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Waterfowl are considered to be  natural reservoirs of the avian influenza virus 
(AIV). However, the dynamics of transmission and evolutionary patterns of AIV 
and its subtypes within duck farms in Bangladesh remain poorly documented. 
Hence, a cross-sectional study was conducted in nine districts of Bangladesh 
between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 
and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades 
circulating in domestic duck farms. The oropharyngeal and cloacal swab samples 
were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes 
using rRT-PCR. The exploratory analysis was performed to estimate AIV and its 
subtype prevalence in different production systems, and multivariable logistic 
regression model was used to identify the risk factors that influence AIV infection 
in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum 
clade credibility (MCC) tree and the maximum likelihood method to determine 
the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was 
detected in 40% (95% CI: 33.0–48.1) of the duck farms. The prevalence of AIV was 
highest in nomadic ducks (39.8%; 95% CI: 32.9–47.1), followed by commercial 
ducks (24.6%; 95% CI: 14.5–37.3) and backyard ducks (14.4%; 95% CI: 10.5–19.2). 
The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0–25.7). 
The multivariable logistic regression model revealed that ducks from nomadic 
farms (AOR: 2.4; 95% CI: 1.45–3.93), juvenile (AOR: 2.2; 95% CI: 1.37–3.61), and 
sick ducks (AOR: 11.59; 95% CI: 4.82–32.44) had a higher risk of AIV. Similarly, the 
likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3–
115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong 
to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has 
been evolving silently since 2015 and forming at least nine subgroups based on 
>90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in 
Bangladesh by the end of the year 2020, which was genetically similar to viruses 
detected in wild birds in Japan, China, and Africa, indicating migration-associated 
transmission of an emerging panzootic clade. We  recommend continuing AIV 
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surveillance in the duck production system and preventing the intermingling of 
domestic ducks with migratory waterfowl in wetlands.
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1. Introduction

The avian influenza virus (AIV) has garnered increased attention 
recently because of its impact on productivity, commerce, and human 
health. The highly pathogenic avian influenza (HPAI) H5N1 virus has 
been linked to poultry epidemics and occasional human infections 
worldwide (1). In Bangladesh, the epidemic of H5N1 in poultry was 
reported for the first time in 2007. Since then, the disease has spread 
throughout the country, with 585 H5N1 outbreaks reported until the 
end of 2020 (2–4). In contrast, the first human case of H5N1 was 
detected through exposure to slaughtered poultry in Bangladesh on 
May 22, 2008 (5). AIV is now considered to be endemic and some 
recent research has identified a high percentage of AIV in birds from 
farms and live bird markets (LBM) including peri-urban and rural 
settings (6–9). Waterfowl from the order of Anseriformes (including 
ducks, geese, and swans), are distributed worldwide due to aquatic 
habitats and are considered one of the major natural reservoirs for 
AIV (10, 11). Other than domestic duck species, migratory waterfowl 
stopover for a few days to several weeks to rest at foraging areas 
(wetlands and lakes) along their migratory routes (10, 12). The AIV 
can spread to and from domestic duck populations due to the length 
of stay and wetland of both domestic and migratory duck populations, 
and the asymptomatic nature of infected individuals increases the 
likelihood that the virus will spread to other species (13). When an 
infected duck defecates in a specific wetland or waterbody, the AIV 
enters the environment and infects other ducks easily while they 
access the same areas. Although AIV has been replicated in the 
respiratory tract, we cannot overlook the fecal shedding of the AIV 
(14). Consequently, wetlands and water bodies can become 
contaminated with AIV through the defecation of infected birds, 
therefore, transmission of the virus is more likely when a significant 
number of birds roost on a small wetland (15). This evidence can 
be corroborated by another study in which the authors recovered the 
virus from the lake surface, where many different duck species graze 
(16). So, the high AIV titer in feces, the stability of the virus in the 
water, and the higher number of positive cloacal than tracheal samples 
suggest the virus persists in duck populations through fecal-oral 
transmission (17). Therefore, the present study is conducted to 
estimate the prevalence and risk factors of AIV in domestic ducks 
under different rearing systems and landscapes.

