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In the context of global warming, urban climate problems such as heat waves, 
urban heat islands and air pollution are becoming increasingly prominent, and 
the cooling effect of rivers is an effective way to mitigate urban hot climate. This 
study investigates the surrounding urban area of the Hun River in Shenyang, a 
severe cold region of China, by calculating satellite inversion surface temperature 
and urban morphology data, and explores the cooling effect of rivers using 
linear regression models and spatial regression models. The results show that 
(1) water bodies have a cooling effect on the surrounding environment, with the 
farthest cooling distance being 4,000 m, but the optimal cooling distance being 
2,500 m. (2) In the results of the spatial regression model analysis, the R2 value 
stays above 0.7 in the range of 0–4,000 m, indicating that urban morphological 
factors are closely related to LST (land surface temperature). The negative 
correlation is most pronounced for NVDI (normalized vegetation index), with a 
peak of −14.8075 calculated by the regression model, and the positive correlation 
is most pronounced for BD (building density), with a peak of 8.5526. (3) The 
urban thermal environment can be improved and the heat island effect mitigated 
through measures such as increasing urban vegetation cover and reducing 
building density, and these findings can provide data references and case studies 
to support urban planning and development departments.
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1. Introduction

In the context of global warming, the urban living environment is gradually deteriorating 
and the issue of urban heat islands and heat waves of high frequency, intensity and duration has 
become a widespread concern (1). High temperatures can cause cardiovascular, cerebrovascular 
and respiratory diseases; lead to business shutdowns, school closures and a reduction in outdoor 
recreational activities (2). High temperature weather also increases the use of air conditioning 
and water stress among urban residents, which also has a significant negative impact on energy 
conservation and emission reduction (3, 4). The older adult/adults is more vulnerable to high 
temperature and will be seriously affected by high temperature in the future. Therefore, it is very 
necessary to carry out health related assessment and urban planning to ameliorate heat risk in 
China, which is facing deep aging.

Several studies have shown that the human body adapts differently to the perception of the 
surrounding thermal environment in different regions (5–8). For example, people in colder 
regions are less able to adapt to heat, and the risk of increased mortality in hot summer 
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conditions is much higher than in hotter regions (9, 10). Davis et al. 
analyzed more than 25 years of mortality data and found that most 
northern cities in the United  States experienced excess summer 
mortality, in contrast to southern cities that experienced little or no 
increase in mortality during high temperatures, regardless of the 
severity of the extreme heat event (11). In the context of global 
warming, the occurrence of high temperatures in cold regions is 
increasing significantly in frequency. This provides new challenges for 
urban construction and planning.

The urban thermal environment is strongly influenced by building 
form, with different types of land use, building height, density and 
form all affecting the urban thermal environment to varying degrees 
(12). For example, B. Chun et al. found a positive correlation between 
LST and building roof area, and a negative correlation between NDVI, 
SVF and water body area and LST (13); Jun Yang finds that high-
density high-rise buildings increase surface temperatures (14); 
Guanghua Guo et al. found that building density had a greater effect 
on LST than building height (15); Chun Yin et al. found that both land 
use type and urban form have a role in heat island mitigation (16). In 
addition, the urban form influences to some extent the ventilation 
efficiency of the city, which also contributes to the mitigation of urban 
heat islands (17, 18).

Water bodies are good regulators of the thermal environment and 
contribute significantly to high temperatures and urban heat islands 
(19). Rivers act as corridors to promote urban ventilation and the 
lower temperatures at the river surface have a cooling effect on the 
surrounding urban heat island (20). The intensity of the cooling effect 
is related to the size, area covered, form and distance of the river. For 
example, Cai Zhi et al. compared the spatial relationship between the 
layout of water bodies and the thermal effect of water bodies in 34 
medium and mega cities in China, and concluded that for the majority 
of urban water bodies have a cooling effect and the average cooling 
distance is between 431 and 1,350 m (21); Saburo Murakaw et al. 
found that the Ota River in Hiroshima City cools in the direction of 
the vertical river up to a distance of about 100 m (22). Hathway et al. 
found that rivers can reduce surrounding temperatures by 1–1.5°C, 
with greater cooling achieved when connected to green spaces (23); 
Xu Xiyan and others found that the time when the water body has the 
best cooling effect on the surrounding area is around 14:00 in the 
afternoon (24). These studies all demonstrate the positive effect of 
rivers on urban heat island mitigation.

