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Identifying impacts of industrial 
co-agglomeration on carbon 
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Based on panel data of 285 cities in China at the prefecture level and above 
from 2005 to 2020, this paper aims to study the nexus between industrial co-
agglomeration and carbon emissions from dual perspectives including space 
and time. It adopts multiple approaches including a dynamic general method of 
moment, panel quantile regression model, panel threshold model, and dynamic 
spatial Durbin model. The non-spatial empirical results support the establishment 
of the threshold effect and the imbalance effect. The spatial empirical results 
indicate that industrial co-agglomeration poses a dramatic stimulating effect on 
urban carbon emissions, and its spatial spillover effect and spatial heterogeneity 
are conditionally established. Furthermore, heterogeneous effects are supported, 
such as the positive spillover effects of industrial co-agglomeration are more 
significant in western cities, resource-oriented cities, and non-low-carbon pilot 
cities. The heterogeneous influence of cost factors on industrial agglomeration 
and carbon emissions has also been partially confirmed. In terms of the channels 
and mechanism of action, the negative externalities of industrial co-agglomeration 
occupy a dominant position in the current status of economic development. The 
dynamic equilibrium between government intervention and marketization is a 
solid foundation for the optimization of carbon emission reduction paths.
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1. Introduction

China’s economy has grown at a rapid rate since the turn of the century and has achieved 
great economic performance, rendering China the second-largest economy in the world, despite 
the reality that massive economic growth is obtained at the expense of environmental quality 
(Figure 1). It is evident that China’s economy showed sustained and rapid growth that requires 
increased total energy consumption (1). It reached the periodic peak of 49.8 hundred million 
tons of standard coal in 2020. The number of total carbon emissions also remained in the high-
value range in recent years. As the largest source of carbon emissions, massive energy 
consumption and carbon emissions have resulted in a slew of issues, including major ecological 
and environmental imbalances (2, 3).

Based on this, the Chinese authorities have announced critical targets for energy saving and 
emission reduction, with China’s President Xi Jinping emphasizing the dual carbon intention of 
peak carbon dioxide emissions and carbon neutrality by 2030 and 2060, respectively. Under the 
concept of sustainable development, formulating a scientific and practical strategy has become 
a vital issue that needs to be solved for advancing green economic development This is also a 
crucial path to relieving carbon emissions and promoting low-carbon economic progress. 
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Thereby, this paper is not only devoted to providing robust support for 
the achievement of Sustainable Development Goals targets (SDGs) but 
also trying to provide solid empirical experience for achieving the dual 
carbon target in China.

Among the methods of achieving win-win economic advancement 
and the alleviation of carbon emissions, the industrial 
co-agglomeration of the manufacturing industry and producer service 
industry (IC) receives wide attention due to the advantages such as 
economies of scale, competitive effects, and spillover and effects of 
technology (4, 5). IC is an inevitable pattern for regional economic 
development, which refers to the interrelated industrial clusters 
located in a specific region. Its influences are multi-faceted and can 
be considered from two representative perspectives including positive 
externalities and negative externalities. For this reason, there are a 
number of issues worth exploring in depth: What are the net 
environmental effects of IC? How does IC affect pollutant emissions, 
especially urban carbon emissions (CE)? Does the increased degree of 
IC contribute to China’s dual carbon goal in the new phase? Against 
this background, the existing literature mainly pay attention to its 
influence on environmental quality, and the studies that have 
investigated the underlying impacts on CE can be divided into three 
classes. The first category of research primarily focuses on the positive 
externalities of IC, scholars recognized the contribution of IC to the 
inhibitory of environmental carbon pollution. Indeed, IC can improve 
industrial competitiveness, optimize resource allocation, and form a 
regional scale effect to accelerate economic growth but also can bring 
overflow effects of knowledge to drive improvements in energy 
efficiency and pose a positive impact on the quality of the ecological 
environment via technology exchange and labor cooperation (6, 7). 
For instance, Li and Liu (8) adopted the dynamic panel model and 

indicated that IC can significantly reduce carbon emissions through 
technological progress. Fang et al. (9) applied the SBM-DEA model to 
measure the carbon emission level of 282 cities in China from 2004 to 
2018 and investigated the underlying influence of IC on carbon 
emissions, and their results found that collaborative agglomeration 
between manufacturing and producer services industries can 
dramatically restrain the adverse effects of industrial production on 
urban carbon pollutant emissions. From the views of scale effects, 
technological effects, and competition effects, many scholars have 
attempted to conduct related research (5, 10). In detail, Zhao et al. (11) 
conducted research from different provinces in China via a 
simultaneous equation model and proposed that the optimization of 
industrial structure driven by IC can facilitate the elimination of 
carbon emissions. Moreover, Wang et al. (7) adopted the system-GMM 
model to explore the nexus between IC and carbon emissions of 166 
cities in China from 2005 to 2015, which concluded that the economies 
of scale of co-agglomeration can promote the revolution of 
technologies and further cut down on the number of carbon emissions.

The second category of studies held a different viewpoint based on 
the negative externalities of IC, namely it is one of the leading factors 
exacerbating carbon emissions that may exert damage to the quality 
of the environment, based on considerations of the crowding-out 
effect, low-end lock-in effect, rebound effect, over-competition effect, 
economic overcapacity, capital outflows dilemma, negative benefits of 
technology spillovers, and so on (12, 13). For example, Wang et al. (14) 
analyzed the case of the Yangtze River Delta from 2003 to 2016 to 
investigate the underlying effects of information and communication 
technology industrial agglomeration on carbon emissions and 
confirmed the significant positive effect of agglomeration due to the 
continued expansion of the economy. Shen et al. (15) proposed that 
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FIGURE 1

Energy consumption and pollutants levels (left scale) and economic development levels in China (right scale). Data Source: The data are collected 
from the International Energy Agency (https://www.iea.org/) and China Statistical Yearbook (2005–2020).
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IC may intensify to attract foreign companies to invest in highly 
energy-intensive and polluting industries to some extent, exacerbating 
the environmental pollution issues from multinational companies 
investing in China, and the rapid development of pollution-intensive 
industries exacerbates the energy consumption and pollutant 
emissions in the host countries. Meanwhile, the excessive 
co-agglomeration of regional industries can cause adverse effects on 
the rational allocation of regional resources and environmental 
carrying capacity, which is incompatible with regional pollution 
prevention and intensify the pressure on society to combat carbon 
pollution (16, 17). Hong et al. (12) built a dynamic spatial Durbin 
model to explore the underlying impact of IC on environmental 
pollution based on the prefecture-level cities and suggested that local 
government tax competition is more likely to occur the behavior of 
“race to the bottom” among industries, thus aggravating the negative 
externalities of IC and causing adverse effects on environmental quality.

The final category of literature has made the assertion that the 
nexus between IC and environmental pollutant emission issues is 
non-linear in different development stages from the diversity 
perspectives (18–20). For example, a typical non-linear shaped nexus 
between IC and green development (21), haze pollution (22), and 
industrial eco-efficiency (23) have been proposed in recent research. In 
addition, the multiform nonlinear relationship between IC and carbon 
emissions is also gradually being proposed and proved by scholars, such 
as inverted N-shaped nexus (24, 25), an inverse U-curve nexus (8, 26), 
a U-curve nexus (7, 20), and so on. Besides, there are a number of 
scholars have considered the relationship between them in depth from 
different perspectives. For instance, in terms of the different degrees of 
government intervention, Yan et al. (27) utilized the night-time light 
data to capture the carbon emission amount and constructed a spatial 
Durbin model to delve into the effect of IC of 268 cities in China from 
2005 to 2017, confirming the double threshold effect of IC. As for the 
degree of resource mismatch, Li et  al. (28) pointed out that the 
inhibitory effect of IC on urban carbon emissions is gradually weakened.