Bangladesh is an agriculture-based country where the total 
livestock population comprises around 311.8 million chickens and 
63.85 million ducks throughout the country (18), which are housed 
in over 53 thousand commercial broiler farms, 18 thousand 
commercial layer farms, and 6.5 thousand commercial duck farms, 
whereas in rural settings on an average, each household rears 6.8 
chickens and ducks in backyard systems for their consumption or 
even commercial activity (19, 20). Furthermore, Bangladesh is also 

known as a riverine country due to its numerous transboundary 
rivers, suitable habitats, and wetlands that attract millions of migratory 
birds of 244 species each winter (October to March) and allow them 
to intermingle with resident aquatic wild birds and domestic ducks 
(21, 22). Ducks are typically raised for household and commercial 
production in Bangladesh using nomadic or semi-scavenging systems. 
Consequently, domestic ducks have frequent access to wetlands and 
interact closely with various migratory bird species, which may 
facilitate the evolution and emergence of novel strains of AIV and 
eventually lead to widespread outbreaks of the virus. The reservoir 
duck species are able to shed and transmit the virus from the 
respiratory and intestinal tracts, showing few or no symptoms of the 
disease. Therefore, understanding the epidemiology of the origin and 
circulation pattern of H5N1 in the duck population in Bangladesh is 
deemed a priority.

The AIV RNA prevalence in domestic ducks in parts of 
Bangladesh has been previously documented as 0.9–89% (23–25), 
whereas the dominant AIV subtypes were H5 and H9 in ducks (26). 
Furthermore, since the first detection of HPAI H5N1 viruses, various 
clades, including 2.2.2, 2.3.2, 2.3.4.2 (27, 28), 2.3.2.1a (29, 30), and 
2.3.4.4 (31) clade of H5N6, have been identified in Bangladesh. 
Besides, the novel reassortant H5N1 clade 2.3.2.1a has already been 
isolated from the LBMs in Bangladesh, having a close relatedness to 
the virus isolated from birds sampled in one of the four regions of this 
country (32). Furthermore, during the last 3 years, clade 2.3.4.4b of the 
H5N1 virus has recently spread to domestic poultry and wild birds 
widely in Europe, Africa, Asia, and America, leading to the loss of over 
33 million domestic birds (33). On the other hand, northwest Spain 
encountered an outbreak of 2.3.4.4b H5N1 in Minks (34). Also, this 
clade of H5N1 was also detected in mammals like harbor porpoises in 
Sweden (35) and dolphins, Sea lions, Sanderlings, Pelicans, and 
Cormorants in Peru (36). There have been 893 sporadic human 
A(H5N1) cases reported from 21 countries since 1997, and eight of 
those cases have been caused by clade 2.3.4.4b since 2022, which raises 
the possibility of a pandemic (37, 38). Both nomadic and backyard 
ducks are reared in a free scavenging system in Bangladesh, sharing 
open wetlands with large numbers of migratory waterfowl, and other 
wild birds and transmission of HPAI H5N1 may occur easily where 
the migratory birds are considered one of the potential routes for 
introducing new clades of HPAI H5N1  in Bangladesh (39). The 
surveillance of AIV in ducks from different production systems and 
patterns of AIV and subtype circulation within these systems are not 
well documented. Molecular characterization and evolutionary 
dynamics of HPAI H5N1 in the duck population are crucial. Therefore, 
we conducted this study to know the prevalence of AIV and their 
subtypes H5 and H9, risk factors, and phylodynamics of H5N1 clades 
circulating in domestic ducks in the different production systems 
in Bangladesh.
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2. Methodology

2.1. Ethical approval

The study protocol was approved by the ethics committee of 
Chattogram Veterinary and Animal Science University (CVASU) 
bearing the number CVASU/Dir(R&E) EC/2019/126(1) and CVASU/
Dir(R&E)EC/2020/191/7.

