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AMAnD: an automated
metagenome anomaly detection
methodology utilizing DeepSVDD
neural networks

Colin Price* and Joseph A. Russell

Life Science Resource Center, MRIGlobal, Gaithersburg, MD, United States

The composition of metagenomic communities within the human body often

reflects localized medical conditions such as upper respiratory diseases and

gastrointestinal diseases. Fast and accurate computational tools to flag anomalous

metagenomic samples from typical samples are desirable to understand di�erent

phenotypes, especially in contexts where repeated, long-duration temporal

sampling is done. Here, we present Automated Metagenome Anomaly Detection

(AMAnD), which utilizes two types of Deep Support Vector Data Description

(DeepSVDD) models; one trained on taxonomic feature space output by the

Pan-Genomics for Infectious Agents (PanGIA) taxonomy classifier and one trained

on kmer frequency counts. AMAnD’s semi-supervised one-class approach makes

no assumptions about what an anomaly may look like, allowing the flagging

of potentially novel anomaly types. Three diverse datasets are profiled. The first

dataset is hosted on the National Center for Biotechnology Information’s (NCBI)

Sequence Read Archive (SRA) and contains nasopharyngeal swabs from healthy

and COVID-19-positive patients. The second dataset is also hosted on SRA and

contains gut microbiome samples from normal controls and from patients with

slow transit constipation (STC). AMAnD can learn a typical healthy nasopharyngeal

or gutmicrobiome profile and reliably flag the anomalous COVID+ or STC samples

in both feature spaces. The final dataset is a synthetic metagenome created

by the Critical Assessment of Metagenome Annotation Simulator (CAMISIM). A

control dataset of 50 well-characterized organisms was submitted to CAMISIM

to generate 100 synthetic control class samples. The experimental conditions

included 12 di�erent spiked-in contaminants that are taxonomically similar to

organisms present in the laboratory blank sample ranging from one strain tree

branch taxonomic distance away to one family tree branch taxonomic distance

away. This experiment was repeated in triplicate at three di�erent coverage

levels to probe the dependence on sample coverage. AMAnD was again able to

flag the contaminant inserts as anomalous. AMAnD’s assumption-free flagging

of metagenomic anomalies, the real-time model training update potential of

the deep learning approach, and the strong performance even with lightweight

models of low sample cardinality would make AMAnD well-suited to a wide

array of applied metagenomics biosurveillance use-cases, from environmental to

clinical utility.
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1. Introduction

The applicability of regular sequencing applications that

monitor compositions of soil (1), wastewater (2), built-

environment (3), clinical (4, 5), and other types of microbiomes

are increasingly salient as climate change and synthetic

biology technologies complicate the infectious disease and

biothreat landscape (6, 7). Research and development of

shotgun metagenomics biosurveillance protocols have led to an

exponentially increasing amount of publicly available metagenomic

data (8). A common prompt of metagenomics inquiry (particularly

in routine monitoring applications) is whether there is genetic

material in the sample that is not expected to be present.

Anomalies can take many different forms depending

on context. In a lab environment, technician errors may

introduce human materials or other contaminants (9). Changes

in environmental factors may make a soil environment favorable

for a new ecologically disruptive microbe or genotype (10). A

human infected with a pathogen or suffering an adverse clinical

condition may experience shifts in the species distribution of their

microbiome (11). In some cases, the context of what an anomalous

metagenomic sample looks like can be known a priori, but in

more dynamic or less-routinely sampled environments (e.g., the

cabin and crew of a deep space flight), little is known of how a

microbiome might change, yet these shifts may indicate a need for

immediate remedial action. Across metagenomics, there is a need

for computational metagenomic anomaly detection that works

with high fidelity and can detect a broad spectrum of possible

anomalies while making few assumptions about what form an

anomaly might take.