To sum up, there is undoubted that the current literature lacks a 
consistent viewpoint on the environmental effect of IC on carbon 
emissions, and the current state of research on this subject also leaves 
potential space for further improvement. First, on the basis of a 
constantly improving industrial structure and distribution, taking into 
account the underlying externalities of IC are complex, which may 
require a multi-dimensional analysis of the association between IC 
and carbon emission issues from direct, non-linear, dynamic, and 
spatial perspectives. Although in some of the existing studies, 
researchers tended to explore their possible relationship in diversified 
approaches (29, 30), most of them have only a single perspective, thus 
it is not possible to analyze the nexus between the two subjects in a 
systematic and integrated way. Second, the analysis of the mechanical 
action of IC is incomplete and non-objective to some extent. Even in 
the limited relevant studies, researchers have primarily focused on the 
one-sided pathway relying on the particular externality of IC, rather 
than the consideration of overall externalities. For instance, the impact 
channels are analyzed only from a single perspective of positive 
externalities (technology progress, knowledge spillover, increased 
energy efficiency and etc.) or negative externalities (increased energy 
consumption, overcapacity, excessive competition and etc.) (8, 12). 
And this may cause the dilemma that people subjectively choose 
potential paths and conduct empirical analysis based on their own 
baseline regression results. Third, the heterogeneity of the nexus 

between IC and urban carbon emissions should be  examined in 
further detail. Actually, cost issues are important for the production, 
expansion, and spatial relocation of industries, especially the land 
input costs, labor input costs, and transaction costs (31, 32). 
Unfortunately, there have been few studies that pay attention to the 
effect of cost elements on the interaction between IC and carbon 
emissions, namely most studies discuss heterogeneity only in terms of 
traditional perspectives such as geographical location, administrative 
level, and resource endowment, which have ignored the reality 
conditions. Therefore, trying to build on and improve upon the 
existing research is the initial motivation for this thesis.

In this case, to make up for shortcomings of previous literature, 
this paper utilizes a dynamic general method of moment, panel 
quantile model, panel threshold model, and dynamic spatial Durbin 
model to investigate the effects of IC on carbon emissions 
systematically, relying on the data of 285 cities in China at the 
prefecture-level and above. The broad investigations in underlying 
channels and mechanisms of IC on carbon emission issues from 
representative positive and negative externalities are also crucial 
empirical content in this paper. This paper has three contributions to 
existing research. First, manufacturing and producer service industries 
are integrated into the unified analytical framework in this paper 
relying on the entropy method, which is in line with the frontier 
research directions and the reality of industrial development. This 
paper conducts comprehensive investigations from linear, nonlinear, 
spatial, and spatiotemporal perspectives, which consider the 
endogenous problems and robustness of estimated results. Second, 
this paper not only considers the heterogeneity issues from the 
perspectives of urban characteristics including geographical location, 
resource endowment, and low-carbon pilot projects but also regards 
the impact of cost factors on IC and urban carbon emissions, so as to 
try to help the industries find the optimal cost allocation modes. 
Third, this paper explores the underlying mechanisms of channels and 
mechanisms of action, including from the perspectives of externality, 
government intervention, and market regulation, which provides 
reference information and policy implications. Meanwhile, the 
empirical findings provide a new perspective for related research in 
academia to some extent and have far-reaching significance for the 
carbon reduction efforts in China and other emerging economies.

The research framework of this paper is structured as follows 
(Figure 2). Section 2 reveals the theoretical analysis of channels and 
mechanisms, while Sections 3, 4 show the methodology and core 
variables, respectively. Section 5 summarizes empirical results 
systematically. Section 6 conducts the further analysis of the 
heterogeneous test, channels of action, and mechanism of action. 
Section 7 recaps briefly and proposes policy implications.

2. Mechanism analysis

2.1. Channels of action of industrial 
co-agglomeration on carbon emissions

IC can efficiently reduce urban carbon emissions based on the 
positive externality theory. In terms of technological progress and 
innovation, the knowledge and technology overflow effect brought by 
IC is an important path to eliminating the urgency of carbon emissions 
(33). The high-speed development of IC can attract professional talent 

https://doi.org/10.3389/fpubh.2023.1154729
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shen et al.� 10.3389/fpubh.2023.1154729

Frontiers in Public Health 04 frontiersin.org

and advanced enterprises, which is conducive to forming an excellent 
atmosphere for innovation in a region via rational competition and 
information dissemination (10, 11). As for the allocation and utilization 
of resources, IC is beneficial to strengthen cooperation and industrial 
infrastructure sharing among industries, which can dramatically 
accelerate the flow of resource elements and improve resource 
allocation efficiency (34, 35). Therefore, IC can produce the promotion 
effect on industrial low-carbon transformation and seeking of a “win-
win” development mode in the agglomeration area, relying on the 
technological innovation effect and rational resource allocation effect.

By contrast, the exacerbating effects of IC on carbon emissions 
cannot be overlooked because of negative externalities. First, the energy 
consumption effect is always accompanied by the development of IC, 
namely higher energy consumption, and higher pollutant emissions 
(36). The expansion of enterprise scale and the rebound effect of 
excessive co-agglomeration may result in the massive use of fossil 
resources and environmental carbon pollution issues (24, 37). 
Homogeneous imitation and excessive competition have become 
obvious when the IC degree exceeds its optimal value (38). Second, the 
crowding effect of IC also exerts a harmful influence on carbon 
emissions, which mainly comes from the regional heterogeneity of 
industry spatial layout. For instance, excessive labor agglomeration may 
distort the factor market and bring out a series of urgent issues, such as 
the congestion effect, high energy utilization, and more pollutant 
emissions, which is an obstacle to the coordinated development of the 
economy and environment (20, 39). Hence, China is still facing severe 
pressure on carbon emission reduction due to the adverse effects of IC, 
especially the energy consumption effect and population crowding effect.

2.2. Mechanism of action of industrial 
co-agglomeration on carbon emissions

As the “invisible hand” and “visible hand” of macroeconomic 
development, the market and government both yield crucial moderating 

effects in the achievement of carbon neutrality and carbon peak goals. 
From one perspective, the government can appropriately adjust the 
imbalance of the indusial structure and spatial pattern, which can further 
improve resource allocation efficiency in the market (40, 41). This is 
beneficial to carbon emission reduction in an indirect way. In addition, 
the formulation and implementation of emission reduction policies are 
vital guides for the low-carbon transformation of advanced enterprises. 
A large amount of government financial investment in environmental 
governance provides the necessary guarantee for sustainable innovation 
of green and low-carbon technologies in agglomeration areas (42). These 
policy-oriented actions promote the smooth progress of emission 
reduction directly. However, when government intervention reaches a 
certain threshold, it may inhibit the emission reduction effect of IC (27). 
The possible reason is that government-led industrial agglomerations 
may cause excessive competition among industries in pursuit of policy 
rent and some free-riding behaviors inhibit the reasonable allocation of 
resource elements (43, 44).