Existing studies on the thermal environment are more often based 
on localized investigations in different climatic zones by means of 
actual measurements (25–27), or a study on the thermal environment 
of regional landscapes near rivers (28–30). However, the impact of 
river cooling effects on the thermal environment has been less 
investigated at the level of urban morphology, especially from the 
macro perspective of urban morphology to study the urban summer 
thermal environment in severe cold regions. Therefore, in order to 
cope with the increased frequency of urban heat islands and high 
temperatures under a warming climate, it is necessary to propose 
adaptive spatial strategies for cold regions to cope with the summer 
thermal environment. Secondly, building forms have different 
mechanisms of influence on the thermal environment in various cities 
and climatic conditions, and it is necessary to understand the 
mechanisms of influence on the thermal environment and spatial 
form in further detail for each city. In addition, rivers are an important 
source of urban cooling and an important way to mitigate urban 
thermal environment, but the mechanisms of the river cooling effect 

in relation to urban morphology at an urban level are still under-
researched and are often overlooked by urban planners when 
developing road, landscape and neighborhood morphology around 
rivers. It is therefore crucial to address the research related to the 
thermal environment and urban morphology around rivers in severe 
cold regions in order to identify strategies for the design of 
urban spaces.

Thermal environment studies in conjunction with LST have been 
applied in many cities (31, 32). This study takes the central area of 
Shenyang, a cold region of China, as an example. Typical high-density 
urban neighborhoods around the large river Hun River are selected 
for analysis, satellite inversion surface temperature and urban 
morphology data are calculated, linear regression models and spatial 
regression models are used to explore the cooling effect of the river 
and to analyses the relationship between urban morphology and 
surface temperature, and to provide guiding suggestions for adaptive 
design to cope with the high summer temperatures in Shenyang.

The main objectives of this study are as follows: (1) to analyses and 
verify the cooling effect and cooling range of the Hun River, and to 
provide a basis for urban strategies to exploit the cooling effect; (2) to 
calculate the correlation between urban morphological parameters 
and LST in the area around the Hun River and the spatial regression 
relationship, and to compare the mechanisms and differences in the 
thermal environment impact of different urban morphological 
parameters; (3) to propose corresponding response strategies. The 
results of the study provide a theoretical basis and technical guidance 
for spatial optimization of the use of rivers as cold sources in cold 
regions to mitigate the thermal environment in hot weather in the 
context of climate change.

2. Study area

The city of Shenyang, the subject of the study, is located in the 
northeast of China (N41°48′11.75″, E123°25′31.18″) and has a temperate 
monsoon climate with distinctive climatic features in all seasons, with 
the highest temperature occurring in July, when the average temperature 
is around 24°C and the hottest temperature can be as high as 39°C. The 
Hun River in Shenyang flows mainly from the northeast to the southwest 
and is an important landscape resource in the city. The study area is the 
surrounding cities in the main basin of the Hun River, with high-density 
urban neighborhoods and a rich variety of architectural forms (Figure 1). 
The study area includes large green areas such as the South Canal and 
Zhongshan Park, as well as a large number of residential and commercial 
areas, mainly the riverfront residential area, the station commercial area, 
the South Canal area and the financial and commercial area of Youth 
Street. There are four major urban roads perpendicular to the river in the 
study area, namely Nanyang Lake Street, Gili Lake I Street, City Train 
Road and Nanjing South Street.

3. Materials and methods

In this study, GIS, remote sensing data inversion, correlation 
analysis and spatial regression models were used to analyze and collate 
the basic data and calculate the urban heat island intensity, and finally, 
step-by-step sampling was used to verify the cooling effect of rivers 
and establish a spatial regression model, the research process and ideas 
are shown in Figure 2.
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The remote sensing data in this study were downloaded from the 
Landsat8 satellite data from the Geospatial Data Cloud website1, and 
the remote sensing images were acquired on 26 August 2016 at 

1 http://www.gscloud.cn

10:34 a.m. There was no cloud coverage over the study area, and the 
acquired remote sensing images were processed through the ENVI 
software platform for data calculation, and the surface temperature A 
single window algorithm was used for the inversion, which in turn 
was used to obtain data such as surface temperature and normalized 
vegetation index (33).