The current state-of-the-art methods for metagenomic signal

detection include a variety of machine learning-based methods

including clustering-based methods like k-means, linear models

like Support Vector Machine, and non-linear tree or neural

network-based models (12–14). The increasing availability of

high-dimensional metagenomics data lends itself well to machine

learning methods that can glean complex insights into the

problem in any given domain. Specifically, for anomaly detection

in metagenomics applications, the “Squeegee” algorithm was

developed to identify and remove contaminating sequences from

applied metagenomics datasets (15). Squeegee accomplishes this

by matching k-mers—short sequences of DNA of length k—

to identified contaminant candidate organisms and removing

sequences matching these k-mer profiles from the analysis. While

this approach has been shown to be effective at improving the

resolution of “on-target” signals of interest, it still requires a

priori knowledge of what anomalous metagenomic signatures may

look like.

Here, we describe AMAnD—automated metagenome

anomaly detection—methodology utilizing DeepSVDD neural

networks. AMAnD is designed to identify and flag anomalous

metagenomic samples that diverge from standard or “normal”

signatures produced through routine metagenomic monitoring.

AMAnD leverages two metagenomics signature types—k-mers

and taxonomic classifications—to identify anomalies but requires

no a priori definition of what a potential anomaly may present as.

AMAnD is trained on a historical corpus of representative samples

from user-defined standard conditions and, when presented with a

new dataset, will decide whether the new sample is representative

of historical trends. By leveraging the DeepSVDD architecture and

two feature spaces (k-mers and taxonomies), AMAnD is flexible

and can capture more complex patterns in metagenomics data than

other metagenomics-anomaly/contaminant-detection algorithms.

By not requiring pre-definition of problematic or contaminating

sequence types, it can more reliably flag samples that may be

anomalous in ways a user does not expect. This is especially

useful for emerging paradigms where deployed metagenomics

biosurveillance can add a lot of value, including wastewater

surveillance, agricultural or zoonotic reservoir surveillance,

and crew health monitoring in extreme environments (e.g.,

long-duration, human-occupied spacecraft).

2. Methods

2.1. Selection of DeepSVDD as
methodology

One-class classification is well-suited to problems where the

dataset is imbalanced or if one class is unavailable at training time

(16). Anomaly detection is an example of a highly imbalanced

data problem—e.g., the majority of the data passing through

the network is of the typical “normal” class, which makes one-

class detection a strong approach. Another advantage of one-

class classification is that there are no assumptions imparted

at training time about the nature of the anomaly. Two-class

classification models make labeling decisions (for example, normal

or anomalous) by learning both the typical control profile as well

as an anomalous profile. The learning of an anomalous profile

assumes that future anomalies will all be similar to those used at

training time which may limit the ability to flag samples that are

anomalous in unexpected ways.

Autoencoders and variational autoencoders are popular choices

for anomaly detection across many fields of application (17, 18).

Autoencoder-like networks compress the input signal through

multiple, successively smaller, feed-forward layers of activation

functions to learn weights that compress the signal into a

representative low-level feature space. A mirrored network on the

opposite side then learns weights to expand and reconstruct the

low-level feature space back into the original signal. A threshold

or tolerance between the difference of the original signal and

the reconstructed signal (also known as “anomaly score” or

“reconstruction score”) is learned based on the variance between

the inputs such that any difference too great between the original

signal and reconstructed signal is flagged as anomalous.

DeepSVDD expands on the autoencoder-like network

approach to anomaly detection by learning a function that

describes a minimal n-dimensional hypersphere that encloses

the representation of the typical normal class (19, 20). This

means defining a center and the smallest radius that encloses the

maximum data within any given feature space (19). The outer

edge of the hypersphere can be thought of as a threshold; data

points outside the hypersphere radius are labeled as anomalous

and data points inside are considered normal. DeepSVDD was

designed for anomaly detection use-cases and naturally can be used

to extend the advantages of autoencoder with the ability to learn
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the n-dimensional hypersphere on the compressed feature space

of the autoencoder network. AMAnD uses the PyOD library’s

autoencoder, based on tensorflow, which has been benchmarked

well against other anomaly detectors (21). The mathematics behind

the DeepSVDDmodel is detailed more in Supplementary Figure 1.