2.2. Study design and site selection

Bangladesh currently has three duck production systems: nomadic 
farms, backyard farms, and commercial farms. Nomadic duck farming 
is a traditional approach to duck production where the ducks are kept 
in a free-range habitat and are allowed to roam and feed in various 
regions (40). In the backyard farming system, household ducks are 
kept overnight near or within the farmer’s house and travel only over 
a short distance for scavenging (27), and in the commercial farming 
system, ducks are kept in total confinement (41). Considering the 
duck farming patterns, we  conducted a cross-sectional study and 
purposive sampling to find out AIV, H5, and H9 subtype prevalence 
as well as risk factors among ducks in different production systems 
from 2019 to 2021 in Bangladesh. The study sites were selected based 
on duck density, the presence of wetlands, and migrating waterfowl. 
Data on the distribution of migratory bird staging areas in Bangladesh 
was obtained from the literature (42, 43). Additionally, the duck 
density data were gathered from the Bangladesh agriculture census 
2019 (44). Figure 1 depicts the nine selected districts of Bangladesh, 
namely Dhaka, Faridpur, Cumilla, Kushtia, Meherpur, Moulovibazar, 
Sylhet, Sirajganj, and Rajshahi, which represent the wide spectrum of 
duck-rearing practices across the country. The sampling of nomadic 
ducks from Sylhet and Moulovibazar represented the wetland habitats 
of Haor basin (45), while Kushtia, Meherpur, and Sirajganj were 
considered as Jamuna floodplains (46). In wetlands, domestic ducks 
and migratory birds share foraging habits and intermingle. 
Consequently, backyard ducks were also sampled in wetlands areas. 
In addition, backyard ducks were sampled from Dhaka, Cumilla, and 
Faridpur. The samples of commercial duck farms were collected from 
Cumilla, Dhaka, Kushtia, Meherpur, Rajshahi, and Sylhet (Figure 1).

2.3. Sample and data collection procedure

We sampled a total of 522 ducks from 171 farms, with 270 ducks 
coming from 127 backyard farms, 61 ducks from 11 commercial farms, 
and 191 from 33 nomadic farms. The samples were collected from both 
sick and healthy ducks, and common signs observed in sick ducks were 
torticollis, lack of coordination, leg paralysis, and sudden death, which 
have also been associated with H5N1 symptoms in previous studies 
(24, 47). Pooled oropharyngeal with cloacal swabs were collected from 
each duck by an experienced field veterinarian while causing the birds 
as little distress as possible. The biological specimens were collected by 
wearing appropriate personal protective equipment like coveralls, 
gloves, and other safety equipment. Immediately after sampling, the 
swabs sticks were placed into a 1.8 ml cryovial containing 1 mL viral 
transport medium (VTM). Each vial was marked using a unique 
identification number and placed in the portable dry shipper before 
transport to the laboratory. In the lab, all the samples were stored at 

–80°C freezer until further laboratory evaluation. A pre-tested 
questionnaire and face-to-face interview were used to collect all 
biosecurity-related data, that could potentially be a risk factor.

2.4. Virological testing

The viral RNA was extracted from the pooled swab samples 
(oropharyngeal and cloacal) using a KingFisher Flex 96-well robot 
(Thermo Scientific, Waltham, MA) and the MagMAX 96 AI/ND Viral 
RNA Isolation Kit (Ambion, Inc. Austin, TX) in accordance with the 
manufacturer’s instructions. Real-time reverse transcriptase PCR 
(rRT-PCR) was used in conjunction with reference primers and 
probes to detect the presence of the AIV (InfluA) Matrix (M) gene in 
viral RNA, as described by the CDC and Spackman (48, 49). Then, 
InfluA (M-gene) positive samples were examined with specific 
subtypes primers of H5, H7, and H9 as previously described (49, 50). 
The samples were considered as AIV positive for the M-gene if the 
cycle threshold (Ct) was less than 40 and as H5, H7, and H9 positive 
if Ct < 37 (51). Samples that tested positive for the M gene but negative 
for H5, H7, and H9 were classified as A/untyped.