A B

FIGURE 1

Study area.

FIGURE 2

Research framework.
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Spatial scale (grid size) is a decisive variable in urban 
environmental studies. The urban surface has a complex built form 
and if the scale is too large it will affect the accuracy of the data, while 
if the scale is too small it will not be representative of the whole area. 
Therefore, based on the study by Masson, Nassar and others, a scale 
of 250 × 250 m is used for the study of neighborhoods, which is a good 
representation of urban morphology and also correlates well with the 
local microclimate of the city (34, 35).

3.1. Inversion of land surface temperature

Based on the study area boundaries and data sources, we mapped 
Landsat 8 thermal infrared sensor (IRS) images within the study area, 
representing the LST distribution during heat and non-heat waves, 
respectively (Figure 3).

Common methods used to calculate the LST are the single-
window algorithm, the split-window algorithm and the single-channel 
algorithm. The single-window algorithm is a function of atmospheric 
transmittance (τ), mean atmospheric temperature (Ta) and surface 
emissivity (ε). The parameters used in this method are easily obtained 
and the spatial distribution of the LST can be accurately obtained. In 
summary, the single-window algorithm proposed by Qin Zhihao et al. 
is used in this paper to calculate the LST (Eq. 1) (33).
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Based on the temperature range of the study area, a coefficient 
value of −62.7182 and a b value of 0.4339 were selected for this 
study. T10 is the brightness temperature of Landsat 8 TIRS Band 10. 
C10 and D10 are the internal parameters of the algorithm based on 
atmospheric parameters and ground radiance. The relative humidity 
and near-surface air temperature entered in the single-window 
algorithm were obtained from meteorological observations during 
the study period. Finally, the image raster was converted to 100 m 
using the GIS resampling tool to match other data layers. The LST 
values obtained in this way were the dependent variables for the 
quantitative analysis.

FIGURE 3

Land temperature distribution map.
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3.2. Urban spatial factors

In this study, various urban morphology and cold source factors 
were selected to describe the spatial conditions of the city. The urban 
morphology factors include NDVI (Normalized difference vegetation 
index), FAR (Floor area ratio), SVF (Sky view factor), MH (Building 
mean height) and BD (Building density). The calculation formulae are 
shown in Table 1.

3.3. River cooling effect

The cooling effect of water bodies was obtained by correlation 
analysis of urban morphological factors and surface temperature. A 
stepwise regression method was first used to gradually remove 
samples from the vicinity of the water body, and then correlation 
analysis was used to determine whether LST increased with distance 
and whether the correlation between urban morphological factors and 
LST varied with distance. Due to the large area of the Hun River and 
the large cooling range, 500 m was used as the distance unit and the 
sample was gradually excluded eight times, with the furthest distance 
being 4,000 m. A linear regression model of the urban morphological 
parameters as variables and the urban surface temperature was 
established by correlation analysis, while the standardized regression 
coefficient R2 was also used to explain and compare the degree of 
influence of the factors. The Pearson correlation coefficient was 
compared with the R2 value to analyses whether the cooling effect of 
the water body affects the relationship between the urban 
morphological factor and LST and how far it can reach at maximum.

3.4. Spatial regression models

According to Tobler’s first law “Everything is correlated with 
everything else, but things that are close together are more correlated 
than things that are distant.” It can be assumed that surface temperatures 

may have spatial autocorrelation. The spatial autocorrelation of surface 
temperature (LST) may be  explained by the fact that surface 
temperatures interact with each other between spatial units due to heat 
conduction, convection and radiation. This study therefore builds spatial 
autoregressive models using GeoDa, a free, open-source software tool 
that can support the building of multiple spatial autoregressive models. 
Therefore, before building the spatial regression model, the global 
Moran’s I and the local Moran’s I were used to test the global spatial 
autocorrelation and the local spatial autocorrelation of the surface 
temperature (LST) to verify the spatial autocorrelation of the LST, 
respectively. A Moran’s I greater than 0 indicates a positive correlation 
and less than 0 indicates a negative correlation; a value close to 0 
indicates that the variables are randomly distributed or that there is no 
spatial autocorrelation; a value close to 1 indicates a perfectly positive 
correlation; a value close to −1 indicates that dissimilar properties are 
clustered, i.e., high values are adjacent to low values.