From another perspective, marketization can also be viewed as a 
crucial path to regulating the nexus between IC and carbon emissions. 
A rational and complete market can provide a suitable production 
environment for industries that promotes expansion at an industrial 
scale, posing a significant positive influence on regional green 
innovation, relying on the economy of scale effect (45). The 
establishment of a unified carbon emission trading market and the 
promotion of energy conservation and emission reduction through 
market mechanisms have become vital points of high-quality 
economic expansion. Moreover, the marketization degree is also 
associated with government actions. For instance, the government 
pays more attention to economic expansion at lower marketization 
levels, which tends to take the rapid development of IC as the priority 
and neglects environmental protection (46). Thereby, the sustainable 
development of IC and the achievement of the double carbon target 
needs to reflect the dynamic balance between the government and the 
market. The underlying channels and mechanism of IC on the CE in 
this paper can be represented in Figure 3.
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Research framework graph.
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3. Empirical methodology

3.1. Non-spatial econometric methods

To further investigate the influences and mechanisms of IC on 
carbon emissions, this paper adopts the pooled ordinary least squares 
(OLS), the dynamic general method of moment (GMM), and other 
non-spatial transitional regression models. First, because of the 
dynamic effect and inertia effect of the environmental tolerance for 
carbon emissions, the dynamic GMM that introduces the lagged-
explained variable into model consideration is utilized and a pooled 
OLS is performed. The baseline regressions are constructed as in 
Equations 1 and 2.

	 CE IC Xit it it it= + + +β β θ ε0 1 	 (1)

	 CE CE IC Xit i t it it it= + + + +−β ϕ β θ ε0 1 1, 	 (2)

where CEit stands for carbon emissions in city i at year t, which is 
represented and measured by two core variables TCE and CEI. ICit 
denotes the industrial co-agglomeration level in city i at year t; φ 
represents the time response coefficient. β1 shows the estimation 
coefficient of IC and β0 stands for the constant term. A series of control 

variables are represented by Xit; εit means the random 
perturbation term.

Second, in consideration of the distinct environmental inclusion 
and carbon emission levels among sample cities, the panel quantile 
regression approach was employed to identify the heterogeneity of IC 
and other influence factors on CE at different quantiles, and the 
empirical model is set as shown in Equation 3.

	 CE IC Xit it it it= + + +β β θ ετ τ τ0 	 (3)

where τ stands for the corresponding quantiles. The meanings of 
the other parameters are consistent with Equation 1.

Third, to determine whether the non-linear effect of IC on CE 
exists, this paper adopts a panel threshold model and introduces gross 
domestic production per capita (PGDP) as the suitable threshold 
variable to divide the constructed model into disparate intervals under 
the unbalanced economic development degrees. The empirical model 
is structured as shown in Equation 4.

	
CE IC I q IC I q Xit it it it it it it= + ≤( ) + >( ) + +β β η β η θ ε0 1 2· ·

	
(4)

where qit stands for the threshold variable and η means the 
threshold value. I (·) is an instruction function.
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3.2. Spatial econometric methods

Considering that IC can be regarded as a vital phenomenon of 
modern economic activities, co-agglomeration degree, and the spatial 
pattern are constantly changing in the dynamic accumulation process. 
This paper utilizes static and dynamic spatial Durbin models (SDM) 
to further investigate the temporal, spatial, and spatio-temporal effects 
of IC on carbon emissions. Moreover, a range of spatial applicability 
tests is carried out in turn to determine the optimal regression model. 
The statistical results of the Lagrange multiplier test (LM) and 
likelihood ratio test (LR) all pass the significance test. So, the SDM 
cannot degenerate into the spatial autoregressive model or spatial 
error model. Sequentially, combining the results of the Hausman 
statistic and joint significant test, SDM with dual-fixed effects is the 
optimal choice in this paper. Referring to the research of Elhorst (47), 
the equations are shown in Equations 5 and 6.
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(6)

where i and j stand for urban regions and t represents the year. The 
spatial effect of CE in the local region on its surrounding areas is 
described by ρ, namely the spatial auto-regressive parameter; φ 
measures the spatial interaction of CE for the IC level in adjacent 
areas. β1 and β2 are the general regression coefficients, and μi and vt 
exemplify the time and city-fixed effects, respectively.

This paper utilizes the geographic inverse distance matrix to 
measure the interactions between distant spatial units, which is more 
in line with the reality of the spatial associations between sample 
regions. The definition of the spatial weighted matrix is shown in 
Equation 7, and this paper also normalizes the geographic distance 
matrix in the empirical process:

	

w d
i j

i j
ij ij= ( )

≠

=









1

0

2
,

, 	

(7)

where dij refers to the straight-line geographic distance from city 
i to city j, which is calculated by latitude and longitude coordinates.

4. Data and variables

4.1. Variable descriptions

4.1.1. Dependent variable: Carbon emissions
The manufacturing and production services industries can 

be  identified as two dominant sources of national carbon dioxide 

emissions in China, which have become the key issues in achieving 
scientific and precise reduction targets of carbon emissions during the 
14th Five-Year Plan period. Considering the differences in carbon 
emission levels in different regions and the top-level design of double 
control, this paper selects total carbon emissions (TCE) and carbon 
emission intensity (CEI) to quantify the CE degree. Regarding the 
research of Zhang et al. (48), TCE is measured by the sum of carbon 
emissions from three typical energy, including natural gas, electricity, 
and liquefied petroleum gas in a region over a period. The detailed 
calculation formula is Equation 8:

	
TCE NGas LPGas Elec= + + ( )λ λ λ κ1 2 3 ·

	
(8)

where λ1 , λ2  and λ3  refer to the carbon emission factor for 
natural gas, liquefied petroleum gas, and electricity respectively, which 
are equal to 2.1622 (kg/m3), 3.1013 (kg/kg), and 1.3023 (kg/kW h). 
Variable κ  stands for the proportion of coal-fired electricity generation.

4.1.2. Core independent variable: Industrial 
co-agglomeration

From the contribution of Yang et al. (36), this paper utilizes the 
location entropy approach to evaluate the status of IC from two special 
perspectives mentioned above. The specific formulas are shown as 
Equations 9 and 10:

	
IA

Q Q
Q Qij
ij j

i
=

/
/ 	

(9)

	
IC

IA IA
IA IA
MFI PSI

MFI PSI
= −

−
+( )

1
	

(10)

where IAij shows the measurement of agglomerations of the 
manufacturing industry (MFI) or producer service industry (PSI) in 
city j. Qij represents the number of laborers in industry i in sample city 
j. Qj indicates the number of members of the two types of industries 
in city j. Qi stands for the sum of people employed by industry i in the 
whole country. Q is the overall number of laborers of the two target 
industries mentioned above. The rest of the symbols are the same as 
described above.

4.1.3. Control variables
Apart from key explanatory variables, other underlying variables 

are considered controls. According to the literature (49–51), the 
selected control variables consist of fiscal decentralization (FD), 
industrial upgrading (IU), urbanization rate (UR), and foreign direct 
investment (FDI). FD is measured by the proportion of financial 
expenditure to financial revenue. IU is measured by the proportion of 
the added value of the tertiary industry to the secondary industry. UR 
is measured by the ratio of non-farm population to population size in 
a city. FDI is measured by the ratio of foreign direct investment to 
gross domestic product.

4.1.4. Threshold variable
In agreement with the current study of Feng and He (49), this 

paper chooses PGDP as a threshold variable for further investigations 
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at various economic levels. This indicator has been expressed by the 
real PGDP which takes the year 2005 as the base period and is 
logarithmically processed to assure the comparability and consistency 
of the data.