2.5. H5N1 sequencing

The viral RNA was extracted using QIAamp viral RNA minikit 
(Qiagen). The influenza segments were amplified following the protocol 
described by Zhou et al. (52). After amplification, PCR amplicons were 
visualized by agarose gel electrophoresis, followed by purification in an 
AMPure XP Bead. Subsequent nanopore sequencing libraries were 
prepared using Ligation Sequencing Kit (SQK-LSK109) and the Native 
barcoding approach. In 2019, the Sanger sequencing was deployed to 
amplify and subjected to partial sequencing of HA and NA genes of the 
2 H5N1 virus described by Hoffmann (53). In 2021, the final library 
was quantified in the Qubit 1× dsDNA High Sensitivity Assay Kit 
(Invitrogen) with a Qubit 4 fluorometer (Invitrogen) and loaded onto 
the FLO-MIN106D flow cell on an Oxford Nanopore MinION MK 1C 
platform. Raw fast5 reads were base called by real-time base-calling 
with Guppy 4.3.4, released with MinKNOW software with the fast base-
calling mode, and subsequent analyses were performed in the 
appropriate bioinformatics tools. The HA and NA segments of H5N1 
sequences were submitted to GenBank under the accession numbers 
from OQ430759 to OQ430762 and OQ423229 to OQ423237.

2.6. Statistical analysis

The frequency, percentage, and univariate value of p were 
computed at the socio-demographic level of the duck farmer, along 
with duck-rearing practices in different production systems and 
landscapes. A descriptive analysis was computed to determine the 
prevalence of AIV, H5, and H9 according to the different factors at the 
individual bird and flock levels. The cross-tabulation and chi-square 
tests were performed to identify the risk factors between AIV and 
H5N1 with different bird-level risk factors. Furthermore, the risk 
factors that were determined as significant at univariate analysis were 
forwarded to multivariable logistic regression. The likelihood ratio 
(Wald test) with a value of p of ≤0.05 was used to identify the primary 
risk factor. The results were presented as Adjusted Odds Ratios (AOR), 
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95% confidence intervals, and values of p. The data generated from 
this study were stored in MS Excel 2021 and checked the data integrity 
in MS Excel. We used RStudio version 4.1.2 for statistical analysis. 
We  used “lme4” and “tidyverse” packages for the analysis in R 
software. The ArcGIS1 software was used to create a duck density map 
and to visualize the spatial distribution of migratory waterfowl staging 
areas and duck farming sites of studied districts (Figure  1). The 
district-level administrative shape file was retrieved from freely 
available DIVA-GIS2 (54).

1 https://www.arcgis.com

2 https://www.diva-gis.org/gdata

2.7. Bayesian phylogenetic analysis of H5N1 
viruses

To identify the clade diversity of H5N1 viruses circulating 
among ducks in Bangladesh, On January 1, 2023, all accessible 
HA gene sequences of A/H5N1 HPAIs found in Bangladesh from 
ducks with full-length HA sequences were retrieved from the 
GISAID Epiflu database (55). The HA sequences of H5N1 from 
2007 to 2022, were retrieved from GISAID and NCBI and then 
the artifacts sequence were removed. A Maximum Clade 
Credibility (MCC) tree using the Bayesian Markov Chain Monte 
Carlo approach was generated using the temporal information of 
the sequence data to estimate the evolution of H5N1 viruses in 

FIGURE 1

Map locating the site selected for investigating AIV risk analysis among duck farms in Bangladesh (2019–2021). Green triangles represent backyard 
duck farms, brown triangles represent commercial duck farms, and red triangles represent nomadic duck farms chosen for sampling in this study. Bird 
symbols denote districts that have migratory bird staging areas. The intensity of the color gradient shows the density of ducks in a district.
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Bangladesh (BEAST 1.10.4) (56). The uncorrelated lognormal 
clock model with the Bayesian Skyline tree prior was used with 
10 million generations (57). The gamma-distributed rate 
variation among sites with four rate categories (HKYþG) (58) was 
used. The sampling frequency was 1,000. We visualized the MCC 
trees in FigTree v1.4.4.3 To identify the phylogenetic relationships 
of the seven H5N1 viruses sequenced in this study, the maximum 
likelihood method was used. For each gene segment of HA and 
NA, we used BLAST best matches to select the relevant sequences. 
TIM + F + G4 model for HA segments and K3Pu + F + G4 for NA 
segments was chosen by minimum BIC values using IQ-Tree 
(59). For each tree, we  used 1,000 bootstrap replicates for 
generating the trees. The maximum likelihood tree was also 
visualized using Figtree v1.4.4.