2.2. Selection of feature vectors

AMAnD was profiled on two feature spaces chosen to cover, in

ensemble, the diversity of possible anomalies that may be present

in a metagenomic dataset. The first feature vector is the output

of the PanGIA (22) taxonomy classifier which is filtered down

to attributions of reads at the genus, species, and strain levels

crossed with two different read count normalizations including;

reads normalized to reference (RNR) and reads normalized by

sequence identity (RNI). RNR is the value of the number of reads

mapping to a given reference divided by the total number of

other references that each of those reads map to at the defined

mapping stringency. RNI is the sum of all reads—each read

normalized by its percent-identity to the region it maps to—

mapping to a given reference. The RNR and RNI up-weight the

magnitudes of reads mapping uniquely to a reference and are

available for each taxonomy identified in the sample. This yields

six descriptive metrics (strain RNR, strain RNI, species RNR,

species RNI, genus RNR, and genus RNI) for each taxonomy

identified in a sample. Different truncations of the total number

of metrics included in the feature vector are searched over at

training time, keeping the top n highest-magnitude values from the

PanGIA report. The top n highest-magnitude values are kept in the

order output by the PanGIA report, which implicitly captures the

taxonomic classification information. This feature vector should

capture anomalies that are comprised of the presence of a small

number of anomalous taxa or the absence of a small number of

expected taxa. PanGIA will always assign a label and will assign

it to whatever the closest taxa present in the PanGIA database.

This implicitly captures the taxonomy regardless of if it is labeled

properly, as the DeepSVDD portion of AMAnD does not explicitly

check for the presence/absence of a taxon.

The second feature vector chosen is k-mer counts. The Jellyfish

k-mer counter (23) was used to profile 3mers or 4mers which have

the counts processed into AMAnD. Small k-mers can characterize

community compositions similarly to taxonomies but can capture

shifts in communities that may not be reflected by taxonomic labels

(12), i.e., a metagenomic community that remains taxonomically

consistent may have genotype shifts that functionally change the

community that is reflected in k-mer frequency. 3mers and 4mers

are chosen to keep the total size of the feature vector small, as the

cardinality of k-mers grows exponentially and larger k-mers would

require some level of feature selection to keep the feature vector size

small enough to avoid complications of high dimensionality.

2.3. The AMAnD pipeline

For training, the input to the AMAnD pipeline was a set

of “standard conditions” metagenomic short read files in fasta

or fastq format. Reads were passed to the PanGIA taxonomy

classifier and Jellyfish k-mer counter in parallel. Taxonomy reports

generated by PanGIA and Jellyfish 3mers and 4mers were then

merged into feature vectors that are passed on to DeepSVDD

from the PyOD library. A grid search is then performed across

288 parameterizations of PanGIA feature vector models and 108

parameterizations of k-mer feature vector models. The sets of

hyperparameters searched over include different hidden layer

dimensions, feature vector truncation length, drop-out rate, L2

regularization coefficient, and internal autoencoder use (Figure 1;

Supplementary Figure 2; Supplementary Table 1). Each resultant

model has learned a minimal n-dimensional hypersphere, which is

used to accept or reject input samples akin to a threshold.

A 10% holdout validation set is used to assess the viability of

the model, and the parameterization that minimizes the difference

in the mean squared error of reconstruction between the training

and validation sets is used as an initial down-selection of model

hyperparameters. In this screening, the models with the minimal

validation error are captured and only models with decreasing

and minimal error (per visual screening) are evaluated against

the test set to choose the optimal model. This was performed

by holistic human interpretation of the entire training plot over

the 400 epochs. Examples of down-selected models’ training

behavior with minimal training and validation error are shown in

Supplementary Figure 3. Since both sets are members of the same

normal class, observing the reconstruction MSE over the training

epochs of both training and validation suggests that the model

generalizes to unseen data well. Unseen validation control data

points must be reconstructed as well as the training in the anomaly

detection case to avoid false positive flagging of anomalies. The

best models presented in this study are the models that perform

with the highest accuracy of classification on both the validation

holdout normal class set and the test anomaly set which is not used

in training. With the optimal model chosen, future single samples

can be passed for anomaly screening. The metagenomic sample is

passed through PanGIA and Jellyfish to generate feature taxonomy

and k-mer vectors that are then passed to the optimalmodel scoring

for assessment (Figure 1).