4.1.5. Mechanism variables
Following previous studies (52–54), a series of mechanism 

variables are expressed normatively. Technological innovation (TI) is 
expressed by the number of patent applications per 10,000 people. 
Resource allocation (RA) is expressed by total factor productivity 
through the SFA method, which uses the number of employees and 
fixed assets as input with real GDP as output. Energy consumption 
(EC) is indirectly expressed by urban consumption level, namely total 
retail sales of consumer goods in a city are adopted as a reasonable 
proxy. Population crowding (PC) is expressed by the number of 
populations at year-end in a city. Government intervention (GI) is 
expressed by the ratio of fiscal expenditure to real gross domestic 
product. Marketization level (ML) is expressed by the Fan Gang index 
of market liberalization in a city.

4.1.6. Instrumental variables
Regarding the existing literature (55, 56), the proxies related to 

infrastructure construction can be  regarded as reasonable 
instrumental variables (IV), which satisfy the validity principles of IV 
selection. First, the public product attribute and investment 
characteristics of infrastructure are directly under the macro-control 
of the government, independent of the urban pollutant emissions, 
which satisfies the exogenous requirement of an instrumental variable. 
Second, infrastructure is a key resource for regional economic and 
social development, and it can also exert potential influences on 
regional industrial spatial layout, which satisfies the 
correlation requirement.

Therefore, this paper adopts the construction of highway mileage 
per unit area (IV1) and the interaction term of the number of post 
stations in the Ming dynasty and the number of taxis during the 
current period (IV2) as the instrumental variables of TCE and CEI, 
separately. The reason for the utilization of the interaction term is that 
the number of post-stations in the Ming dynasty is a fixed value that 
cannot be  directly plugged into the regression model. The final 
construction of the interaction term is based on Nunn and Qian (57) 
and the consideration of post-stations’ functional features.

Table 1 reports the depictions and descriptive statistics of core 
variables. The obtained data are all within the rational distribution 
interval, which shows the accuracy and authenticity of data values.

4.2. Data collection

The panel dataset of 285 Chinese cities at the prefecture level and 
above from 2005 to 2020 are collected as sample data, which are 
obtained from official statistical publications including China City 
Statistics Yearbook (2005–2020), China Statistical Yearbook (2005–
2020) and China Urban Construction Statistical Yearbook (2005–
2020). All obtained data have been reconfirmed to ensure accuracy 
and reliability. Some missing data have been supplemented by manual 
queries, and only a small number of the missing values was calculated 
by the interpolation approach. The natural logarithm is applied to the 
data of PGDP.

5. Empirical estimates results

5.1. Empirical analysis of non-spatial 
baseline regressions

Based on pooled OLS regression and dynamic GMM approaches, 
the interactions of IC on carbon emissions in current years are 
evaluated and confirmed. The results are reported in Table 2. The 
coefficients of the first-order lagged term of the carbon emissions 
proxies are both significantly positive at a 1% confidence interval, 
which demonstrates that the current carbon emissions degree is 
significantly stimulated by the historical carbon emission levels and 
the temporal inertia characteristics of China’s carbon emission 
evolution are verified. Energy conservation and emission reduction 
are of long-term significance and are conducive to fostering high-
quality and sustainable economic growth in the future. The estimated 
results of different models yield the consistent conclusion that IC can 
intensify regional carbon emissions, including TCE and CEI to some 
extent, which means higher IC may produce malignant impacts on the 
ecological environment. The results are consistent with the conclusion 
obtained by Hong et al. (12), confirming that the crowding effect and 
“race-to-bottom” competition caused by excessive agglomeration is 
one of the important reasons for aggravating local environmental 
pollution. Furthermore, the AR test verifies the evidence of the first-
order correlation in the residual series and no second-order 
correlation exists. The value of ps of the Sargan test are both equal to 
zero, representing that the selected instrumental variables in estimated 
models are not highly exogenous and suffer from over-reorganization 
restrictions. Therefore, given the limitations of the above regression 
methods and the accuracy of estimations, the instrumental variable 
strategy of the endogeneity test is involved in the subsequent part.

According to the above empirical analysis, it is obvious that the 
results of pooled OLS and dynamic GMM are somewhat 
differentiated, especially the control variables, so this paper also 
conducts the endogeneity test to avoid potential biases from 
endogenous problems. The two-stage least square (2SLS) approach is 
adopted with the above-selected instrumental variables, which satisfy 
the two reasonable requirements to further analyze the baseline 
results. As shown in Table 3, the F-value of IV1 and IV2 in first-stage 
regression both exceed 10, reflecting the selected instrumental 
variables are highly correlated with explanatory variables and that 
there are no biases from weak instrumental variables. The estimations 
in second-stage regression in columns (2) and (4) show that the 
coefficients of IC are consistent with the original results in baseline 
regressions, namely, IC still contributes to the carbon emissions even 
considering the endogeneity of core variables, which indicates the 
robustness of the obtained conclusions. Therefore, this paper adopts 
a series of transitional regression models to evaluate the effects of IC.

The results of the panel quantile regression framework with the 
consideration of distributional heterogeneity indicate the aggravated 
and uneven influences of IC on carbon emissions. The intensification 
effect of IC on TCE shows an increasing fluctuation trend with the 
increasing emission levels, nevertheless, the promotion effect of IC on 
CEI is characterized by continuous and stable increases. Furthermore, 
the threshold effects of IC on carbon emissions are verified by the 
estimations of panel threshold regression, including the single threshold 
model of TCE and the double threshold model of CEI. In terms of TCE, 
IC plays a significant negative role in TCE when the level of PGDP is 
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below the value of 10.3, nonetheless, its emission-reduction effect is 
weakened. It shifts to positive if the PGDP level exceeds this threshold 
value. This result is similar to the research of (58), which supports that 
IC may be beneficial to environmental quality in the initial stage, but 
with the expansion of economic scale and the improvement of 
agglomeration degree, industrial agglomeration may cause damage to 
environmental quality. By contrast, the IC has a persistent aggravated 
effect on CEI before the PGDP level reaches the second threshold value 
of 9.4, and this positive effect reverses and becomes less significant. 
Hence, with China’s rapid industrial economic development, the 

evolution of TCE and CEI is not consistent, so there is still a long way 
to go to achieve the targets of the dual-carbon goal. The specific tables 
and figures are reported in the Supplementary material.

5.2. Empirical analysis of spatial baseline 
regressions

As for the spatial correlation test, this paper chooses Moran’s I and 
Geary’s C to reflect the global spatial distribution pattern and local 

TABLE 1  Depictions of core variables and descriptive statistics.