3 http://tree.bio.ed.ac.uk/software/figtree/

3. Results

3.1. Prevalence of AIV, H5, H9, and  
A/Untyped in ducks and farming types

AIV prevalence for the overall sampled duck was 24.9% (130/522) 
(95% CI: 21.3–28.9) (Figure  2). Across the farming system, AIV 
prevalence was highest in the nomadic duck (76/191) (39.8%; 95% CI: 
32.9–47.1) followed by commercial (15/61) (24.6%; 95% CI: 14.5–
37.3) and backyard duck (39/270) (14.4%; 95% CI: 10.5–19.2). The H5 
prevalence was prominent in nomadic ducks (37/191) (19.4%; 95% 
CI: 14.0–25.7). There was no H9 subtype found in commercial and 
nomadic ducks but in two backyard ducks (1.6, 95% CI: 0–8.8) 
(Figure 2). None of the sample was positive for H7.

On the other hand, AIV prevalence for the overall duck farm was 
40.4% (69/171) (95% CI: 33.0–48.1%), backyard farm was 29.1% 
(37/127) (95% CI: 21.4–37.9), the commercial farm was 63.6% (7/11) 
(95% CI: 30.8–89.1), and the nomadic farm was 75.8% (25/33) (95% 
CI: 57.7–88.9) (Figure 3). The H5 subtype was higher (14/33) (42.4%; 

FIGURE 2

Bangladesh duck level InfluA (M gene), H5, H9, and A/Untyped prevalence with 95% confidence interval during 2019–2021.

FIGURE 3

Duck farm level InfluA (M gene), H5, H9, and A/Untyed prevalence with 95% confidence interval in Bangladesh (2019–2021).
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TABLE 1 Cross table with chi-square analysis between AIV and bird-level factors of duck Bangladesh isolates (2019–2021).

A positive (%) 95% CI Value of p H5 positive (%) 95% CI Value of p

Farming system

Backyard 39 (14.4) 10.5–19.2 <0.01 19 (7.0) 4.3–10.8 <0.01

Commercial 15 (24.6) 14.5–37.3 1 (1.6) 0–8.8

Nomadic 76 (39.8) 32.8–47.1 37 (19.4) 14.0–25.7

Age

Adult 50 (16.1) 12.2–20.6 0.01 22 (7.1) 4.5–10.5 0.01

Juvenile 80 (37.9) 31.3–44.8 35 (16.6) 11.83–22.31

Sex

Female 115 (24.7) 20.8–28.9 0.86 52 (11.2) 8.5–14.4 0.78

Male 15 (26.8) 15.8–40.3 5 (8.9) 3.0–19.6

Health condition

Healthy 100 (20.6) 17.1–24.5 <0.01 28 (5.8) 3.9–8.2 <0.01

Sick 30 (83.3) 67.2–93.6 29 (80.6) 64.0–91.8

Value of p < 0.05; statistically significant.

95% CI: 25.5–60.8) in the nomadic farming system. In backyard 
farming, the prevalence of H5 and A/Untyped subtypes on farms were 
similar (18/127) (14.2%; 95% CI: 8.6–21.5) (Figure 3).

3.2. Association of AIV and its subtypes 
with migratory waterfowl interface

We found evidence of an association between AIV subtypes and 
migratory waterfowl present in that area. A/H5 and A/Untyped were 
significantly associated with the presence of migratory waterfowl 
(Figure 4).

3.3. Risk factor for the circulation of AIV in 
ducks

We had four variables to check for association with AIV and H5. 
The farming system, age, and health condition were significantly 

associated with AIV and H5. Among the farming system, the 
nomadic system had a higher prevalence for AIV (39.8%; 95% CI: 
32.8–47.1%) and H5 (19.4%; 95% CI: 32.8–47.1), whereas backyard 
and commercial were less positive. Juvenile age group birds were 
significantly more positive than adults, and sick birds were the most 
affected by AIV (83.3%; 95% CI: 67.2–93.7) and H5 (80.6%; 95% CI: 
64.0–91.8) (Table 1). The sick ducks developed neurological signs 
including uncoordinated gait circling and torticollis at the terminal 
stage, digestive symptoms (whitish feces, fecal attached to the 
plumage and cloaca) and respiratory distress, dilated pupils and 
followed by death.