Two types of spatial regression models are often used in spatial 
regression analysis: the Spatial Lag Model (SLM) and the Spatial Error 
Model (SEM). The Spatial Lag Model (SLM) is considered to be the 
result of autocorrelation of the dependent variable, which is considered 
in the dependent variable equation. In the field of research, the Spatial 
Lag Model (SLM) is more effective when the dependent variable 
within a cell is more likely to be influenced by the dependent variable 
in nearby cells, and the Spatial Error Model (SEM) is more effective 
when the error term of the variable is more likely to be influenced by 
the spatial location. The expressions for the spatial lag model SLM and 
the spatial error model SEM are as follows, respectively:

 
y W xSLM y� � �� � �

 
(4)

 y x WSEM � � �� � ��  (5)

where ρ is the spatial correlation coefficient, 𝑊𝑦 is the spatial 
matrix of the dependent variable, β the independent variable 
coefficient, γ is the residual correlation coefficient, 𝑊𝜀 is the residual 
spatial matrix, and ℇ is the residual variable. The independent variables 
in this study are sky visibility factor (SVF), building density (BD), 
mean building height (MH), floor area ratio (FAR), normalized 
difference vegetation index (NDVI), and the dependent variable is LST.

The Lagrange Multiplier (LM) and Robust Lagrange Multiplier 
(R-LM) methods were used to test the variables to select the appropriate 
model for the study. The judgment is based on comparing the magnitude 
of LM (lags) and LM (errors), R- LM (errors) and R-LM (errors) while 
ensuring significance. Where LM (lag) and R- LM (lag) represent the 
spatial lag model (SLM) and LM (error) and R-LM (error) represent the 
spatial error model (SEM). The spatial lag model (SLM) is chosen when 
LM (lag) and R-LM (lag) are large (or significant), and the spatial error 
model (SEM) when LM (error) and R-LM (error) are large.

4. Results and discussion

4.1. Cooling effect influence mechanism

The Pearson correlation coefficients between each morphological 
parameter and LST were calculated by SPSS software with the change 

TABLE 1 Definition and calculation of urban spatial factors.

Factor Formula/Calculation

BD 1S
BD
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n
ii

A
= =∑

Si : basal area of a single 

building
SA : land area

:hi  building height
Fi : number of floors on a single 

building

FAR 1S F
FAR

S

n
i ii

A
= =∑

MH 1

1

S h
MH
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n
i ii

n
ii

= =

=

∑
∑

SVF 1 sin
360

2

1

aSVF
n

i

i
β  = −  ° =

∑
β : azimuth angle of i
ai : elevation angle of i

NDVI NIR RNDVI
NIR R

−
=

+

NIR is band 5 in Landsat8 data 

for the near infrared band and R 

is band 4 in Landsat8 data for the 

red light band.
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of distance, and the calculated results were statistically analyzed as 
shown in Figure 4. When 0 < DIST<2,500 m, the correlation between 
urban morphological factors and LST remains low and stable. When 
DIST>2,500 m, the correlation between some urban morphological 
factors and LST increases rapidly, such as the significant negative 
correlation between NDVI, SVF and LST, but this correlation 
increases inversely after 2,500 m. As a major factor reflecting open 
space and shading effectiveness, a higher SVF usually means that there 
are fewer buildings or low-rise urban forms that can reach the surface, 
and therefore, a higher SVF leads to a higher LST during the day. 
However, by comparing the spatial distribution of the samples, i.e., 
LST and SVF values on each distance interval, the analysis revealed 
that the samples with high SVF values and low LST values were mostly 
distributed in areas near the river. This is because open areas are more 
susceptible to the influence of water bodies. Open space facilitates air 
flow and accelerates heat exchange, which has a significant cooling 
effect on the ground surface and weakens the positive correlation 
between SVF and LST. As the distance increases, the cool airflow from 
the water body is gradually heated by the surface or buildings, and the 
cooling effect diminishes, weakening the influence of the water body 
on more distant areas, and the positive correlation between SVF and 
LST increases.

In Figure 4, NDVI, a common indicator of vegetation cover, was 
significantly and negatively correlated with LST. The Pearson 
correlation coefficient decreased with increasing distance. The linear 
regression model between NDVI and LST became significant 
immediately after excluding samples at distances less than 2,500 m. 
We also found that surface temperatures corresponding to study units 
with the same NDVI values had lower LST values for samples close to 
water bodies, which also suggests that water bodies have a greater 
influence on the surrounding area, interfering with the correct 
quantitative relationship between NDVI and LST.