2.4. AMAnD profiling

AMAnD was profiled for performance on three distinct

datasets—two datasets collected from the National Center for

Biotechnology Information’s (NCBI) Sequence Read Archive (SRA)

and one synthetic dataset generated by the Critical Assessment of

Metagenome Interpretation simulator (CAMISIM) (24). The first

dataset was collected from human nasopharyngeal microbiome

swabs (NPS) from COVID-19-positive and COVID-19-negative

patients (11). Feehan et al. found differences in metagenomic

community abundances of Serratia spp., Streptococcus spp.,

Enterobacter spp., Veillonella spp., Prevotella spp., and Rothia

spp. in COVID-19-positive samples. Control COVID-19-negative

samples from healthy donors of the study were used to train an

AMAnD model as the typical metagenomic background profile

and COVID-19-positive samples were used as an anomaly test set.

Samples were chunked into files of 1,000,000 reads each to bolster
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FIGURE 1

Overview of model development, training, and validation of the AMAnD method. Models were developed for selected publicly available microbiome

datasets associated with two human health conditions; slow-transit constipation (STC) and COVID-19 nasopharyngeal swabs (NPS). In addition, in

silico simulated metagenomic samples (across 3 simulated coverage levels) were manipulated with sequences from anomalous spike-in organisms at

increasing taxonomic divergence from community members in the “normal” condition samples using the tool suite from CAMISIM.

sample numbers, resulting in a dataset of size n = 988. The second

dataset was collected from human gut microbiome samples from

patients with slow transit constipation (STC) and healthy control

patients (25). Tian et al. found Shannon and Simpson diversity

metrics to be significantly higher in the STC group than in healthy

controls. Healthy control samples were used to train an AMAnD

model as the typical background model and the STC samples

were used as an anomaly test set. Samples were again chunked

into files of 1,000,000 reads to bolster sample numbers, resulting

in a dataset size of n = 724. The datasets were chosen because

the publications associated with them had independently validated

there were substantial differences between the two groups which

should be reliably detectable. Furthermore, validation of these

datasets also suggests that AMAnD is appropriate for monitoring

nuanced shifts in human metagenomic samples that may serve as

early indicators of deleterious health conditions.

The synthetic dataset was generated by CAMISIM using

CAMISIM’s de novo metagenomic simulation. In total, 50

organisms with numerous high-quality reference genomes were

chosen to form a typical control organism background, and n =

100 de novo metagenomic samples were simulated. Additionally,

12 experimental “spike-in” datasets were created by including one

additional taxon to the control set during de novo metagenome

simulation and n = 50 metagenomic samples were simulated as

a test set of anomalies for each. The 12 additional organisms

were chosen at increasing levels of taxonomic distance (i.e., shared

species, genus, family, or order) to an organism present in the

non-anomalous “background” control (Figure 2). These datasets

were designed to benchmark AMAnD’s ability to discern taxonomy

anomalies originating from very small taxonomic distances to

increasingly large disparities and which modeling methods—

PanGIA taxonomy profiles or k-mers—were more sensitive to

these changes.

The CAMISIM experiments were replicated three times

at different metagenome sample sizes to profile AMAnDs’

performance as coverage varies. The simulation size parameter

per dataset ranged across 0.1, 0.05, and 0.01 gigabase pairs.

Individual spike-ins of anomalous organism sequence reads from

the CAMISIM dataset test AMAnD in cases where a single

taxon is anomalous. The Feehan et al. and Tian et al. datasets

capture larger community abundance shifts in taxa that are already

present. This range of testing allows a more complete picture

of possible anomalies that would be desirable to detect in an

operational setting.

The AMAnD code repository and documentation are available

in full on GitHub at https://github.com/colinwprice/AMAnD

under the open GLv3 license.

3. Results

3.1. CAMISIM dataset

AMAnD models trained on both k-mer feature vectors and

PanGIA feature vectors were able to reliably differentiate the 12

spike-in anomaly cases from the “normal conditions” background

cases. In the CAMISIM dataset experiments, the PanGIA models

performed better. The highest accuracy across all optimized

PanGIA feature vector models was achieved on the Macrococcus

bohemicus spike-in condition at 95%, and the lowest accuracy

was 85.63% on the Rahnella aceris spike-in condition (Figure 3;
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FIGURE 2

Overview of taxon-replacement strategy in CAMISIM-generated metagenomics anomaly datasets. Selected taxa within the “normal” conditions had

increasingly distant taxonomic relatives substituted into “anomalous” metagenome profiles. Three di�erent taxon-substitute datasets were

constructed at four increasingly distant taxonomic levels from “normal” conditions.