In the multivariable logistic regression model, we found three 
variables as significant risk factors for AIV and one risk factor for A/
H5. The nomadic farming system had 2.39 times (95% CI: 1.45–3.93) 
higher odds of affecting AIV than backyard farming (p = 0.01). 
Compared to adults, juvenile ducks had 2.22 times (95% CI: 1.37–
3.61) odds of having AIV (p = 0.01). The AIV detection in sick ducks 
(the ducks displayed dilated pupils and white feces remained on the 
plumage surrounding the cloaca and neurologic symptoms include an 

FIGURE 4

Prevalence of InfluA and its subtypes with migratory waterfowl contact in Bangladesh during 2019–2021.
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uncoordinated gait, tremors, and torticollis) was 11.59 times (95% CI: 
4.82–32.44) more likely (p < 0.01) than healthy birds (Table  2). 
We found health conditions to be a significant risk factor for H5. The 
odds of H5 detection in sick birds were 46.5 times (95% CI: 18.7–
130.3) more likely than healthy ones (p < 0.01) (Table 2).

3.4. Bayesian phylogenetic analysis of the 
evolution of H5N1 clades in Bangladeshi 
ducks

The Bayesian phylogenetic tree (Figure 5) indicates that clade 
2.3.2.1a has been circulating in ducks in Bangladesh since 2011. In 
2015, the novel reassortant of the clade 2.3.2.1a H5N1 virus was 
discovered in ducks (Figure 5). The majority of H5N1 viruses detected 
in waterfowl are novel reassortant of clade 2.3.2.1a. Seven H5N1 
sequences were identified as belonging to the emerging panzootic 
clade 2.3.4.4b (Figure 5). Sequences from this emerging clade clustered 
with white-tailed eagles from Japan (Hokkaido), geese from China 
(Hunan), and chickens and ducks from Africa (Nigeria and Benin). 
These sequences share a similarity of between 98.65 and 98.97% with 
H5N1 viruses of clade 2.3.4.4b from Japan and a similarity of 99.30% 
with viruses from China. This new clade may have been introduced to 
Bangladesh by the end of 2020 (Figure  5). Figure  6 shows clade 
2.3.2.1a has been silently evolving among ducks, and based on 
posterior probability >90%, and that the clade has formed at least nine 
subgroups among ducks in Bangladesh. Currently, only subclade R9 
of clade 2.3.2.1a is circulating in ducks in Bangladesh.

3.5. Maximum likelihood phylogenetic 
analysis of HA and NA sequences of H5N1 
viruses isolated in ducks in Bangladesh

Figures 7, 8 present the maximum likelihood phylogenetic trees 
of HA and NA gene segments of H5N1 viruses sequenced in this 
study. Five H5N1 viruses were detected in 2021 and the two viruses in 
2019 belonged to the newly reassorted clade 2.3.2.1a. However, they 
clustered in different groups within this clade. The two virus sequences 

TABLE 2 Risk factors of AIV and A/H5 circulation in individual ducks from the different production systems in Bangladesh (2019–2021).

A (M gene) A/H5

AOR (95% CI) Value of p AOR (95% CI) Value of p

Farming system

Backyard Reference Reference

Commercial 1.3 (0.6–2.7) 0.51 0.2 (0–1.1) 0.14

Nomadic 2.4 (1.5–3.9) <0.01 1.3 (0.6–2.7) 0.56

Age

Adult Reference Reference

Juvenile 2.2 (1.4–3.6) <0.01 1.7 (0.8–3.5) 0.18

Health condition

Apparently healthy Reference Reference

Sick 11.6 (4.8–32.4) <0.01 46.5 (18.7–130.3) <0.01

Value of p < 0.05; statistically significant.