BD, FAR and LST are significantly positively correlated, and the 
correlation between BD, FAR and LST remains low and stable when 
DIST <2,500 m, and the correlation between the two parameters and 
LST increases inversely when DIST >2,500 m. The analysis found that 
regions with the same high FAR and BD would have lower 
corresponding LST along the river, because the cooling effect along 
the river would interfere with the positive correlation between FAR, 
BD and LST.

The correlation between MH and LST shows a negative 
correlation, as do SVF and FAR, but the Pearson correlation coefficient 
between MH and LST has remained low and not clearly correlated, 
but both change inversely at 2,500 m. It also indicates that the 2,500 m 
range is influenced by river cooling effects.

The fit coefficients R2 of the morphological parameters and LST 
were calculated using the stepwise sampling method, and a trend 
consistent with the Pearson correlation coefficients was found, with 
the inverse abrupt change occurring at 2,500 m. This reinforces the 
influence of the water-cooling effect on the relationship between the 
morphological parameters and LST within 2,500 m. The analysis 
found that BD and NDVI maintained a good fit with LST, with the 
coefficients R2 reaching 0.467 and 0.457 respectively, while FAR, SVF 
and MH had a poor fit with LST, with R2 remaining low Figure 5. It is 
worth noting that the correlation between individual parameters and 
LST appears to be below 0.2, with a minimum of less than 0.1. The 
same situation has been observed in similar previous studies (19). The 
main reason for this is that LST is influenced by a combination of 

factors, whereas the Pearson correlation coefficient only addresses the 
relationship between a single parameter and LST. This further suggests 
that LST is difficult to predict from a single parameter and that the 
effect of a combination of factors on LST needs to be further discussed 
with the help of a multiple regression model.

We performed a regression analysis Figure 6 on all data samples 
calculated and obtained a significant correlation distance of 4,000 m. 
Combining the Pearson correlation coefficient and the fitted 
coefficient R2 with the curvature change of the curve, we obtained an 
optimum cooling distance of 2,500 m with an associated maximum 
cooling temperature of 7°C. This also indicates that most of the study 
area is affected by the cooling effect of the Hun River.

4.2. Regression model analysis results

Spatial autocorrelation validation of LST in GeoDa, the Moran 
index is often used to validate the spatial autocorrelation of cells and 
is used to express the clustered distribution of variable data in the 
study cell (36). It is calculated as follows.

 

I
n w x x x x

w x x

i j ij i j

i j ij i i
�

�� � �� �

� � �� �
� �
� � � 2

 

(6)

where n is the geographical unit; xi and xj are the spatial locations 
of i and j; and wij is the spatial weight of the spatial structure between 

FIGURE 4

Pearson correlation coefficient LST— urban morphological factors.

FIGURE 5

LST— R2 of fitting coefficients of urban morphological factors.
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units i and j. The Moran’s I  result of 0.683 was calculated by the 
software and was significantly correlated, indicating the presence of 
LST with strong spatial autocorrelation. Experiments can therefore 
be conducted using the spatial autoregressive model (SAR) technique.

In order to select the appropriate type of spatial autoregressive 
model (SAR) prior to the experiment, the values of LM(lag) and 
LM(error), R- LM(lag) and R-LM(error) were calculated using the 
analysis software GeoDa, and then the magnitudes of the two sets of 
data were compared to determine the choice of model. Testing nine 
models for the stepwise sampling method using GeoDa (Table 2). The 
results of the LM analysis showed that nine models had a p-value of 0 
and eight models had a value of LM(lag) greater than LM(error), then 
comparing the test values of R-LM, again all had a p-value of 0 and all 
eight models had a value of R-LM(lag) greater than R-LM(error), with 
only one model having the opposite. Based on the test results, the SLM 

and SEM models were selected for the spatial regression analysis of 
the corresponding data. The SLM model was used for the eight models 
from 0 to 3,500 m, and the SEM model was used for the model in the 
4,000 m range.