FIGURE 3

AMAnD’s PanGIA model performance in microbial taxonomy feature space across di�erent simulated coverage levels and increasing taxonomic

distance for “anomalous” taxa.

Supplementary Figure 4)—both of those anomaly targets were at

shared family level taxonomic divergence. The mean performance

of all optimized PanGIA feature vector models was at an accuracy

of 91.15% (±2.21%), almost 10% better than the k-mer feature

vector model average of 81.93% (±6.84%) which exhibited higher

variance in performance across conditions (Figures 3, 4). Across all

optimized k-mer feature vector models, the highest performance

was the Sodalis glossinidius condition at 93.13% accuracy and

the lowest was the Erwinia amylovora spike-in at 69.4% accuracy

(Figure 4; Supplementary Figure 4)—interestingly, both of those

anomaly targets were also at the shared family level taxonomic

divergence. These results suggest that in cases where there is

a single anomalous taxon present, regardless of the taxonomic

similarity of that anomalous taxon to the normal conditions,

the PanGIA feature vector is a more consistent choice with

lower variance in the ability to correctly label anomaly from

control. However, there are some specific conditions that the k-

mer feature vector outperforms the PanGIA feature vector which

suggests that considering an ensemble of both models would

improve fidelity. For example, the Escherichia albertii condition

at CAMISIM coverage simulation 0.01 has a higher k-mer model

accuracy than the PanGIA counterpart (Supplementary Figure 4).
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FIGURE 4

AMAnD’s k-mer feature space model performance across di�erent simulated coverage levels and increasing taxonomic distance for “anomalous”

taxa.

Examining performance across the tiers of taxonomic similarity

between “normal” background control and anomalous organism

spike-ins, the average performance of PanGIA remained consistent,

achieving average accuracies of 91.45, 91.25, 90.14, and 91.74%

for anomaly targets diverging by strain, species, genus, and family

levels, respectively (Figure 3; Supplementary Figure 4). The k-mer

feature vector models exhibited more variance and appeared to

improve as the spike-in organisms became more dissimilar from

their counterparts in the “normal” background control, until

the family level when performance dropped to the lowest value.

Average accuracies were found to be 81.60, 83.05, 84.44, and

78.62% for anomaly targets diverging by strain, species, genus,

and family levels, respectively (Figure 4; Supplementary Figure 4).

When considering the data across both PanGIA and k-mer feature

vectors, AMAnD’s performance appears independent of taxonomy

which is contrary to our initial hypothesis that performance

would improve with increasing taxonomic divergence for anomaly

organisms. The final consideration in the CAMISIM experimental

cases is the simulation size for the metagenomic samples. The

CAMISIM size parameter was set at 0.01, 0.05, and 0.1 gigabase

pairs to investigate if performance would be impacted by the

sequence read coverage across taxa in the metagenomic samples.

The distributions and sample numbers were held constant between

the different-sized simulations. In PanGIA feature vector models,

performance was seemingly invariant to the depth-of-coverage

of the metagenomic samples averaging 91.09% (±1.92%), 89.84%

(±2.21%), and 92.50% (±1.78%) for the 0.01, 0.05, and 0.1

sizes, respectively (Figure 3). In k-mer feature vector models,

performance was superior on lower coveragemetagenomic samples

with average accuracies found to be 85.89% (±6.52%), 83.95%

(±5.52%), and 75.94% (±3.89%) for the 0.01, 0.05, and 0.1 sizes,

respectively (Figure 4). Surprisingly, we find that there does not

seem to be a pattern where more dissimilar spike-in organisms at

the higher taxonomic branches like order perform better than strain

difference spike-ins. We expect this is due to the representation

between the anomalous and normal control being sufficiently

different when a whole new organism is inserted into the sample

at the same rate as the other 50 normal control organisms for both

feature vectors.