FIGURE 5

Bayesian phylogenetic tree of H5 HA viruses of diverse clades in 
Duck in Bangladesh. Taxon labels with blue color indicate the viruses 
found in ducks under this study, and taxon labels with green color 
indicate those reassorted H5N1 viruses detected as clade 2.3.4.4b.
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FIGURE 6

Bayesian phylogenetic tree of H5 HA viruses of diverse clades along with subgroups based on >90% posterior probability in Duck in Bangladesh. Taxon 
labels with red color indicate the viruses found in ducks under this study, and taxon labels with green color indicate those reassorted H5N1 viruses 
detected as clade 2.3.4.4b. Each colored box indicates a subgroup.

from 2019 have clustered together. The maximum likelihood tree of 
HA also shows that the viruses we detected in duck hosts are similar 
to those found in chickens. BAIV-570 and BAIV-404 have clustered 
within a group with virus sequences obtained from chicken (Bootstrap 
value>95%).

4. Discussion

4.1. Prevalence and risk factors of AIV and 
subtypes in the different duck production 
systems

The high prevalence of AIV with the H5N1 subtype in nomadic 
ducks compared to backyard and commercial ducks was consistent 
with the other study conducted by Khatun et  al. (60), reported a 
higher prevalence of AIV in ducks reared in the hoar (wetland) region 
where the nomadic system is prevalent. This is because of the higher 
density of migratory birds in the hoar area, with a possible most 
increased interaction between the native duck and migratory bird 
species (61). Previous studies in Bangladesh detected AIV with 
H5N1 in both domestic and migratory ducks in wetland areas where 
domestic ducks and migratory birds shared the same feeding habitats 
in wetlands (62, 63).

Furthermore, the farm-level prevalence of AIV was also higher in 
nomadic ducks, supported by Hasan et al. (61) because the grazing 
land ecosystem is a critical factor for the circulation and spread of 
AIV. Concerning risk factors, there is a significant association among 
different farming systems, which is also supported by Henning et al. 
(64) reported that the birds that used to scavenge are most frequently 
affected. Juvenile ducks were mostly affected by both AIV M-gene and 
H5 subtype, which was supported by Strurm-Ramirez et al. (65). Our 
study revealed that the farming system significantly impacts the 
presence of AIV in ducks. The odds of AIV have been observed to 
be greater in ducks from nomadic farms than in backyard ducks. As 
low-lying areas with vast bodies of water are a favorable environment 
for raising nomadic ducks, and they have more interaction with 
migrating waterfowl than a backyard or commercial ducks, previous 
studies have shown that nomadic ducks are more susceptible to the 
AIV (66, 67). Our study also showed that juvenile ducks are more 
likely to be infected by AIV than adult ducks. A study in Canada also 
reported a higher detection rate of AIV in juvenile ducks than in adults 
(68). Adult birds presumably have acquired immunity or an enhanced 
immune response, but juvenile birds are immunologically more naive, 
rendering them more vulnerable to viral infection than adult birds (69).

Our study also showed that detecting AIV and A/H5 is higher in 
sick ducks than in apparently healthy ducks. Previous studies in 
Bangladesh and other countries have reported similar results for ducks 
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and poultry birds (2, 70–73). Even though ducks can secrete large 
quantities of a deadly virus without manifesting any outward signs of 
disease, H5N1 can cause the birds to have breathing difficulties such 

as gaping (mouth breathing), nasal snicking (coughing sound), 
sneezing, gurgling, or rattling. Since AIV causes bird sickness, the 
detection rate of AIV and H5 is higher in sick ducks (74–76).

FIGURE 7

Maximum likelihood tree of HA sequences of H5N1 viruses in Bangladesh. Taxon labels with blue color indicate the viruses found in ducks under this 
study, and taxon labels with red color indicate those reassorted H5N1 viruses detected as clade 2.3.4.4b.
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FIGURE 8

Maximum likelihood tree of 6 NA sequences of H5N1 viruses. Taxon labels with blue color indicate the viruses found in ducks under this study, and 
taxon labels with red color indicate those reassorted H5N1 viruses detected as HA clade 2.3.4.4b.