Variables Symbols Depictions Unit Obs. Mean SD Min Max

Dependent variable

 � Total carbon 

emissions
TCE

The total greenhouse gas emissions of a 

region or city over a certain period

Million tons
4,560 27.461 24.178 1.723 230.712

 � Carbon emission 

intensity
CEI Total carbon emissions/Real GDP Per Capita

/
4,560 8.216 6.693 0.446 90.571

Core independent variable

 � Industrial co-

agglomeration
IC

Refers to co-agglomeration degree of 

manufacturing industries and production 

service industries

/

4,560 0.735 0.185 0.066 0.999

Control variables

 � Fiscal 

decentralization
FD Financial expenditure/Financial revenue

/
4,560 2.868 1.928 0.649 18.399

 � Industrial upgrading IU
Add value of tertiary industry/The secondary 

industry
% 4,560 0.946 0.529 0.094 5.348

 � Urbanization rate UR
Non-farm population/Total population in a 

city
% 4,560 0.510 0.168 0.112 1.000

 � Foreign direct 

investment
FDI

Foreign direct investment/Gross domestic 

product
% 4,560 0.021 0.023 0.000 0.285

Threshold variable

 � GDP per capita PGDP

Gross domestic product achieved in a 

country in one year/country’s resident 

population

CNY

4,560 9.638 0.658 7.782 11.835

Mechanism variables

 � Technological 

innovation
TI

Patent applications numbers per ten 

thousand people

/
4,560 8.324 21.944 0.011 651.563

 � Resource allocation RA Total factor productivity / 4,560 1.436 0.767 0.020 2.948

 � Energy consumption EC Total retail sales of consumer goods in a city CNY 4,560 15.186 1.179 5.472 18.886

 � Population crowding PC Population at the year-end in a city
Ten thousand 

people
4,560 5.867 0.697 2.846 8.136

 � Government 

intervention
GI Fiscal expenditure/ Gross domestic product

/
4,560 0.180 0.105 0.043 1.936

 � Marketization level ML
Fan Gang index of market liberalization in a 

city

/
4,560 10.384 2.908 2.717 19.694

Instrumental variables

 � Infrastructures-IV1 IV1

The construction of highway mileage per 

unit area

Km
4,560 0.992 0.503 0.030 2.628

 � Infrastructures-IV2 IV2

The interact term of the number of post 

stations in the Ming dynasty and the number 

of taxis at current period

/ 4,560 14.042 62.839 0.000 898.500
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spatial autocorrelation, correspondingly. Moran’s I and Geary’s C in 
2005–2020 all pass the significance test at a 1% confidence level, which 
verifies the validity of spatial econometric models. According to the 
crucial scatterplots of Moran’s I, the spatial distribution patterns of 
carbon emissions in China in the majority of cities are distributed in 
the first and third quadrants (H-H and L-L aggregation zones), which 
provides evidence for the positive spatial autocorrelations. The table 
of spatial autocorrelation tests and crucial scatterplots is in the 
Supplementary material.

Comparing the results of SDM and dynamic SDM, it can be found 
that the obtained highlights are still valid when dynamic factors are 
considered. This paper focuses on the analysis of dynamic SDM. The 
results of static SDM are in the Supplementary material.

According to Tables 4, 5, the following key points can be concluded. 
First, the positive spatial overflow effects of carbon emissions in China 
are due to the significance of spatial autoregressive coefficients. Second, 
the coefficients of the two measurement indexes at a one-period spatial 
lag are all significantly positive at a 1% confidence interval, which 
demonstrates urban carbon emissions in China are a continuous 
dynamic adjustment process and showed dynamic and spatio-temporal 
effects. The dynamic effects of carbon emissions in China are relatively 

limited because of the high consistency of directionality and significance 
of coefficients in the two spatial models. The long-term equilibrium 
between high-quality economic growth and carbon emission control is 
persistent, which reveals that the realization of China’s dual carbon goal 
faces great pressure. The probable reason for this phenomenon is that the 
expansion of industrial scale and economic growth brought by IC can 
lead to a rapid increase in energy consumption, which causes the 
aggravation of carbon emissions. Moreover, limited resources in the 
region may make vicious imitation and excessive competition among 
enterprises and hinder the development and application of new 
technologies, which may also pose adverse shocks to the environmental 
capacity of the region. Third, based on the coefficients of effect 
decomposition, IC exerts an intensifying effect on TCE in surrounding 
regions and the whole society, and the accumulating effect is supported. 
IC also poses an accelerating effect on CEI in a region, but this stimulatory 
effect is diminishing. This conclusion of the negative spatial spillover 
effect of IC on carbon emissions is similar to the works of Cheng (16). It 
reveals the essence of the “race to the bottom,” the competition among 
local governments may lead to serious industrial homogenization in 
agglomerations, and the attraction of the low-level industries may further 
solidify the traditional extensive development mode of the 
agglomerations, which both are the main paths to increase the carbon 
emission in adjacent regions (59). Finally, the differentiated effects of 
control variables can be observed, which reveals the complexity of the 
economic impacts on the formulation of carbon emissions policy. The 
challenges in achieving the transition from peak carbon to carbon-
neutral are enormous. These empirical results provide evidence for the 
negative influence of beggar-thy-neighbor practice, which reveals policy 
actions need to be further adjusted. The government has strengthened 
environmental regulations to seek the dual carbon target and the 
promotion of energy conservation and emission reduction. This has 

TABLE 2  Estimation results of benchmark regression and dynamic GMM.

Core 
variables

OLS SYS-GMM

TCE CEI TCE CEI

(1) (2) (3) (4)

L.TCE 1.041***

(292.967)

L.CEI 0.941***

(254.091)

IC 0.462 0.917** 2.109*** 0.220

(0.666) (2.515) (4.457) (1.194)

FD −0.080 0.250*** 0.188*** −0.072***

(−0.897) (5.326) (3.376) (−3.400)

IU 11.523*** −3.617*** −9.969*** 2.263***

(8.275) (−4.949) (−9.892) (9.499)

UR −0.013 0.831*** −1.424*** 0.334***

(−0.041) (4.897) (−9.544) (6.670)

FDI −19.566*** −21.378*** 7.882*** 2.377***

(−3.926) (−8.173) (3.086) (3.078)

Constant 13.500*** 13.142*** 3.776*** −1.556***

(14.496) (26.887) (7.245) (−7.147)

Observations 4,560 4,560 4,275 4,275

Number of 

cities

285 285 285 285

R-squared 0.502 0.547

AR (1) 0.002 0.000

AR (2) 0.245 0.506

Sargan test 0.000 0.000

***p < 0.01, **p < 0.05, *p < 0.1. T-values in parentheses of OLS, Z-statistics in parentheses of 
GMM, the results of AR (1) and AR (2) statistics, and Sargan test are the corresponding 
p-value.

TABLE 3  The results of endogeneity test.

Endogeneity test 
for TCE

Endogeneity test for 
CEI

(1) (2) (3) (4)

IC TCE IC CEI

IV1

0.045***

(0.013)

IV2

−0.000***

(0.000)

IC
7.567 304.899***

(15.272) (103.287)

First-stage F 

statistic value
12.607 12.247

Controls Yes Yes Yes Yes

City Fixed Effect Yes Yes Yes Yes

Year Fixed 

Effect

Yes Yes Yes Yes

Number of 

cities
285 285 285 285

Observations 4,560 4,560 4,560 4,560

R-squared 0.713 0.965 0.712 -

***p < 0.01, **p < 0.05, *p < 0.1. Robust standard errors in parentheses.

https://doi.org/10.3389/fpubh.2023.1154729
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shen et al.� 10.3389/fpubh.2023.1154729

Frontiers in Public Health 10 frontiersin.org

guided the gradual transformation of industrial agglomeration regions 
toward green development, and the accelerating effect tends to 
be alleviated in the long term.

To assess the validity of the empirical results, this paper adopts the 
robustness tests from diversified perspectives, including replacing 
explained variables, replacing research samples, and constructing new 
spatial weight matrices. The re-regression estimations illustrate that 
the core coefficients are in the same direction, and there are only some 
changes in significance levels, validating the robustness of benchmark 
estimations. The specific process and empirical results of the 
robustness test are presented in Supplementary materials.