3.2. Nasopharyngeal dataset

In the nasopharyngeal dataset retrieved from Feehan et al.,

both the k-mer feature vector and PanGIA feature vector were

found to successfully differentiate the COVID-positive anomalous

samples from the COVID-negative control samples. The optimal k-

mer feature vector model was found to be 95.1% accurate, and the

optimal PanGIA feature vectormodel was found to be 91% accurate

(Figures 5, 6). The higher performance of the k-mer feature vector

heremay suggest that the PanGIA feature truncation approach used

by AMAnD is less suited for highly diverse and variedmetagenomic

samples like those found in human microbiomes when compared

to k-mers. Feehan et al. found significant differences in several

taxonomic groups in COVID-positive patients which AMAnD can

reject after learning the typical COVID-negative background.

3.3. Gut microbiome datasets

In the gut microbiome dataset retrieved from Tian’s upload

to SRA, both the k-mer feature vector and PanGIA feature vector

again were found to successfully differentiate the anomalous slow

transit constipation samples from the healthy control samples.

The optimal k-mer feature vector model had 100% accuracy and

the optimal PanGIA feature vector model had 97.3% accuracy

(Figures 6, 7). This again mirrors the observations from the

nasopharyngeal dataset, where the k-mer model outperforms the

PanGIA model. Again, Tian’s study found significant widespread

changes in diversity distributions and compositions across many

taxons at different taxonomic levels. The exhibited higher
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FIGURE 5

AMAnD’s model performance distribution across all hyperparameter combinations evaluated for the NPS test sets.

variance in the scoring of STC samples compared to the NPS

is likely due to the higher species variance in the human

gut microbiome.

When ordering the chunked metagenomic samples from the

SRA studies, interesting patterns emerge that serve to validate the

idea that AMAnD makes no assumptions about what an anomaly

might look like a priori. That is, despite the relatively high diversity

of a human microbiome sampled in a nasopharyngeal swab or the

gut community, a consistent background is learnable. The anomaly

samples, while all anomalous, are also anomalous in different ways

as they have different error rates/scoring used in the classification.

This becomes clearer when the chunked samples are ordered by

their patient of origin, as despite COVID-positive patients and STC

patients having the same condition within their anomaly group,

it manifests in slightly different ways that are still flaggable by

AMAnD (Figure 7).

Based on these results, we recommend that when deploying

AMAnD to a regular sequencing operation both feature spaces

that should be trained and considered. In the case where both

models do not flag the sample, the sample is likely typical.

In the case where either feature space flags the sample as

anomalous, or if both feature space models flag the sample as

anomalous, the sample should be further scrutinized for what

the specific cause of the anomaly might be. AMAnD models

will likely improve over time as the corpus of training data

grows as well as with future additions of new feature spaces

to consider side-by-side with current kmer and PanGIA feature

spaces. Even though our findings are that in different metagenomic

anomaly detection scenarios, one feature vector performs better,

consideration of multiple feature vectors that perform well further

augments AMAnD’s strength of being assumption free; the more

feature spaces represent the data the more likely it is to be

representing the feature space that principally describes the

potential anomaly.

4. Discussion

AMAnD demonstrates that a deep learning approach is well

suited for metagenomic anomaly detection even at sample sizes

as shown in the CAMISIM examples with a training size as

small as n = 100. Intelligent curation of features descriptive of

the metagenomic sample like PanGIA taxonomic read labelings

or small k-mer abundances allows for small deep networks like

AMAnD to have high fidelity. Compared to linearmachine learning

models like support vector machines or logistic regression models,

neural networks like AMAnD have the advantage that they are

better suited to “on-line training” deployment environments where

individual samples can be passed as a one-off training instance to

continuously update the weights of the network as more samples

are validated as anomaly free, further improving the representation

of typical background control learned by AMAnD. This is unlike

support vector machines and other traditional machine learning

methods that require the whole batch plus the one new sample to

be passed through to retrain. In a production sequencing/regular

sequencing environment, the option to immediately use the new

data point and just the new data point each time is passed through

the anomaly detector which is desirable to avoid long and less

computationally efficient model retraining. DeepSVDD has been

shown to hold an advantage over purely traditional auto-encoders

with the additional fitting of a minimally sized n-dimensional

hyper-sphere around the trained on normal control class.