The four parameters, R2, the fit coefficient, AIC (Akaike 
Information Criterion), LL (Log Likelihood) and BIC (Bayesian 
Information Criterion), calculated by GeoDa, can describe the 
goodness of fit of each model, and can determine the explanatory 
power of a parameter or a combination of parameters for LST.

The larger the values of R2 and LL and the smaller the values of 
AIC and BIC, the better the fit of the model. Both models maintain a 
high level of R2 after simulation, indicating that the change in 
temperature is a combination of multiple factors. As the distance 
changes from 0 to 4,000 m, the values of R2 and LL are gradually larger 
and the values of AIC and BIC are gradually smaller, this change 

FIGURE 6

Scattered plot of offshore distance and temperature.

TABLE 2 Lagrange multiplier method for spatial dependence diagnosis (model 1–model 9).

0 500 1,000 1,500 2,000

Lagrange multiplier (lag) 702.4156 675.4082 667.5104 588.1220 517.0403

Robust LM (lag) 145.2238 130.9775 135.4465 123.1254 110.8589

Lagrange multiplier (error) 638.2214 641.3269 613.6186 528.9586 451.9600

Robust LM (error) 81.0296 96.8961 81.5747 63.9620 45.7786

2,500 3,000 3,500 4,000

Lagrange multiplier (lag) 451.5896 360.1648 310.5523 232.1848

Robust LM (lag) 94.8063 68.9224 60.7878 29.6346

Lagrange multiplier (error) 399.5371 328.4569 277.0409 241.0755

Robust LM (error) 42.7537 37.2144 27.2764 38.5253

In the results of tables, the values marked with * represent values with some correlation and the values bolded and marked with * represent values with significant correlation.
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indicates that the model fit is getting better and better, indicating that 
the distance has a great influence on the relationship between each 
morphological parameter and LST, and also reflects the river cooling 
effect on temperature.

The results of the calculation in Table  3 show that the nine 
regression coefficients R2 have been maintained at a high level, up to 
0.77. Compared with the traditional regression model, the spatial 
regression model avoids over-expanding the influence of one 
morphological parameter on the surface temperature, and can better 
analyses the relationship between each morphological parameter and 
the surface temperature; With the change of distance, the 
morphological parameters of each city fluctuate relatively more in the 
range of 0 ~ 2,500 m, and stabilizes after 2,500 m, which is consistent 
with the results of previous analysis using traditional models. This 
result further verifies that the Hun River has a strong influence on the 
correlation between various urban morphological factors and LST in 
the range of 2,500 m.

The results of the analysis of the nine models show that FAR, 
NDVI and SVF are negatively correlated with LST, while BD is 
positively correlated with LST. NDVI accounts for the largest 
proportion of the models, while FAR accounts for the smallest. 
This also shows that NDVI has a greater influence on LST, 
greenery can absorb thermal radiation well and also improve the 
thermal environment of the study area, which has a greater 
potential to reduce the temperature of the study area; SVF tends 
to be related to the solar radiation received, and areas with a large 
SVF will receive more solar radiation and in turn will have higher 
surface temperatures, but the SVF in this study is a relatively 

small proportion of the overall regression model and has a 
relatively weak effect on the surface temperature of the 
whole area.

BD accounts for a relatively large proportion of each regression 
model parameter and has a large impact on LST; study areas with high 
density buildings tend to have poor ventilation, less green permeable 
surfaces, and large impervious surfaces are able to absorb a large 
amount of radiation during the day, causing a sharp increase in 
temperature in the study area and seriously affecting living comfort; 
this has similarities to the conclusions of other scholars under other 
climatic regions in China that urban density and height are the main 
factors affecting the urban thermal environment (37–39). High 
temperatures in urban neighborhoods caused by high building density 
can be mitigated by adding vegetation to the building envelope and 
changing the substrate (40, 41). In addition, BH, although showing a 
negative correlation, is a very small proportion of the model and the 
correlation is very weak, indicating that the influence of MH on 
surface temperature LST is not significant. The above findings reveal 
the main urban morphological factors affecting the urban thermal 
environment in the northern cold regions.

4.3. Limitations

This study objectively analyses the influence mechanisms of rivers 
on the surrounding environment mainly from the perspective of 
urban morphological factors, but there are still some limitations in the 
study. For example, there are many factors affecting the urban thermal 

TABLE 3 SLM and SEM model results summary.