6. Further analysis

6.1. Further analysis of heterogeneous 
effect

This section explores the heterogeneous effects of IC on carbon 
emissions, which classifies the heterogeneities from the perspectives 
of geographic position, resource endowment, and low-carbon pilot 
projects. This part addresses the heterogeneous effect of IC on TCE, 
and the results are shown in Table 6.

6.1.1. Heterogeneity in geographic position
Considering cities’ unique characteristics in different geographical 

regions, this paper splits samples into eastern, central, and western 
cities. The results in columns (1)–(3) show the effect of IC on urban 
CE in different areas is different. In terms of the effect decomposition, 

IC in eastern cities plays a significant positive role in local carbon 
emissions and this intensification effect decreases over time; 
nevertheless, IC poses a negative spatial overflow effect on carbon 
emissions of neighboring cities. The opposite effects in western cities 
are significant. This is mainly because the high level of economic 
growth in the east attracts abundant industries and laborers moving 
from underdeveloped regions and may result in population 
concentration. Although overpopulation pressures have brought 
about a series of passive influences in a region, the interregional 
movement of production elements can reduce environmental 
regulation stress in the surrounding areas. By contrast, the ecological 
improvement and environmental protection in the western area 
promote the agglomeration of clean energy industries and increase 
energy efficiency. Moreover, high-consuming and high-polluting 
industries tend to move to peripheral cities which may intensify the 
CE levels in non-central areas due to the unbalanced development.

6.1.2. Heterogeneity in resource endowment
Considering the specific resource endowment of different cities, 

this paper differentiates samples into resource-oriented and 
non-resource-oriented cities shown in columns (4, 5). The accelerating 
effect and accumulative effect of IC in resource-oriented cities are 
significant. In practice, the development of resource-based cities relies 
on their resource endowment, which generally ignores the 
accumulation and management of fundamental production factors 
such as high-tech, talents, and capital. The unscientific development 
model and unreasonable industrial structure may aggravate energy 
consumption and reduce the efficiency of resource allocation, which 
can aggravate local carbon emissions levels. The negative externalities 

TABLE 4  Results of dynamic SDM with dual-fixed effects (TCE).

Core 
Variables

Regression Short-term Long-term

Main Weight 
matrix

Direct 
effect

Indirect 
effect

Total 
effect

Direct 
effect

Indirect 
effect

Total 
effect

(1) (2) (3) (4) (5) (6) (7) (8)

L.WTCE
0.418***

(14.743)

IC
−0.065 2.487*** 0.018 2.726*** 2.743** 0.527 4.716** 5.243**

(−0.108) (2.754) (0.030) (2.687) (2.301) (0.773) (2.566) (2.292)

FD
−0.240*** 0.452*** −0.214*** 0.454*** 0.240* −0.152* 0.611*** 0.459*

(−2.872) (3.436) (−2.728) (3.360) (1.791) (−1.840) (2.753) (1.794)

IU
−0.874*** 1.137** −0.834*** 1.173** 0.340 −0.703** 1.354* 0.651

(−2.953) (2.542) (−2.959) (2.531) (0.684) (−2.287) (1.707) (0.684)

UR
10.434*** −3.816** 10.344*** −2.691 7.652*** 10.934*** 3.703 14.637***

(7.935) (−2.074) (8.203) (−1.329) (3.572) (8.024) (1.062) (3.518)

FDI
−19.386*** 25.468*** −18.149*** 25.033*** 6.884 −15.406*** 28.536** 13.130

(−4.162) (3.895) (−4.016) (3.623) (0.981) (−3.231) (2.507) (0.976)

ρ
0.123***

(5.370)

Observations 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275

R-squared 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531

Number of cities 285 285 285 285 285 285 285 285

*p < 0.1; **p < 0.05; ***p < 0.01. Z-values in parentheses.
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of the path-dependence effect and vicious competition have 
progressively occupied a dominant position, which also limits the 
knowledge and technology spillover effects to neighboring areas.

6.1.3. Heterogeneity in low-carbon pilot projects
Considering the potential influence of the national macro-policy, 

this paper classifies samples into low-carbon pilot cities and non-pilot 

TABLE 5  Results of dynamic SDM with dual-fixed effects (CEI).

Core 
variables

Regression Short-term Long-term

Main Weight 
matrix

Direct 
effect

Indirect 
effect

Total 
effect

Direct 
effect

Indirect 
effect

Total 
effect

(1) (2) (3) (4) (5) (6) (7) (8)

L. WCEI
0.324***

(10.643)

IC
1.481*** −0.910* 1.443*** −0.824 0.619 1.418*** −0.454 0.963

(4.553) (−1.875) (4.601) (−1.552) (1.000) (4.184) (−0.585) (0.998)

FD
0.082* 0.269*** 0.095** 0.291*** 0.386*** 0.138*** 0.463*** 0.600***

(1.822) (3.793) (2.251) (4.041) (5.454) (3.233) (4.675) (5.389)

IU
0.691*** −0.181 0.684*** −0.102 0.583** 0.709*** 0.198 0.907**

(4.343) (−0.755) (4.505) (−0.415) (2.265) (4.538) (0.580) (2.260)

UR
−1.611** −2.310** −1.681** −2.580** −4.261*** −2.107*** −4.526*** −6.632***

(−2.271) (−2.309) (−2.446) (−2.470) (−3.802) (−2.967) (−3.095) (−3.783)

FDI
−9.933*** −13.417*** −10.269*** −15.490*** −25.759*** −12.836*** −27.276*** −40.112***

(−3.961) (−3.786) (−4.198) (−4.094) (−6.685) (−5.156) (−5.090) (−6.470)

ρ
0.092***

(3.925)

Observations 4,275 4,275 4,275 4,275 4,275 4,275 4,275 4,275

R-squared 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.519

Number of cities 285 285 285 285 285 285 285 285

*p < 0.1; **p < 0.05; ***p < 0.01. Z-values in parentheses.

TABLE 6  Results of heterogeneity test.

Effects Core 
variables

Geographical location Resources endowment Low carbon pilot 
projects

Eastern Central Western Resource-
oriented

Non-
resource-
oriented

Pilot 
Cities

Non-
pilot 
Cities

(1) (2) (3) (4) (5) (6) (7)

Spatial effect ρ
0.047 0.149*** 0.080* 0.073** 0.121*** 0.054 0.155***

(1.210) (4.126) (1.848) (2.194) (4.146) (1.153) (6.134)

Direct effect

Short-term
2.862** 0.561 −3.320*** 1.232* −0.102 −4.859** 1.162**

(2.342) (0.680) (−3.322) (1.764) (−0.114) (−2.303) (2.446)

Long-term
2.291* 1.248 −2.310* 1.839** −0.138 −4.819** 1.473***

(1.703) (1.288) (−1.894) (2.159) (−0.138) (−2.286) (2.595)

Indirect effect

Short-term
−4.530** 3.450** 5.926*** 1.657 −0.208 −4.830 0.912

(−2.308) (2.482) (3.636) (1.628) (−0.133) (−1.216) (1.095)

Long-term
−5.159* 6.220** 7.607** 3.865** −0.362 −4.648 2.591*

(−1.672) (2.494) (2.471) (2.058) (−0.152) (−1.188) (1.658)

– Observations 1,515 1,635 1,125 1,725 2,550 1,020 3,255

– R-squared 0.485 0.550 0.592 0.565 0.502 0.164 0.628

– Number of cities 101 109 75 115 170 68 217

***p < 0.01, **p < 0.05, *p < 0.1. Z-values in parentheses.
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TABLE 7  Results of heterogeneity test in cost elements.

