioneered in the Nouna HDSS in a sub-Saharan environment. As 
it is implemented in other settings, such as the SEACO HDSS in 
Malaysia and the Siaya HDSS in Kenya, it may be necessary to 
revise some components to better fit into different contexts, 
taking into account local environmental, socio-cultural, and 
infrastructural factors.

 - Cost analysis: A thorough cost analysis of the CHEERS 
framework has not been conducted. Although it is anticipated 
that the operating costs of CHEERS will be lower than those of 
an annual HDSS data collection with multiple rounds, a detailed 
assessment of the costs involved is needed to provide a more 
accurate comparison.

 - Community engagement: While current HDSSs focus primarily 
on promoting community participation and translation, it would 
be ideal to provide guidelines for communities to be involved in 
an organized and regular way, allowing them to provide feedback 
in defining research programs and identifying possible areas 
of priority.

 - Emergency data access: Investigating how the collected data 
could be made available in emergency situations, such as for 
disaster management, may be beneficial. Further exploration is 
required to develop protocols and systems that allow for rapid 
data access while maintaining data privacy and security.

 - Integration of additional physical examinations: Although the 
paper outlines plans to expand data collection efforts within the 
Nouna CHEERS site to include additional physical examinations, 
this component has not yet been developed and implemented. 
The integration of these additional data sources will require 
capacity building among healthcare workers and may necessitate 
the use of point-of-care testing devices suitable for remote and 
resource-limited settings.

 - Pilot testing limitations: Some components of the CHEERS 
framework, such as the dashboard and the AI exploratory 
approach for the graph-based database, are in the pilot testing 
phase. As these components are essential for data analysis and 
visualization, their effectiveness and usability need to 
be evaluated and refined based on the pilot testing outcomes. 
Further results and improvements regarding these components 
will be shared in forthcoming publications.

Addressing these limitations in future iterations of the CHEERS 
framework will help ensure its adaptability and effectiveness in a range 
of settings and contribute to a more comprehensive understanding of 
climate change and health impacts.

5. Conclusion

The Climate and Health Surveillance and Response System 
(CHEERS) framework offers an innovative approach to expand 
existing HDSSs, generating crucial climate change and health-related 

https://doi.org/10.3389/fpubh.2023.1153559
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Barteit et al. 10.3389/fpubh.2023.1153559

Frontiers in Public Health 17 frontiersin.org

data. It incorporates advanced technologies, such as wearable devices, 
indoor temperature and humidity sensors, automated weather 
stations, remote sensing, graph databases, and interactive dashboards, 
enhancing routine health and demographic data collection efficiency.

Successfully implemented in Nouna HDSS and adopted by Siaya 
HDSS and SEACO HDSS, CHEERS streamlines data collection, 
transfer, and management, making research infrastructures more 
attractive to researchers and funders. It enables flexible management 
of complex population-health data, integrating various data types at 
different resolutions.

CHEERS has the potential to significantly advance climate 
change and health research in LMICs, identifying priority areas and 
informing evidence-based interventions and policies. Further 
research is needed to evaluate its costs, benefits, and effectiveness 
across diverse settings.
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