Explanatory 
variables

0 500 1,000 1,500 2,000

FAR −0.621923* −0.592474* −0.558484* −0.581561* −0.639688*

NDVI −9.14571* −11.9261* −11.0686* −10.6083* −11.5172*

SVF −1.30675* −0.903103* −0.794795* −0.743754* −0.905655*

MH −0.015952* −0.020362* −0.023883* −0.0225889 −0.020622*

BD 6.48366* 5.46208* 5.70278* 5.96807* 5.96936*

R2 0.774048* 0.773820* 0.771452* 0.756536* 0.732695*

LL −1967.71 −1911.94 −1839.18 −1688.55 −1538.27

AIC 3949.43 3837.89 3692.35 3391.1 3090.54

SC 3984.36 3872.74 3726.97 3425.16 3123.92

2,500 3,000 3,500 4,000

FAR −0.564231* −0.567791* −0.757822* −0.792847*

NDVI −11.7415* −12.2787* −10.5721* −14.8075*

SVF −1.27097* −1.31858 −0.986023 −1.59811

MH 0.0361844* −0.0386267 −0.0214078 −0.0295309

BD 5.27814* 5.54606* 7.5223* 8.55264*

R2 0.732120* 0.718081* 0.716654* 0.724359*

LL −1355.45 −1171.87 −1011.03 −848.99712

AIC 2724.9 2357.74 2036.05 1709.99

SC 2757.52 2389.44 2066.74 1735.27

In the results of tables, the values marked with * represent values with some correlation and the values bolded and marked with * represent values with significant correlation. 
The * sign indicates that the numerical results are somewhat correlated, but not significantly so.
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environment, such as the cooling effect of water bodies on the urban 
thermal environment, which is related to sunlight, ventilation, etc. The 
influence of the evaporation of river water on the surrounding 
environment under different sunlight conditions; the different cooling 
effects of different wind directions on different neighborhoods. In the 
future, we  will consider more influencing factors to improve the 
accuracy of the study, such as setting up multiple measurement points 
to investigate the causes of temperature differences in different 
regions, and adding climate and wind direction to further explore the 
influencing factors.

5. Conclusion

This paper presents a spatial regression model analysis of the 
environment around the Hun River in Shenyang. The spatial 
regression model calculation between LST and urban morphological 
factors verifies the mechanism of the cooling effect of the river on the 
surrounding neighborhoods and finds the following conclusions.

 1. The river has a cooling effect on the surrounding urban 
neighborhoods and distance has a direct influence on the 
relationship between various urban form factors and LST, with 
a certain regularity in terms of distance.

 2. Using the step-by-step sampling method of analysis, the 
maximum cooling distance of the Hun River for the 
surrounding environment is 4,000 m, but the optimum cooling 
intensity distance is 2,500 m.

 3. Based on the discussion of the results of the analysis of different 
slices by stepwise sampling, we find that there is an interaction 
between some of the parameters LST in the urban 
morphological factors with the change of distance. For 
example, the influence of NDVI and BD on LST starts to 
gradually increase after 2,500 m, indicating that the influence 
of the river on the surrounding cooling effect gradually 
decreases after 2,500 m.

This paper analyses urban surface temperature change from both 
an urban morphology and river perspective, in order to investigate the 
extent and pattern of river influence on surrounding urban 
neighborhoods. The above research findings provide a case reference 
for the mechanism of the influence of urban water bodies on the 
surrounding environment in cold regions, and provide data support 
for urban management, planning and architectural design work. In 
future urban planning and design, the cooling effect mechanism of 

rivers can be fully utilized in planning and design, and measures such 
as controlling building form, increasing green vegetation cover and 
reducing building density can be taken to improve the urban thermal 
environment and reduce urban heat island.
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Glossary

Name Definition

LST (Land surface temperature) Indicator used to characterize the surface temperature of a city.

NDVI (Normalized difference 

vegetation index)
A normalization index that describes the spatial distribution of vegetation, and the range is −1–1.

FAR (Floor area ratio) An urban form factor that represents the ratio of overall floorage to research unit.

SVF (Sky view factor) The ratio at a point in space between the visible sky and a hemisphere centered over the analyzed location.

MH (Building mean height) An urban form factor that represents the ratio of total building volume to total building base area.

BD (Building density) The floor area of the building divided by the total area of the site.
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