Effects Core variables Labor costs Land costs Transaction costs

High-level Low-level High-level Low-level High-level Low-level

(1) (2) (3) (4) (5) (6)

Spatial effect ρ
0.087*** 0.114*** 0.061 0.163*** 0.151*** 0.064*

(2.765) (3.525) (1.451) (6.480) (5.192) (1.878)

Direct effect

Short-term
−0.950 0.782 3.601** −0.295 0.260 0.224

(−0.759) (1.602) (2.168) (−0.611) (0.352) (0.240)

Long-term
−1.218 1.061* 2.377 0.069 1.070 0.362

(−0.853) (1.784) (1.273) (0.110) (1.060) (0.381)

Indirect effect

Short-term
−1.242 0.788 −9.501*** 1.604** 2.751** 1.656

(−0.596) (0.875) (−3.377) (1.970) (2.162) (1.104)

Long-term
−2.242 2.420 −12.016*** 2.917 5.863** 2.087

(−0.721) (1.272) (−2.728) (1.627) (2.029) (1.143)

– Observations 1,905 2,370 1,290 2,985 2,190 2,085

– R-squared 0.256 0.301 0.246 0.381 0.394 0.153

– Number of cities 127 158 86 199 146 139

***p < 0.01, **p < 0.05, *p < 0.1. Z-values in parentheses.

cities and presents results in columns (6, 7). It can be observed that 
the IC in low-carbon pilot cities can restrain local carbon emissions 
and tend to release the carbon emission pressure in neighboring 
regions, nonetheless, IC exerts the opposite effect in non-pilot cities. 
This may be  because the low-carbon pilot cities adhere to the 
development concepts of resource conservation and environment-
friendliness, which promotes the transformation of industries to 
low-carbon development and dramatically reduces carbon emissions. 
Low-carbon pilot cities are a model for other regions and cities.

6.1.4. Heterogeneity in cost elements
Considering the reality that different cities have different economic 

features and different combined cost characteristics, which would 
impose distinct restrictions on the development of IC and affect its 
associations with urban carbon emission issues. Indeed, the land price 
is a key factor in determining the optimal size of industrial operations 
and the basis for the stochastic relocation and expansion of 
agglomeration. Meanwhile, based on the “industrial location theory” 
first proposed by the German economist (60), it emphasized that 
transport costs and labor costs are crucial factors influencing the choice 
of industrial location. In this case, this paper tends to explore the role 
of heterogeneity due to cost factors and classifies the sample cities into 
two groups, namely a high-level group and a low-level group, based on 
the average level of the cost elements in 2020. In detail, labor costs are 
represented by the regional average wage level of urban workers. Land 
costs are represented by regional average property prices. Transaction 
costs are represented by the cost of transport conditions that equals the 
ratio of road mileage to urban land area, and it is an inverse indicator, 
namely the higher the value, the lower the cost.

The results of heterogeneous tests are shown in Table  7, the 
heterogeneity is relatively pronounced. First, in terms of labor costs, it 
can be found that IC has a certain tendency to inhibit CE in the regions 
with higher labor costs according to columns (1, 2), which is opposite 
to the area with lower labor costs. The possible reason may lie in the fact 

that the higher labor costs illustrate the higher salary in a region, which 
can increase labor mobility and attract a concentration of talent, so as 
to promote the technological innovation and progress of enterprises 
relying on the knowledge spillover and technology sharing effects. 
Meanwhile, the high labor costs may encourage industries to spend 
more capital and resources on the introduction of high-tech talent, 
which is a vital force for technological green transformation in 
enterprises and pollution control in agglomerations (61). By contrast, 
the labor-intensive industries with high pollution and high-emission 
features tend to move into areas with low labor costs, which brings 
challenges to environmental quality in these areas. Second, as for the 
land costs in columns (3, 4), IC in areas with high land costs can 
significantly intensify local CE, nonetheless, it has an inhibitory effect 
on surrounding areas with low labor costs. This is mainly because the 
higher land cost causes limited industrial development space, which is 
difficult for enterprises to have enough financial support to realize high-
quality green transformation and upgrading. Meanwhile, they also need 
to expand their production scale to increase profits and compensate for 
the high costs of investment, namely, overcapacity is an elemental 
contributor to increased carbon emissions (62). Third, in terms of 
transaction costs, heterogeneity between cities with different transaction 
costs is not obvious, the positive spatial overflow effect of IC is relatively 
significant in high-cost regions, this phenomenon may rely on the 
industry’s consideration of the convenience of the production chain and 
the fact of industrial transfer. Thereby, the heterogeneity in cost elements 
is partially established, especially reflecting the role of labor and land 
costs, and the crucial significance of reasonable cost management and 
control in promoting healthy and collaborative industry development.

6.2. Further analysis in channels of action

The empirical results provide vigorous evidence that IC can 
dramatically stimulate CE, reflecting the challenges of achieving a dual 
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carbon target and the urgency of carbon emission governance. Further 
considerations of the underlying channels are indispensable. Based on 
this insight, regression Equation 11 is constructed to analyze the 
channels of action. The results are reported in Table 8.

	 Channel IC Xit it it i t it= + + + + +β β θ µ ν ε0 1 	 (11)

Here Channelit denotes the channel variables that industrial 
co-agglomeration affects urban carbon emissions.

According to the realistic foundation of the empirical regressions, 
this paper decomposes the positive externalities of IC into a 
technological innovation path and resource allocation path. The 
negative externalities of IC are decomposed into an energy consumption 
path and a population crowding path. The coefficients in columns (1, 
2) are both significantly negative, whereas the coefficient in columns (3, 
4) are opposite. That is, IC can significantly stifle technological 
innovation and reduce resource allocation efficiency, and it may result 
in high energy consumption and excessive population concentration. 
These estimations indicate that the positive externalities brought about 
by IC are insufficient to mitigate negative environmental impacts, 
consistent with other findings (37, 63). This is mainly because the 
enterprises in the agglomeration area may hinder the entry of new 
enterprises for their own development. This phenomenon can lead to 
the difficulty of high-end innovation and makes them fall into the 
dilemma of inherent knowledge redundancy and new knowledge 
insufficiency, which exacerbates the negative externality of industrial 
agglomeration. It can be inferred that the positive externalities of IC are 
suppressed at a certain stage of development and negative externalities 
were common. It is crucial to consider the impact of IC on 
environmental pollution and environmental governance.

6.3. Further analysis in the mechanism of 
action

Based on mechanism analysis, market forces, and government 
intervention often play a moderating role in IC influencing 
CE. Therefore, this paper further analyzes the underlying associations 

between IC and CE from these two aspects, and the constructed model 
as shown in Equation. 12:

	 CE IC IC M Xit it it it it i t it= + + + + + +β β β θ µ ν ε0 1 2 · 	 (12)

where Mit denotes the mechanism variables, namely the 
interaction term of IC and ML and the interaction term of IC and GI.