Different AMAnD models are more effective at the different

experimental anomaly sets. K-mer feature vector models likely

performed better at low coverage due to the presence of the

anomalous spike-in organism having a larger impact on the low k-

mer distribution. In the PanGIA feature vector space, performance

remained stable perhaps due to the fact that the relative abundance

of the taxonomic spike-in organism with respect to the rest of the

sample did not change.
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FIGURE 6

AMAnD’s reconstruction score for training samples across k-mer and taxonomic feature spaces on NPS (top two plots) and STC conditions (middle

two plots). When sorted by sample index number, the varied ways in which samples can present as anomalous are evidenced by the clustered

groupings—AMAnD can accurately divide “normal” from “anomalous” despite this variation.

AMAnD makes no assumptions about how an anomaly may

be characterized, which makes it an appealing candidate for

applications where there is little known about what constitutes

a metagenomic anomaly. There is no information about the

effects of prolonged deep spaceflight on the human metagenome

(or the associated built environment of the crew cabin), so

monitoring these samples for anomalous profiles should make as

few assumptions as possible. While only a few types of anomalies

are characterized here, if an anomaly would be represented in one

or more feature vectors present in an ensemble of AMAnDmodels,

AMAnD should be able to learn and flag it reliably. Furthermore,

the small size of AMAnD’s neural networks and the high fidelity of

AMAnD on low metagenomic coverage make it attractive for space

flight applications where lightweight and low-power solutions are

desired, or other deployed operational environments where high-

coverage data are challenging to acquire.

In practical deployment, models will likely not be selected

based in part on test set performance as well as validation

performance since a user will likely only have access to their

“normal” class representatives to use as the only validation set for

their hyperparameter tuning. It would be difficult to expect a user

to come to the table with a handful of anomaly class representatives

ahead of time, especially since the most valuable utility of this

approach would mean there are no a priori assumptions on

what an anomaly looks like. The test set here can be thought of

almost as a second validation set for the model parameterizations;

unlike a traditional mixed-class classification problem, only the

normal control class is present in the validation and training data,
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FIGURE 7

AMAnD’s model performance distribution across all hyperparameter combinations evaluated for the STC test sets.

meaning the test set characterizes the performance of rejecting the

anomaly class while theminimum validation error characterizes the

generalization to unseen control data that should not be rejected

as anomalous. No model parameterization considered in this study

should be considered as an “off the shelf ” ready model but should

instead show that diverse hyperparameterizations are viable on

both validation and test datasets.

For future work on AMAnD, additional feature domains will be

profiled to further validate the generalizable nature of AMAnD in

areas such as protein space and gene space. Additionally, training

an assembling meta-model to consolidate the voting of all feature

spaces may lead to a superior fidelity of anomaly detection. A

second validation stage could be added in which previously rejected

anomalies are kept as a “second validation” set to re-validate the

model each time the weights are updated over the lifetime of

the model’s deployment—this should ensure that labeling is still

consistent with the previous iterations similar to how the test set

was employed in model selection in this study. The collection

of additional datasets along a temporal axis to profile how the

performance of AMAnD models changes as additional data are

trained over time would help uncover how the performance of

AMAnD scales to high sample counts. Furthermore, the results

of temporal metagenomic data analysis could provide interesting

insight into how a metagenomic sequencing operation changes

over time.

AMAnD’s success with real-world metagenomic data that

reflect different human pathologies suggests it is well-suited for

applied metagenomics biosurveillance. The feature vectors of both

k-mer frequency and PanGIA taxonomy demonstrated success

on all benchmarked datasets and show potential to be used in

an ensemble to further bolster robustness to different anomaly

types. PanGIA feature vectors capture small changes in taxonomic

composition and k-mer frequency can capture non-taxonomic

shifts in microbial communities. AMAnD models could be trained

on a variety of other possible metagenomic descriptive feature

vectors, including gene annotations, degenerate k-mer vectors

(26), amino acid k-mers, and nanopore electrical signals (27–29).

Aggregating many AMAnD models together across different

feature vector types will further improve the generalizability of

anomaly detection.
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