4.2. Phylodynamic of multiple clades of 
H5N1 viruses in duck farms

According to our study, multiple H5N1 virus clades are 
spreading in Bangladesh. Our study shows that two clades of H5N1 
viruses are now circulating among ducks in Bangladesh. These two 
clades, 2.3.2.1a and 2.3.4.4b, of H5N1 viruses in ducks, have also 
been detected in nearby countries such as India and China (77, 78). 
Our study shows that clade 2.3.2.1a has been detected in ducks 
since 2011 and has become endemic in ducks in Bangladesh. 
Similar to our findings, other studies reported that this clade 
reassorted, resulting in a new subclade in 2015 (79). According to 
Barman et  al. (32), this novel reassortant clade 2.3.2.1a virus 
emerged in Bangladesh via reassortment with LPAI viruses 

transmitted by migrating birds. Despite vaccination of commercial 
chicken farms in Bangladesh, Clade 2.3.2.1a HPAI has caused 
ongoing outbreaks in Bangladesh since 2011. Our study also shows 
that viruses of clade 2.3.2.1a have created at least nine subgroups 
within ducks based on >90% posterior probability. This suggests 
that the virus of this clade is silently evolving, and ducks may play 
an important role in the emergence of new clades in Bangladesh. 
Prior studies have also shown that clade 2.3.2.1a HPAIs are 
circulating in LBMs and domestic ducks in Bangladesh, where they 
play an important role in the maintenance and development of new 
reassortant viruses (25, 80).

The findings of the phylogenetic study also revealed that clade 
2.3.4.4b was introduced to Bangladesh by the end of 2020. Cui 
et al. (33) also reported that one H5N1 virus from Bangladesh 
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clustered with Chinese viruses within the 2.3.4.4b clade. Since its 
emergence in the Netherlands in October 2020, H5N1 viruses with 
the clade 2.3.4.4b HA gene have spread to several countries in 
Europe, Africa, Asia, and North and South America (81, 82). On 
the other hand, in China, Between September 2021 and March 
2022, H5N1 viruses bearing the HA clade 2.3.4.4b were discovered 
in wild birds and domestic poultry (33). Our study shows that 
seven viruses clustering within the 2.3.4.4b clade have similarities 
with viruses from Japan and China. So, it might be possible that 
migratory birds of the Central Asian flyway may influence the 
transmission of this novel clade in Bangladesh. Though the H5N1 
viruses with clade 2.3.4.4b have only been detected in Ducks in 
Bangladesh, this clade has been detected in wild birds and 
domestic Anseriformes and Galliformes in other countries (83–
85). On the other hand, this clade has also caused outbreaks in 
minks in Spain (86). More than 50 thousand mink were killed and 
their carcasses destroyed, and it was assumed that wild birds may 
have played a major role in the transmission of the virus (34). This 
virus has also been detected in harbor porpoises in Sweden (35) 
and dolphins, sea lions, sanderlings, pelicans, and cormorants in 
Peru (36), along with 8 human cases since 2022 (37). It is extremely 
alarming because the H5N1 virus is known to spread poorly 
among mammals; humans almost exclusively contract it from 
infected birds. However, it has since been established that the 
2.3.4.4b outbreak in minks spread throughout a tightly-knit 
mammalian population (87). Given that the virus has already been 
introduced to Bangladesh, it is likely that this clade may also 
spread to chickens and other poultry through ducks and wild 
birds. As a result, there is a danger of transmission among humans 
as well as the possibility of a pandemic. We recommend carrying 
out a thorough risk analysis so that decision-makers may fully 
comprehend the risks connected to AIV and H5N1 outbreaks, the 
possible effects of the epidemic, and the steps that can be done to 
prevent or mitigate the disease’s transmission.

5. Conclusion

This study demonstrates that H5N1 circulating in all three duck 
farming production systems and nomadic farms poses a higher risk 
of AIV infection than those from residential or commercial farms. 
Age and health of ducks influence the risk of AIV and H5N1 
infection in populations of ducks. Clades 2.3.2.1a and 2.3.4.4b of 
H5N1 are circulating in Bangladeshi waterfowl. The duck farmer 
should receive appropriate training to enhance farm biosecurity 
practices in order to prevent the spread of AIV. Enhanced AIV 
surveillance is necessary for both domestic and migratory 
waterfowl, with a focus on Anseriformes production systems, to 
analyze the genetic diversity of H5N1 viruses and to determine the 
evolution of the virus at high-risk interfaces between domestic 
ducks and migratory birds.
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