As for the coefficients of the interaction term in Table 9, the GI 
and MC both play a positive moderating role in the nexus between IC 
and TCE; nonetheless, they both have an opposite effect on the 
interaction between IC and CEI. The possible reasons lie in the 
following. First, excessive government intervention in IC is widespread 
in China, which leads to competition with the pursuit of policy rents 
in the agglomeration area and dramatically stimulates the TCE level. 
This result can also be confirmed in the study of Hong et al. (12). 
Moreover, the improvement of the marketization degree is not 
accompanied by the corresponding strength of environmental 
regulation due to imperfect market mechanisms. This makes the 
industries ignore the environmental protection problems during high-
speed economic development. Second, marketization and government 
intervention can both be viewed as essential paths for high-quality 
economic development in the new normal. Their dynamic corporation 
is beneficial to relieve the pressure of CEI via the promotion of 
effective allocation of resources and the improvement in economic 
development efficiency.

7. Conclusion, policy implementations 
and future work

This paper conducts an empirical analysis of how industrial 
co-agglomeration affects urban carbon emissions through a series of 
econometric models, with the utilization of panel data from 285 
Chinese cities at the prefecture level and above from 2005 to 2020. The 
following key points can be concluded.

Industrial co-agglomeration can intensify urban carbon 
emissions, both from the point of view of total carbon emissions and 
carbon emission intensity, and these aggravated effects are uneven and 

TABLE 8  The results of channel analysis.

Positive external channels Negative external channels

Technological 
innovation effect

Resource allocation 
effect

Energy consumption 
effect

Population crowding 
effect

(1) (2) (3) (4)

IC
−11.439** −0.068* 0.088** 0.009

(−1.981) (−1.823) (2.006) (0.346)

Controls Yes Yes Yes Yes

City fixed effect Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes

Number of cities 285 285 285 285

Observations 4,558 4,560 4,560 4,555

R-squared 0.167 0.869 0.888 0.061

***p < 0.01, **p < 0.05, *p < 0.1. Robust T-statistics in parentheses.
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imbalanced. The presence of threshold effect is verified, namely, the 
inhibition effect of industrial co-agglomeration on total carbon 
emissions gradually weakened and the exacerbating influences are 
progressively significant with high-quality economic growth. By 
contrast, opposite trends were observed for carbon emission intensity.

The positive spillover, temporal lag, and spatial–temporal effects 
of urban carbon emissions within regions in China are indicated 
according to the spatial empirical results. From the overall results of 
effect decomposition, industrial co-agglomeration can stimulate total 
carbon emissions in neighboring and whole regions, and its cyclic 
accumulative impacts are valid in the long term, which provides 
evidence for the behavior of beggar-thy-neighbor. By contrast, 
industrial co-agglomeration intensifies the local carbon emission 
intensity, but it has no statistically significant influence on surrounding 
areas. Specifically, the above conclusions still hold after the 
consideration of endogeneity and robustness.

In addition, the heterogeneous impacts of industrial 
co-agglomeration on carbon emissions are supported, and positive 
spillover effects are more significant in the subsample of western, 
resource-oriented, and non-low-carbon pilot cities. In comparison, labor 
and land costs are the main factors influencing the relationship between 
industrial agglomeration and carbon emissions, rather than transaction 
costs. This paper also shows that the negative externalities of industrial 
co-agglomeration occupy a dominant position in high-quality economic 
development. The energy consumption effect and population crowding 
effect are the main reasons for the intensification of urban carbon 
emissions. Therefore, government intervention and marketization have 
different moderating effects on the selected carbon emission proxies. 
Moderate corporation and dynamic balance of these mechanisms are 
vital to the low-carbon economic development in the new status.

The following insights are provided for policymakers. First, local 
government should focus on the new development concept of a 
community with a shared future for mankind and avoid beggar-thy-
neighbor patterns of industrial activities and environmental 
governance while promoting the low-carbon transformation of local 
enterprises. Local governments should fully consider the unique 
characteristics and strengths of different industries to prevent low-end, 
imitation, and homogenization behaviors and relieve local carbon 

emission pressures. The formulation of appropriate supporting 
policies and reasonable environmental regulation standards also 
contribute to avoiding the vicious competitive behaviors caused by 
policy rent behaviors among industries. Hence, under the guidance of 
a win-win development goal, governments should facilitate the 
extension of the regional industrial chain and establish a green 
industrial system among regions and promote the realization of the 
national carbon decoupling process.

Second, the targeted policies based on the geographical 
characteristics and economic attributes of different regions should 
be formulated. The government can cultivate differentiated leading 
industries and the specific industrial co-agglomeration mode based 
on local function orientations and development situations. For 
instance, the eastern regions should take advantage of its developed 
economy and geographical features and actively explore the industrial 
low-carbon management pattern via constant technological 
innovation and the exploitation of clean energy, such as coastal wind 
resources and nuclear power. The green and efficient development of 
resource-oriented cities has become crucial for the achievement of the 
double carbon goal, so governments should strive to improve energy 
consumption structure and low-carbon technology. The scope of 
low-carbon pilot cities should be  properly expanded, which is 
conducive to stimulating the innovation vitality of cities and 
accelerating the low-carbon transformation of the economy.

Third, the government should seek a dynamic balance with 
marketization, to build a national unified market, and further 
strengthen the positive external effects of industrial co-agglomerations. 
From one aspect, the government should actively implement moderate 
policies and regulations to restrict, encourage, and supervise the 
development of industrial co-agglomeration. This is beneficial to the 
optimization and adjustment of the internal structure of the industries. 
From another view, it is essential to build a national unified market, 
which can not only accelerate the free flow of resource elements 
among regions but also promote resource exchange and information 
sharing among industries. This is also conducive to breaking the 
technological lock-in effect and promoting the effective exertion of the 
positive externalities of industrial co-agglomeration. To better grasp 
the balance between government intervention and market 

TABLE 9  The results of mechanism analysis.

TCE CEI

Government 
intervention effect

Marketization level 
effect

Government 
intervention effect

Marketization level 
effect

(1) (2) (3) (4)

IC*GI
23.851*** −8.595**

(2.702) (−2.162)

IC*ML
1.014** −0.727***

(2.149) (−3.314)

Controls Yes Yes Yes Yes

City fixed effect Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes

Number of cities 285 285 285 285

Observations 4,560 4,560 4,560 4,560

R-squared 0.504 0.504 0.548 0.553

***p < 0.01, **p < 0.05, *p < 0.1. Robust T-statistics in parentheses.
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competition, promoting the combination of a promising government 
and an effective market is vital to achieving double carbon.

Although this study provides some bright empirical results and 
contributes to the existing literature, there are still some limitations 
that need to be further investigated in the future. Firstly, this paper 
only uses the geographic inverse distance matrix to explore the spatial 
effect, it is necessary to adopt the economic distance matrix, economic 
geography nested matrix, and other different types of spatial weight 
matrices to comprehensively explore the spatial effect of industrial 
co-agglomeration in the future studies. Moreover, the space–time 
weight matrix can also be considered to investigate the temporal and 
spatial effects of industrial agglomeration simultaneously. Secondly, 
this paper only studies the nexus between industrial co-agglomeration 
and carbon emissions, but the sources of urban environmental 
pollution are relatively complex. In detail, the industrial discharged 
wastewater, industrial smoke dust, nitrogen oxide, industrial sulfur 
dioxide, and other pollutant emission indicators should be  fully 
considered to explore the environmental impact of industrial 
co-agglomeration. Thirdly, due to the limitation of data sources, this 
paper only considers the data from 2005 to 2020. In the future, the 
data period should be extended to 2022 to provide more detailed and 
accurate suggestions for the development of industrial 
co-agglomeration subject to data availability.
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